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Abstract. The estimation of the yield for the peanut crop can be performed by visual 

methods, traditional destructive methods, which are time consuming, laborious and with 

imprecise predictions. Thus, the objective was to use SR techniques and Artificial Neural 

Networks (ANN) in the development of an innovative method for yield prediction in the 

peanut crop. The experiments were conducted in the state of São Paulo in the 2021/2022 

crop season, in 6 commercial farms in sandy and clayey areas. The RBF and MLP 

networks were able to estimate peanut yield with an accuracy below 1000 kg/ha. GNDVI 

was a better vegetation index with estimation accuracy of 238.7 and 296.54 for the RBF 

and MLP networks, respectively.   

 

Introdution 

The estimation of yields assists in planning, decision making and management of crop 

resources. In crops like peanuts, estimating yields considering the characteristics of 

cultivars and soil types allows the generation of more accurate estimation models, since 

it allows the analysis of the interaction between genotype and environment. As with other 

crops, the official estimates of peanut yields are based on visits by technicians to the 

production fields, which makes the estimate a subjective method and subject to high 

errors. Estimating productivity is fundamental for defining the management of 

agricultural harvest operations, as well as for planning transport and storage logistics, and 

can provide greater profits for producers. 

 Climate-based models are also one of the methods that exist for trying to estimate 

crop yields. These methods are generally a statistical approach in which linear regressions 

are used to relate yields to various climatic parameters acquired at various locations and 

dates of the year. Over the years several attempts have been made to generate yield 

estimation models using climatic variables and soil classification, but variations in 

climatic conditions and the unavailability of climatic data make this task complicated 

(Joshi et al. 2020). The creation of a simple peanut yield estimation model has opened 

space for tools such as Remote Sensing (RS) and Machine Learning to create methods 

that can estimate yields quickly and accurately.  

Among the main tools of SR, one can mention the Vegetation Indices (IV's), which are 

simple and effective algorithms for quantitative and qualitative assessment of the 

condition of vegetation cover, among other approaches and applications in agriculture. 



 
IR's transform spectral bands to a single variable and thus minimize the effects of soil, 

topography, and viewing angle on the spectral response of the desired feature. No yield 

estimation model has yet been created for the peanut crop, and the use of IR's along with 

the use of Artificial Neural Networks can be an alternative to assist the producer in the 

evaluation of several agronomic parameters of the peanut crop, as is the case of peanut 

maturity estimation (Santos., 2021, Souza et al., 2022).  

Considering the monitoring of vegetation time series through vegetation indices (IV) and 

associate these data with productivity generating information for decision making and 

strategic planning, it is essential to use modern techniques of data analysis, such as 

Artificial Neural Networks (ANN's). This type of data analysis can process a large volume 

of data and transform it into reliable information, especially data that does not have a 

linear distribution model, i.e. that is extremely affected by spatial-temporal variability. 

The utilization of cloud computing (GEE) for the acquisition of satellite images from free 

platforms, associated with ANN, presents a great potential for the development of models 

for peanut yield prediction. Thus, this study aimed to develop and test peanut yield 

prediction models using Radial Base Function (RBF) and Multi-Layer Preceptor (MLP) 

ANNs with Sentinel images. 

Material and Methods 

The work was conducted in six production areas in the interior of the state of São Paulo, 

Brazil, located in the municipalities of Jaboticabal, Taquaritinga (Granja), Ibitinga, Monte 

Alto (Frutal and Santa Gertrudes), Taiúva (Santa Adélia), Guatapará (Capão) (Figure 1). 

In all areas, the long cycle (125-130 days) cultivar IAC OL3 (runner type) was used. The 

adopted sowing spacing was 0.90 m between rows for all areas. 

 

 

Figure 1. Distribution of yield sample points in A) Frutal, B) Granja, C) Ibitinga, D) 

Santa |Gertrudes, E) Santa Adélia, F) Capão. 

 

Field Samples 



 
In each area, 20 georeferenced sampling points were installed, spaced approximately 50 

meters apart (Figure 2). Monitoring using satellite images began after 95 DAS and were 

performed weekly until the harvest (uprooting) of the experimental areas. 

At each sampling point, a 2 m² frame was used to measure productivity; all plants within 

the frame were pulled, bagged and identified to then calculate productivity at each 

sampling point. After separation of the pods from the plants, they were weighed and later 

placed in a forced air oven at 65ºC for 72 hours to measure the dry weight of the pods. 

After this period, the humidity value was corrected to 8%, extrapolating the values to kg 

ha-1.  

Acquisition and processing of satellite images 

For acquisition of spectral data of the peanut crop, satellite images from the Sentinel-2A 

platform were downloaded coinciding with the dates for monitoring. Sentinel-2 is a 

European multispectral satellite, which acquires images in 13 spectral bands, such as 

visible (band 2-4), Red Edge (RE, band 5-7), Near Infrared (NIR, band 8) and Shortwave 

Infrared (SWIR, band 11-12). For this work, cloud-free images from 95 to 125 Days After 

Sowing (DAS) were used. All the necessary corrections were performed, such as top-of-

atmosphere reflectance (TOA) values scaled to 10,000 by means of radiometric 

calibration (Sentinel-2User, 2022). After image pre-processing, vegetation indices (Table 

1) were calculated. For each area, a file in "shape" format was imported into GEE so that 

the average values of vegetation indices were extracted for each of the dates. 

Table 1. Vegetation indices used 

Indice Equation Reference 

Normalized Difference 

Vegetation Index (NDVI) 
(NIR – Red) / (NIR + Red) 

Rouse et al. (1974) 

Normalized Difference 

Water Index (NDWI) 
(NIR – SWIR) / (NIR + SWIR) 

(Gao, 1996) 

Green Normalized 

Difference Vegetation 

Index (GNDVI) 

(NIR –Green) / (NIR + Green) 

Gitelson et al. (1996) 

Simple Ratio (SR) NIR / Red Jordan (1969) 

Non-Linear Index (NLI) (NIR² – Red) / (NIR² + Red) Goel and Qin (1994) 

Data Analysis 

To estimate the peanut yield, non-linear models were analyzed using Artificial Neural 

Networks (ANNs) to estimate and predict the yield. The Multilayer Perceptron (MLP) 

and Radial Basis Function (RBF) networks were tested. ANN's are tools to describe, 

substantiate and elucidate highly complex issues in the modeling field. Compared to other 

statistical modeling techniques, ANNs present better performance because they have 

universal adjustment functions, admit data loss, are nonparametric, and do not require 

previous information of the phenomenon to be modeled, being applied for several 

purposes in agriculture. Therefore, ANNs have input layers, neurons, hidden layers, and 

output layers.  

The networks were trained with the 2020-2021 crop data using all the input variables 



 
(vegetation indices) to estimate the productivity (output layer) in each area, to generate 

prediction models and verify which is the best date and which are the best IV's to predict 

the productivity. 

RBF nets have only one hidden layer, and each neuron contains a radial basis activation 

function. In each neuron the Gaussian or normal function was used as the radial basis 

function (Bishop 1995), and distance (offset) values from this function increase or 

decrease the ratio to the center point (Haykin and Principe 1998). As with the MLP neural 

network, the input values were normalized, and the values in the output layer provided 

the productivity at each point. 

The RBF neural nets were trained using the k-means algorithm (Bishop, 1995). This 

algorithm attempts to select the optimal set of points that are placed at the centroids in the 

patterns in the training data. 

 

Database for training and validation 

For model training and testing, the database was divided into 80% for training and 20% 

for testing. During the training phase the ANNs were trained 1000 times, with the network 

selecting the 10 best models (5 MLP and 5 RBF). The procedures for training and testing 

the neural models were implemented in the Neural Networks package of the Statistica 

data analysis software (Statistica 7.0, Statsoft Inc, Tulsa). 

The efficiency of the networks was analyzed by means of graphs as a function of 

accuracy, obtained from the error of the predictions by the MAE (Mean Absolute Error), 

demonstrating through these calculations the reliability of the data obtained from the 

variable predictions. 

 

Results 

The average productivity of the study areas is shown in Figure 2. The highest yields were 

observed in Frutal and Capão, which are areas with characteristics of more clayey soils. 

However, just the fact that the areas have more clayey soils cannot be considered a 

determining factor for obtaining high yields, considering that Santa Adélia has soil 

characteristics similar to the areas of high productivity, but had lower productivity than 

these areas. Another issue is that the less clayey areas, such as Granja and Santa 

Gertrudes, also showed similar productivity averages to Frutal and Capão.  

The Ibitinga area stood out negatively in relation to the other areas, presenting low 

productivity, being, curiously, the area with the lowest percentage of clay (12%). The best 

conditions for high yields do not depend exclusively on the type of soil, but on the 

appropriate management throughout the cycle. It is known that the peanut plant needs 

lighter soils (sandy and sandy loam) for better development of the crop, but, however, 

this study shows that it is possible to obtain high yields in heavier soils (clayey). Another 

important factor to be highlighted is the high variability between areas. Analyzing areas 

with distinct characteristics and management is important to generate more robust 

estimation models. 



 

 

Figure 2. Descriptive statistics with BoxPlot, of the productivity of the study areas. 

The estimation errors presented in figure 3, show the models created on each date (95, 

100, 110,115,120 and 125 DAS), however, for some Vegetation Indices (IV's) some dates 

were discarded, because models with errors above 1000 kg/ha, were considered 

inadequate models. Thus, the only index that was able to estimate yields on the five dates 

evaluated was the GNDVI. 

Regarding the results acquired by each algorithm (RBF and MLP), we highlight the RBF 

algorithm, with 18 models with errors below 1000 kg/ha, while the MLP network 

presented 12 models. Still highlighting the efficiency of neural networks, it can be seen 

that the RBF algorithm showed the lowest estimation errors, especially for the NDVI 

index at 125 DAS, which obtained an error of 238.7 kg/ha.  

The best date to perform estimation was at 125 DAS, i.e. one day before the first stage of 

peanut harvest. All indices and the two algorithms were able to estimate at 125 DAS with 

NDVI presenting MAE of 238.7 and 296.54 for the RBF and MLP networks, respectively. 

It can be observed that the more distant is the date of estimation the lower will be the 

error of the models. At 115 DAS it was not possible to estimate peanut yield within the 

optimal estimate value (<1000 kg/ha) with any of the neural networks, while at 100 DAS, 

only GNDVI and SR were able to estimate yield with errors of 614.72 and 995.87 kg/ha 

with RBF and MLP networks, respectively. 

 



 

 

 

 



 

 

 

Figure 3. Plots of the mean absolute error (MAE) of peanut yield estimates at 95, 

100,115, 120 and 125 days after sowing (DAS). 

Because of the distinct characteristics of the peanut culture, evaluations under different 

conditions are ideal to create more robust models. Therefore, the prediction performed in 

this study allows to generate good expectations regarding the models developed, 

considering that the areas presented heterogeneous characteristics of soil, management 

and climatic conditions. It is important to emphasize that these results are promising, but 

further studies are needed for the method to become robust, in order to validate the best 

models taking into account characteristics of other regions. The first results are 

encouraging, however, at the moment they are not sufficient for these models to be 

applied throughout the state of São Paulo or even in other countries. 

Discussion 

Some studies on productivity show that there is a strong relationship between the curves 

of time series of vegetation indices such as NDVI and crop growth, with satisfactory 

results that correlate the VI's with the productivity of a given crop (Zhang et al., 2022). 

The use of remote sensing techniques combined with machine learning algorithms has 

been widely used to estimate agronomic parameters, such as the productivity of crops like 

alfalfa, pastures, and soybean (Feng et al., 2020, Rocha et al., 2018 and Yoosefzadeh-

Najafabadi et al., 2021). The peanut crop presents distinct characteristics from other major 

crops, such as the indeterminate growth habit and the development of fruits below ground. 

These characteristics make difficult the analysis of important parameters of the peanut 

crop, such as the optimal harvest time, which is directly related to pod maturity index 



 
(PMI). Studies indicate that the use of SR and ANN tools are strongly capable of 

predicting important variables of the peanut culture, such as the MIP, helping the producer 

in the assetivity of the ideal point of harvest, which reduces the quantitative and 

qualitative losses (Souza et al., 2022). For yields this estimate becomes even more 

difficult due to the high variability of this variable in the production fields. Anyway, the 

results found in this study are promising, considering that the current method to estimate 

yields in peanut production fields in the state of São Paulo is the visual estimation method. 

Conclusion  

This paper presented the first studies of peanut yield estimation using Remote Sensing 

and Artificial Intelligence. The RBF and MLP algorithms were able to estimate peanut 

yields with errors below 1000 kg/ha. The GNDVI estimated yields on all dates analyzed 

in this study. The best date for peanut yield estimation is at 125 DAS. 
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