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Abstract. Data assimilation has been widely used for improvement of crop 

models’ estimates, for example to incorporate the effects of external events or 

compensate calibration errors in large areas. There are then many well-

established approaches for those who want to take advantage of satellite 

imagery and reduce uncertainty or model error. However, its use in different 

contexts requires exploring aspects of the pipeline that are not as well 

established, such as which variables to assimilate or how to ascribe 

uncertainty to observations or model estimates. In this study, we assess the 

impacts of different noise levels for performing data assimilation in a tomato 

growth model, with artificial observations of fruit and mature fruit biomass. 

Resumo. Assimilação de dados é uma técnica que tem sido amplamente 

utilizada para melhorar as estimativas de modelos de crescimento de plantas, 

por exemplo, para incorporar os efeitos de eventos externos. Existem muitas 

abordagens bem estabelecidas para realizar assimilação com imagens de 

satélite, mas seu uso método em novos contextos, como cultivo protegido, 

requer a exploração de aspectos da metodologia que não estão tão bem 

estabelecidos para estes casos. Neste trabalho, avaliamos os impactos de 

diferentes níveis de incerteza associados às observações, realizando 

assimilação de dados em um modelo de crescimento de tomateiros, com 

observações artificiais de biomassa de frutos e frutos maduros. 

Introduction 

Data assimilation on crop models has mostly been performed by the integration of 

remote sensing Earth observations into mechanistic models, often with the goal of 

improving agricultural systems’ models’ predictive capability. Technical aspects of the 

discipline have frequently been revisited given the evolution in computational capacity 

and available state estimation techniques [Dorigo et al. 2007; Fischer et al. 1997; Huang 

et al. 2019; Jin et al. 2018; Luo et al. 2023]. These reviews, which detail how the 

approach has been used in crop modeling, have looked into the subject from different 

perspectives, such as the methods used to derive biophysical and biochemical canopy 



  

state variables from optical remote sensing data in the VNIR-SWIR regions [Dorigo et 

al. 2007], the sources of errors in each element of the data assimilation process [Jin et 

al. 2018], the theoretical basis for methods as well as a walkthrough of the steps 

required to apply them [Huang et al. 2019], and the models and quantities being 

assimilated [Luo et al. 2023]. These studies, however, emphasize limitations of satellite-

derived observations, e.g. the spatial and temporal scale of satellite images [Huang et al. 

2019; Jin et al. 2018; Luo et al. 2023]. 

In this sense, many of the lessons that have been learned by the crop modeling 

and remote sensing community could still be discussed and extended into other 

domains. For instance, in soil water monitoring and irrigation, some studies assess the 

effect of local measurements on the quality of assimilation [Valdes-Abellan et al. 2019], 

or how parameter importance shifts as a consequence of irrigation regimes [Orlova and 

Linker 2023]. For crop growth, greenhouse environments also allow for more intense 

monitoring, e.g. with daily pictures [Liu et al. 2022; Moon et al. 2022], without the 

adverse effects of large scales. It would be useful to explore assimilation techniques to 

enhance accuracy and reduce uncertainty in model estimates obtained for these 

environments. [Luo et al. 2023] quantified which variables and models are the most 

used in data assimilation studies and, for variables, the leaf area index was 

unquestionably the most used. They give multiple reasons, but one relevant aspect not 

mentioned is the existence of products that allow for coupling model estimates and 

outputs of satellite images. In new contexts, these relationships must be established. 

Additionally, they should represent the variables that could in fact be useful for 

assimilation since not always updating one variable would lead to improvement in 

another [Nearing et al. 2012]. These new relationships and observations also include 

uncertainty aspects that need to be quantified for some of the methods more frequently 

used. The models [Luo et al. 2023] mentioned as most used would not likely be used in 

protected environments, so uncertainty quantification would also be required for the 

models explored. Additionally, while the remote sensing realm is dependent on revisit 

frequency and is vulnerable to unfavorable atmospheric conditions, leading to fewer 

observations available, high-frequency noisy observations could become a hindrance.  

To better understand the subject, it is often useful to explore artificial data, so 

that it is possible to investigate the behavior of the system with more methodological 

control. These types of studies have been called Observation System Synthetic 

Experiments (OSSE) [Nearing et al. 2012; Pellenq and Boulet 2004] and synthetic twin 

[Lei et al. 2020] and have been used for answering questions such as if the assimilation 

of an observation improves all components of the model’s simulations, if calibration 

errors can be compensated by assimilation [Pellenq and Boulet 2004], which are 

limitations imposed by the model, the assimilation method, and uncertainty in model 

inputs and observations [Nearing et al. 2012], and appropriate ensemble size [Lei et al. 

2020]. 

In this study, we assess how aspects of uncertainty from the decision-making 

process of performing data assimilation relate to performance and use as an example a 

greenhouse tomato growth model — the Reduced-State Tomgro model [Jones et al. 

1999] —, aiming at improving yield estimates through assimilating artificial 

observations of tomatoes in a greenhouse environment. 



  

Materials and Methods 

Data sources 

Environmental data collection was performed in research greenhouses cultivated with 

tomatoes. The dataset includes photosynthetically active radiation and air temperature 

from three growth cycles. The first cycle took place from Jul/2019 to Oct/2019 (Exp 1), 

the second, from Nov/2020 to Feb/2021 (Exp 2), and the third, from Mar/2021 to 

Jun/2021 (Exp 3). Dry mass from aboveground plants’ organs and leaf area index from 

destructive analyses of one tomato growth cycle (Exp 3) were also collected for model 

calibration. 

Crop model 

With the environmental data from greenhouses, we simulated growth using the Reduced 

State Tomgro model [Jones et al. 1999]. We performed assimilation in the Reduced 

Tomgro model with parameters obtained for the original experiment in Gainesville, 

using artificial observations, as explained in the Data assimilation section. As a source 

for the ground truth and a reference of performance, calibration was performed by 

minimizing the relative squared error of data obtained in the experiment and models’ 

estimates through growth. Code was implemented in python language and difference 

equations were integrated by the Euler method. Model code, as all code used in this 

study and reference to related materials (i.e. data, other studies), is available at [Oliveira 

2023]. 

Data assimilation 

For assimilation, we used the Unscented Kalman Filter (UKF) and evaluated the 

impacts of different approaches for performing data assimilation for yield estimates. 

Ground truth values corresponded to the simulation performed in each of the three 

environments with the calibrated Reduced Tomgro. An overview of the elements 

assessed is detailed below.  

• Two assimilated state variables: Fruit dry weight (Wf) and mature fruit dry weight 

(Wm). 

• Observations: Three different noise levels (10%, 30% and 50%) were ascribed to 

observations of the calibrated Reduced Tomgro Model. The level multiplied by the 

observation was treated as the standard deviation of a normal distribution from which 

the perturbation was sampled. 

• Uncertainty in crop model: UKF requires determining a value for uncertainty in 

model estimates. As assimilation was performed in the non-calibrated Reduced Tomgro 

model, these were ascribed as the relative absolute error of the non-calibrated model to 

the samples used for calibration (Table 1). 

• Uncertainty in observations: The noise level multiplied by the observation was 

treated as the uncertainty ascribed to that observation. 



  

• We subsampled the observations to study the effect of frequency. Subsampling 

used 50% and 10% of the data available in the cycle. In one of the repetitions, sampling 

was regularly spaced through the cycle while in the others, it was randomly sampled. 

We repeated the process 20 times to avoid biasing the results due to sampling of 

the artificial observations. 

Table 1. Values ascribed to the filters as uncertainty estimates [%]. 

Simulation day 
State variable 

Wf Wm 

1-10 0.01* 0.01* 

11-27 0.01* 0.01* 

28-38 100 0.01* 
39-52 94 0.01* 

53-66 82 51 

67-90 66 68 
91-end 66 75 

*Placeholder to avoid 0 variance. 

We evaluated our approaches by calculating the daily absolute relative error 

through growth. Our focus on evaluating daily results is related to the indeterminate 

growth. Differently from other crops in which one value is ascribed to yield, harvest for 

indeterminate crops is continuous, and therefore, model errors through the growth cycle 

affect estimates along harvests. As the excess of zeros from the vegetative phase could 

skew these results, they were not included in the calculation. 

Results and Discussion 

In this case study, the assimilation of fruits’ observations (Wf), except for the 

highest noise level, only slightly reduced errors in yield (Wm) estimates, when 

compared to the model without calibration, while the counterpart assimilation of mature 

fruits’ observations (Wm) led to improvements for most experiments (Figure 1). The 

first result happened because improving Wf estimates did not ensure Wm being 

correctly estimated. The simulations from the non-calibrated model (OL) showed very 

close estimates for Wf and Wm, representing a maturity rate much larger than the one 

from simulated truth (Figure 2). This is a consequence of the Wm estimate depending 

on a parameter that differed by more than 100% from the non-calibrated to the truth 

scenarios. The simulated truth also pointed to much larger overall biomass values than 

the estimates obtained by the non-calibrated model. So, while the model previously 

underestimated Wm, assimilation led to an overestimation (Figure 2), since Wm was 

then obtained by the non-calibrated model with the larger parameter, and based on a 

much larger value of Wf. Interestingly, the largest noise in measurements allowed for 

model estimates to be more explored by the filter, so the process led to improved 

estimates by averaging the higher and lower estimates of Wf. 

On the other hand, since the assimilation of Wm itself did not depend on the step 

of the model processing the updated value, improvements, in particular for lower noise 

levels, are more noticeable. Kalman filter methods are an optimized approach for 

performing a weighted average, in which the weights are related to the covariance of 

each estimate. Since we used a non-calibrated model to provide models’ estimates, one 



  

could already expect, from Table 1, that the models’ large covariances would lead 

assimilation to take more advantage of observations when their covariances were low. 

And we see that in general, for the assimilation of Wm, the lower the noise level, the 

closer the estimates were brought to the truth. It is the case then that not always 

assimilation is going to improve results, and this outcome depends on how the model 

will use the updated value and on its sensitivity to this input, i.e., how much the 

estimate relies solely on the input. 

 

Figure 1. Relative errors for daily estimates of mature fruit dry mass after 
assimilation of artificial observations of fruit dry biomass (Wf) or mature fruit 
dry biomass (Wm), obtained by different degrees of perturbations in the 
outputs of the calibrated Reduced Tomgro model (10%, 30% and 50%), for three 
weather conditions, with different fractions of the full observation dataset. 
Horizontal orange lines refer to the relative errors of the Reduced Tomgro 
model in estimating mature fruits without assimilation: full line corresponds to 
the median and dashed lines to the 25th and 75th percentiles. Y-axis is 
truncated at 100%. 

Assimilation frequency may be considered complementary to the acceptable 

noise level in observations, since assimilating an observation with large errors very 

frequently may not allow for the model to correct the estimates. In our example, this 

effect depends on which variable is being assimilated, with worse outcomes for the 

more frequent assimilation of fruits’ observations and the opposite being true for the 

assimilation of mature fruits, with a more pronounced effect for the lowest noise level in 

both cases. As pointed out previously, the highest noise level in the assimilation of 

fruits led to the model estimate being more explored, causing a slightly different 

behavior. 

Overall, assimilation with half the observations led to very similar results when 

compared to the assimilation of the full dataset. This result is interesting when 

connected to processing capacity. For instance, if the observations are obtained by 

pictures of plants growing, there would be no need for obtaining, storing, and extracting 

the related biomass from them every day. 



  

 

Figure 2. Growth curves [g m-2] for fruit (continuous line) and mature fruit dry 
biomass (dashed line) with and without assimilation. Assimilation was 
performed with observations of fruit dry biomass (Meas: Wf) or mature fruit dry 
biomass (Meas: Wm) with different noise levels (10%, 30%, 50%) in the Reduced 
Tomgro Model, with the complete observation dataset for the three weather 
experiments. Assimilation curves in light red refer to all 20 repetitions of the 
experiment. The darker red curve for mature fruit biomass refers to the average 
result of the assimilation runs. Dots refer to all observations used in the 
multiple runs. The x-axis was truncated at 30 days since the previous period 
corresponds to the vegetative stage. 



  

Conclusions 

The discussions on the use of data assimilation often focus on field crops, and for the 

use of assimilation in protected environments, little has been explored. The main 

characteristics of this new context for application are the new data sources, as well as 

the frequency for obtaining them. They could, for instance, rely on daily digital images 

to estimate fruit mass. In this new context, in which the availability of observations may 

not be a restriction, some aspects of the process must be reevaluated. In our preliminary 

assessment of possible noise levels and frequency of assimilation, we aimed at 

observing how imperfect measurements can allow for improvements in estimates of 

tomato yield of a non-calibrated tomato growth model. Overall, we observed 

improvements, but in some cases, when observations and model estimates were equally 

poor, filtering impaired them even more. As an overview of the method, however, we 

showed how even with imperfect measurements there may be improvements that lead 

model performance toward the performance of the calibrated model. While useful in the 

context of a lack of available data for calibration, these results could be expanded by 

assessing the same filter parameters in the context of the calibrated model. 
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