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Abstract. This work aimed to evaluate the Random Forest algorithm performance 

to predict mechanical digging loss of the peanut crop. Four approaches were 

tested: only soil texture data, soil texture + TPI, soil texture + TWI, and soil texture 

+ TPI + TWI. The model's performance was evaluated regarding precision 

(coefficient of determination) and accuracy (mean absolute error). The results 

found in this work proved promising in predicting peanut digging losses. Our 

models achieve results with an approximate 100 kg ha-1 prediction error. In 

addition, incorporating one or more topographical indexes in conjunction with soil 

texture data as features notably improves the models' precision and accuracy. 

1. Introduction 

Currently, in Brazil, the peanut harvesting operation is carried out in a fully mechanized way. 

However, during this process, significant and unavoidable losses occur. The first stage of 

mechanized peanut harvesting is known as digging and is responsible for most of the total 

losses, reaching up to 30% [ZERBATO et al., 2019; SILVA, 2019]. Therefore, the 

measurement of losses in the mechanized uprooting process is an essential metric since, by 

obtaining reliable estimates, farmers can adopt adequate management and decision-making 

strategies for their crops. 

Measuring losses facilitates the development of innovative practices and technologies 

to mitigate them. Thus, several studies have been carried out to evaluate the losses arising 

from the harvesting processes and propose strategies to minimize them, mainly considering 

the factors that tend to influence their occurrence. Within this context, soil-related factors, 

such as physical and textural characteristics, influence the variability of losses [ZERBATO 



et al., 2017]. Peanut develops its pods in the lower part of the soil, so the plant needs lighter 

and more aerated soils, which are more easily found in sandy or sandy loam lands. In contrast, 

clayey soils are heavier, favoring the plant's sound development, but pod losses are more 

significant at harvest time. 

In recent studies, the use of topographic indices, such as the Topographic Position 

Index (TPI) and the Topographic Moisture Index (TWI), has played an essential role in the 

development of models for predicting agricultural productivity [Oliveira et al., 2022]. These 

indices provide valuable information about the physical attributes of the landscape and their 

influence on agricultural processes. Thus, soil physical factors stand out as an essential 

variable to explain the variability in the presence of losses. However, to develop accurate 

predictive models of peanut losses, it is essential to consider not only soil attributes but also 

the available advanced analytical techniques. 

Advances in data processing have enabled the use of complex analytical techniques, 

such as Machine Learning (ML). Among popular ML methods, Random Forest (RF) is a 

powerful and versatile algorithm based on independent decision trees, widely used for 

prediction and classification problems [Jeong et al., 2016]. Approaches using this type of 

method have shown high potential in agronomic forecasts [Yue et al., 2019, Oliveira et al., 

2022]. However, it is unaware of such loss prediction scenarios for the peanut crop. 

Integrating advanced data processing techniques plus information on soil 

characteristics parameters can provide a comprehensive approach to predicting peanut losses. 

Therefore, the objective of this work was to evaluate the Random Forest algorithm 

performance to predict mechanical digging loss of the peanut crop. 

2. Material and Methods 

In this section, we present how the development of the database for training the algorithms 

will be carried out (Section 2.1), the implementation of the proposed machine learning 

algorithm (Section 2.2), and finally, the method used to evaluate the performance of the 

algorithm (Section 2.3). Figure 1 shows a graphic summary of this study. 

 

 

Figure 1. Graphic abstract of the project with the stages of development. 

 



2.1. Study area and database development 

The work was carried out in the state of São Paulo - Brazil, in three agricultural 

production areas (Figure 2), for commercial purposes, in the 2022/2023 harvest. Two 

cultivars with different cycles and two soil conditions were harvested to express the existing 

variability in the field better, as shown in Table 1. 

 

Figure 2. Location map of the experimental area in a peanut agricultural. 

 

Table 1. Description and characteristics of the study areas 

Field City Peanut 

cultivars 

Soil texture 

type 

Sowing 

1 Sertãozinho OL3 Clay soil Early sowing 

2 Taquaritinga IAC503 Sandy soil Late sowing 

3 Taiuva OL3 Sandy soil Early sowing 

 

The loss data was sampled using a regular grid of 80 experimental plots, spaced 40 x 

40 m apart, in field # 1, 70 experimental plots, spaced 35 x 35 m apart, in field # 2, and 50 

experimental plots, spaced 40 x 40 m apart, in field # 2. Within each plot, soil texture 

information (sand, silt, and clay) was collected referring to the 0,00 – 0,20 m layer, 

representing the average for the root development of the peanut crop. 

The loss evaluations were carried out using rectangular frames with an area of 2 m2. 

The quantifications of total losses were carried out with the sum of visible and invisible 



losses. The collection was carried out by removing all the pods on the soil surface after the 

formation of the peanut windrows, which then represented the visible losses in the uprooting. 

In order to collect the invisible losses during uprooting, it was necessary to excavate the soil 

up to 15 to 20 cm, the layer in which the peanut pods are normally located. 

The Topographic Position Index (TPI) and Topographic Wetness Index (TWI) were 

generated by the QGIS® software, version 3.28.9. In order to create the indices, it is necessary 

to have information from the Digital Elevation Model (DEM), which was obtained through 

the “Open Topographic DEM” plugin, in which the DEM with a spatial resolution of 30 m 

from the Copernicus Global DSM platform was chosen. After that, with the DEM, the TPI 

was created using the “Multi-Scale Topographic Position Index” plugin from the SAGA 

platform. As for the creation of the TWI, it was necessary to have, in addition to the DEM, 

slope, and catchment area, both parameters created in QGIS®, and finally, with the DEM, 

slope, and catchment area parameters, the TWI was created using the “Topographic Wetness” 

plugin Index” of the SAGA platform. 

2.2. Implementation of the Random Forest algorithm 

The RF algorithm was processed using the Python, 3.8.10 version, programming language in 

the Jupyter Notebook environment. The best combination of the number of trees 

(n_estimators) and maximum tree depth (max_depth) was selected using the GridSearch tool. 

At this processing stage, our dataset will be divided into 80% for training and 20% for 

validation. For model development, we worked with four approaches: soil texture data only, 

soil texture + TPI, soil texture + TWI, and soil texture + TPI + TWI. In addition, a test stage 

was carried out in an area different from the training area. 

2.3. Random Forest algorithm performance 

The RF algorithm performance was evaluated through precision, by the Coefficient of 

Determination (R2), and accuracy, by the Mean Absolute Error (MAE). 

3. Result and discussion 

Table 2 shows the performance results of the loss prediction model with the RF algorithm. 

The performance comes from separating 20% of the original data set used for training. The 

model that showed greater precision and accuracy in its predictions was trained with soil 

texture data and the topographic indices TPI and TWI, reaching values of R2 = 0.78 and MAE 

= 93.05. 

The approach that presented the lowest performance compared to the other 

combinations was the one that only relied on soil texture data. However, the model achieved 

precision with R2 = 0.68 and MAE = 119.99 kg ha-1 accuracy. Soil texture combinations with 

TWI or TPI indices obtained similar results. 

 

 

 



Table 2. Performance of valid step with Random Forest model 

Approaches 
Metrics 

R2 MAE (kg ha-1) 

Texture 0.65 119.99 

Texture + TPI 0.75 99.22 

Texture + TWI 0.75 100.69 

Texture + TPI + TWI 0.78 93.05 

 

Soil texture data were sufficient to generate a loss prediction model. However, adding 

information from topographic indices contributed to developing a more precise and accurate 

model. After the inclusion of these variables, the model had an increase of 0.1 and 0.13 in 

precision and a decrease in the error of approximately 20 and 26 kg ha-1, increasing accuracy. 

 Soil characteristics parameters are essential indicators for measuring losses. Soils 

with different textures present different amounts of losses [ZERBATO et al., 2017]. In 

addition, topographic indices provide essential information about the characteristics of the 

earth's surface. The TPI provides information on the spatial distribution of landforms, which 

may indicate points with more excellent slopes or slopes within agricultural areas. The 

presence of such surfaces tends to influence the performance of the machinery in the field, 

causing losses. 

On the other hand, TWI is an index correlated with soil moisture, reflecting water 

availability for crop growth and development [Yang et al., 2021]. Soil moisture is an essential 

indicator of the quality of the harvesting operation since it can influence the appearance of 

losses [Behera et al., 2008; Zerbato et al., 2014]. In addition, according to the authors Ince 

and Guzel (2003), soil moisture has an exponential relationship with the force of peanut 

detachment, so when the water content decreases, this force decreases; consequently, the total 

losses in the harvest increase. 

In Figure 3, we observe the performance of the models created in a test area in 

conditions different from those used in training. In general, the models showed the same 

behavior as the test stage. In which the best results were from the integration of texture data 

with data from topographic indices. 



 

Figure 3. Graphics of observed versus predicted digging loss values using different 
approaches. (a) just texture; (b) texture + TPI; (c) texture + TWI; (d) texture + TPI + TWI. 

 

The model generated only with soil texture data showed the lowest performance, 

reaching R2 = 0.52 and MAE = 131.62 kg ha-1 (Figure 3 a). However, it should be noted that 

mechanized peanut harvesting operations present high variability in their loss data [Santos et 

al., 2019; Zerbato et al., 2019], which may have influenced the performance of the models. 

 The results found in this work proved promising in predicting peanut digging losses. 

The current approaches to measuring losses demand time and significant efforts to collect 

information. Our models achieve results with an approximate 100 kg ha-1 prediction error. In 

addition, with the prediction of losses in the mechanized peanut harvesting process, farmers 

can adopt appropriate management, decision-making, and resource allocation strategies. 

 

4. Conclusion 

The Random Forest (RF) algorithm showed excellent performance for predicting peanut 

digging losses. Moreover, approaches incorporating one or more topographical indexes in 

conjunction with soil texture data as features notably improves the models' precision and 

accuracy. 

 The results found in these researches can be considered promising in indirectly 

predicting losses in the peanut harvest. Based on this, future research can expand the amount 

of input data into the model, with the addition of information regarding the agronomic 

characteristics of the crop since these also tend to influence the amount of losses. 
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