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Abstract. Monitoring losses of underground crops still needs to be studied, 

mainly for estimating losses using new techniques that facilitate the farmer's 

decision-making. This study aimed to estimate peanut invisible losses using 

remote sensing and machine learning. The experimental area was conducted 

in a peanut agricultural region near Taquaritinga in São Paulo, Brazil. 

Seventy sample points were collected, encompassing various aspects of peanut 

losses, including visible and invisible losses, yield, maturation, and orbital 

remote sensing data. The statistical analysis used were Principal Components 

Analysis and Random Forest. The study concluded that the best results were 

RGB, RE + NIR, NIR + R, and RE to estimate peanut invisible losses. 
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1. Introduction 

Crop losses significantly impact agricultural productivity. Among various agricultural 

systems, mechanized harvesting is one with substantial loss potential. It necessitates 

meticulous attention and proper execution to mitigate these losses effectively. 

Inadequate harvesting practices, often attributed to insufficient workforce training, 

improper machine adjustments, and factors like excessive water content in grains or 

pods, can drastically reduce productivity and a notable increase in operational expenses. 



  

Addressing these issues is crucial to optimize crop yields and minimize financial 

burdens. 

Among various crops, special attention must be given to underground crops, 

such as peanuts and potatoes, particularly during the harvest phase. Handling these 

crops poses additional challenges as they are more difficult to monitor for visible and 

invisible losses. Detecting losses in underground crops requires extensive labor due to 

the necessity of digging the soil to identify potential issues. Conventional methods for 

estimating losses in such crops demand considerable labor and become costlier as the 

area to be monitored expands. 

In this context, geotechnologies, particularly remote sensing (RS) utilizing 

orbital images, present a promising solution for estimating invisible losses. By 

employing RS techniques, the monitoring process can become more efficient, cost-

effective, and capable of covering larger areas, making it an invaluable tool for 

mitigating losses and optimizing underground crop yields. 

SR is a method that obtains information without physical contact with the target 

[Florenzano, 2011; Jensen, 2009] and is non-destructive. Among the technologies used 

in agriculture, SR stands out for allowing the monitoring of temporal-spatial variability 

of small, medium, and large agricultural areas; estimation of crop yield [Shiratsuchi et 

al., 2014] and biomass; in this work, we will estimate the invisible losses of peanuts 

using artificial intelligence (AI), with machine learning (ML) algorithms. ML 

techniques are excellent statistical tools for measuring model quality and error, 

especially in SR, when the data may not have a linear distribution. 

Given the above, we have as a novely hypothesis for this work the following 

question: “Is it possible to estimate invisible losses of underground cultivation through 

SR and AI?” We saw the benefits of using SR in agriculture, and if the hypothesis of 

this work is answered positively, the rural producer will reduce his operations. Thus, the 

objective of this study was to estimate peanut invisible losses using remote sensing and 

machine learning. 

2. Material and Methods 

The experimental area was conducted in the largest producing region in Brazil, in which 

São Paulo State is responsible for producing around 90% of peanuts. This experimental 

area was conducted in a peanut agricultural region near Taquaritinga city in São Paulo, 

Brazil (as depicted in Figure 1). The region is characterized by sandy soil texture, and 

its climate falls under the classification of Aw, indicating a tropical climate with a dry 

winter, following the Köppen climate classification system [Alvares et al., 2013]. 

Seventy sample points were collected, encompassing various aspects of peanut 

losses, including visible and invisible losses, yield, and maturation. Additionally, free 

orbital remote sensing data from the Sentinel 2 (S2) satellite imagery were acquired 

from the Copernicus Open Access Hub website 

(https://scihub.copernicus.eu/dhus/#/home). 



  

 

Figure 1. Location map of the experimental area in a peanut agricultural 

 

Data processing was meticulously organized into three steps: pre-processing, 

processing, and data analysis. 

1. Pre-processing: The data collected were categorized into two main groups: 

input data, which included Sentinel 2 (S2) satellite imagery, visible losses, yield, and 

maturation data, and output data, focusing on invisible losses. The remote sensing data 

were gathered on six specific dates, as outlined in Table 1. Detailed information 

regarding sowing and harvesting data and the processing of orbital imagery data was 

also recorded. The spectral bands (Table 2) evaluate were: blue (B), green (G), red (R), 

redegde (RE), near-infrared (NIR), and combinations between them (RE + NIR, NIR + 

R) 

2. Processing: The software QGIS®, version 3.22.10, was employed for data 

processing. To extract the sample points obtained across all data categories within the 

designated area, the "Points Sampling Tool" plugin was utilized. Subsequently, the 

collected data were saved in CVS format and further organized using the Excel 

program. 

3. Data analysis: For the data analysis phase, Google Collaboratory, known as 

Colab (https://colab.research.google.com/), was employed using Python. This platform 

facilitated the implementation of the Random Forest Regression (RFR) and Principal 

Components Analysis (PCA) techniques to process the data effectively. In addition, the 

dataset was trained (70%) and validated (30%) by RFR. 

 



  

Table 1. Data information about sowing and harvesting date and also orbital 

satellite imagery date 

Data collection date 

information 

Date  Number of 

imagery date 

Sowing date October 25th, 2022 ----- 

S2 imagery October 26th, 2022 1 

S2 imagery November 10th, 2022 2 

S2 imagery November 20th, 2022 3 

S2 imagery November 30th, 2022 4 

Harvest date March 24th, 2023 ---- 

S2 imagery March 25th, 2023 5 

S2 imagery March 30th, 2023 6 

S2: Sentinel 2 satellites imageries 

 

Table 2. Orbital remote sensing used was Sentinel-2 spectral bands 

Sentinel 

spectral band 
Abbreviation  

Central 

wavelength 

(nm) 

Spatial 

resolution (m) 
Abbreviation  

Blue B 490 10 B 

Green G 560 10 G 

Red R 665 10 R 

Red Edge  RE 740 20 RE 

Near-infrared NIR 842 10 NIR 

The variable collection as pod maturation was determined using the Hull scrape 

method (Williams and Drexler., 1981), where eight plants were collected, containing 

approximately 200 pods per point. Yield and losses were collected in the same frame of 

2 m2. The yield was corrected to 8% of the water content in a pod.  

The metric parametric of accuracy and precision used were Determination 

coefficient (R2), Root Mean Square Error (RSME), and Mean Absolute Percentage 

Error (MAPE), the equations 1 - 3 for each metric parameter below. 
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On what: 

yi: estimated values 

: observed values 

N: number of samples  

: mean of the observed values 

3. Results and Discussion  

The most effective spectral bands for estimating peanut invisible losses during crop 

growth were found to be RGB and RE, as depicted in Figures 2a, 2b, and 2c. 

Subsequently, the most accurate results were obtained one day after the harvesting date 

using the NIR + R and RE + NIR spectral bands, as shown in Figure 2e. Figure 2d 

shows us that almost one month after sowing, plant reflectance was affected by soil 

reflectance effects due to smaller peanut plants and little plant coverage on the ground, 

which was observed by Povh et al. [2008] and Carneiro et al. [2020]. Moreover, six 

days after the harvest, the spectral bands that yielded the best results were RGB, NIR + 

R, and NIR + RE, as demonstrated in Figure 2f. 

We conducted an intriguing study concerning peanut crop growth, wherein we 

utilized various spectral bands such as RGB, NIR + R, and NIR + RE to assess potential 

imperceptible losses at an early stage. This early estimation of peanut losses proved 

advantageous for farmers, as it directly pertains to crop yield and facilitates more 

accurate decision-making to address yield-affecting factors, as evident from the 

observed losses. 

Moreover, we found that employing RGB, NIR, and RE + NIR spectral bands 

yielded superior results for monitoring crop variability and estimating overall output. 

The rationale behind these outcomes lies in the close association between remote 

sensing and plant physiology. Specifically, the RGB bands are absorbed by 

chloroplasts, which play a crucial role in the photosynthetic process, particularly in the 

case of the red and blue components. Additionally, NIR and RE exhibit greater 

reflectance compared to the red and blue components, further contributing to the 

efficacy of these spectral bands in our study. 

(a) (b) 
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Figure 2. Metric parameters used for estimation of peanut invisible losses 

 



  

 Carneiro et al. (2023), using Random Forest, orbital remote sensing, and soil 

data, got more excellent results using this machine learning algorithm, demonstrating a 

good statistical analysis. 

 Principal components analyses were realized (Figure 3); the best results were G 

(dates 1, 2, 4, 5, and 6), B (dates 2, 4, and 6), R (dates 1, 2, 5, and 6), RE (dates 1, 2, 3, 

and 5), and NIR (dates 1, 2, and 3) spectral bands. PCA analysis is an excellent tool for 

selecting the best inputs to determine the output that you would like to know how in our 

case, to estimate the peanut invisible losses. These results corroborate those found in the 

literature, in which the wavelengths most used in agriculture are in the visible, as RGB, 

and NIR ranges [Molin et al., 2015]. Moreover, we can see that the peanut biophysical 

characteristics (maturation, yield, and invisible losses) of the cultures obtained high 

explanatory values above 60% but were inversely proportional to the remote sensing 

data. 

 

PC_1: Principal Components 1, PC_1: Principal Components 2, _1: data 1, _2: data 2, _3: 

data 3, _4: data 4, _5: data 5, _6: data 6, B: blue, R: red, G: green, RE: rededge, NIR 

infrared, PMI_O: Peanut Maturity Index orange classification, PMI_B: Peanut Maturity 

Index black classification 

Figure 3. Principal Components Analyses to estimate peanut invisible losses 

4. Conclusions 

The study concluded that the best results were RGB, RE + NIR, NIR + R, and RE to 

estimate peanut invisible losses.  Future works, we used more fields to validate a model 

created to estimate peanut invisible losses for different scenarios. The earlier estimating 

the losses, the better to avoid increasing costs and ensure crop yield is not harmed. In 

this way, we saw in this work that we obtained good results right at the beginning of the 

development of the culture. 
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