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Abstract. Training classifiers for automated bacterial identification using
MALDI-TOF fingerprints requires addressing class-conditional missingness
patterns (CMPs). A CMP is a non-missing-at-random pattern that provides
evidence for classification. One possible strategy to handle CMPs is feature
stratification. This work evaluated the effectiveness of stratification in training
naive Bayes classifiers for the proposed task through two experiments. The first
experiment compared the predictive performance of categorical naive Bayes
classifiers trained on stratified/discretized features with the performance of a
Gaussian naive Bayes fitted on imputed data. The second experiment assessed
the impact of class imbalance on the differences in the performance of Gaussian
and categorical naive Bayes classifiers. The ANOVA results suggest that feature
stratification can induce more accurate classifiers. Correlation analysis shows
that class imbalance has a low influence on the difference in the performances
of classifiers.

Resumo. A aprendizagem de classificadores para identificação automática de
bactérias a partir fingerprints de espectrometria MALDI-TOF requer o trata-
mento de conjuntos de dados incompletos cuja ausência dos dados é condicional
à hipótese de classificação (CMP). CMP é um padrão de perda não-aleatória
(MNAR) que fornece evidencias para classificação. Uma estratégia para tratar
o CMP é aplicar a estratificação de caracterı́sticas. Considerando isto, este
trabalho avaliou a eficácia da estratificação no treinamento de classificadores
naive Bayes com a realização de dois experimentos. O primeiro, comparou
o desempenho preditivo de classificadores categóricos, treinados sobre dados



estratificados, com o desempenho de classificadores Gaussianos treinados em
dados previamente imputados. O segundo experimento estimou o impacto do
desbalanceamento de classe na diferença dos desempenhos dos classificadores
Gaussianos e categóricos. Os resultados da ANOVA sugere que a estratificação
de caracterı́sticas induz a aprendizagem de classificadores mais acurados. A
análise de correlção mostrou que o desbalanceamento de classes teve pouca
influência sobre a diferença no desempenho dos classificadores.

1. Introduction

The use of software tools to identify microorganisms using Matrix-Assisted Laser Des-
orption/Ionization Mass Spectrometry with Time-of-Flight data (MALDI-TOF MS) fin-
gerprints is a promising technology for performing tasks in modern agriculture and food
industry (Ashfaq et al., 2022) (Haider et al., 2023). For example, the detection of plant
growth-promoting bacteria in a soil sample or the identification of pathogens related to
plant diseases in sustainable agriculture (de Souza et al., 2015). These methods also can
be used to reduce the risk associated with food contamination in the agroindustry (Zhang
et al., 2022).

A core step in developing such tools is the supervised learning of a classifier. An
algorithm that implements a probabilistic, logical, or functional model, enabling discrim-
ination of the taxonomy of a microorganism based on its spectral fingerprint. To achieve
this, the data analysis team must select a classification function from a wide range of ones.
Next, they must train this function using an incomplete dataset. This is a challenging task,
and despite this, the system users have high expectations of the classifier’s performance.

The MALDI-TOF MS fingerprint datasets utilized for training classifiers in bacte-
rial identification exhibit a specific missing data pattern known as class conditional miss-
ingness patterns (CMP)(Lin and Haug, 2008) (Ke et al., 2022). CMP is a missing not-at-
random (MNAR) pattern that arises when the targets (the objects to be classified) do not
express a given feature. Consequently, the presence or absence of such features provides
evidence for the classification hypotheses. In the context of the proposed application, the
CMP indicates that the microorganism does not express some ribosomal proteins in its
spectra.

Value imputation, data removal, and estimation-maximization-based procedures
are mainstream strategies for handling incomplete data in machine learning (Dong and
Peng, 2013). However, they do not address the CMP patterns. An alternative approach is
to apply a technique called feature stratification (Lin and Haug, 2008). This is a two-step
procedure. First, a new constant element is appended to the domain of each feature that
shows the CMP pattern. Next, each missing value is replaced with a constant; nob (not
observed).

Stratification assumes discrete/categorical features. Naive Bayes addresses this
prerequisite because this is a common preprocessing step in its application (Yang and
Webb, 2009). Additionally, as noted in Tahan and Asadi (2018), discretization can miti-
gate the impact of class imbalance on supervised learning. That is a common condition
in bioinformatics (Zhang et al., 2020).

This work presents the results of two experiments conducted to evaluate the effec-



tiveness of stratification when learning naı̈ve Bayes classifiers for bacterial identification
using MALDI-TOF fingerprints. In the first experiment, the predictive performance of a
categorical naive Bayes trained on data with stratified features was compared to that of
a Gaussian naive Bayes classifier trained on imputed data. The second experiment ana-
lyzed the correlation between class imbalance and the difference in the performance of
categorical and Gaussian naive Bayes. The experiments utilized eight datasets. Two rates
of missing data were considered: 20% and 30%. A constrained search-based and a mixed
integer linear programming-based procedure were used to discretize the data. Balanced
accuracy was used to assess the classifier performance.

An ANOVA test with post hoc analysis showed that feature stratification could
induce more accurate classifiers. More objectively, the difference in the performance
of the categorical and Gaussian classifiers favors the categorical classifiers and is often
statistically significant. Correlation analysis showed that class imbalance did not degrade
the performance gain obtained by feature stratification.

2. Background review
Machine learning has proven to be an efficient approach in developing tools for automated
microorganism identification using peptide mass fingerprints (PMF) obtained by Matrix-
Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry (MALDI-TOF
MS). The basic idea is to use supervised machine learning procedures to train classifiers
on class-labeled datasets. Various classifiers have been used for carrying out that task
(Weis et al., 2020). The Ribopeaks software (Tomachewski. et al., 2018) implemented a
bacterium species identification based on the naive Bayes classifier (Mitchell, 1997).

The naive Bayes classifier utilizes the Bayes theorem to compute the posterior
probability of each classification hypothesis. It can be viewed as a Bayesian network
(Mitchell, 1997) whose dependence map is an n-ary tree of height equal to one. The
root node represents the target variable, C, with domain Ω. Ω lists every classifica-
tion hypothesis c1 . . . , ct. A leaf node denotes a feature, Xi, i = 1..n, whose domain
is Ωi. If Ωi is categorical/continuous, the respective node stores a table with the con-
ditional distribution/density p(Xi|C). The root node stores the marginal distribution
p(C) = (P (c1) . . . , P (ct)).

In this work, Ω is defined as {true, false}. When C = true, it indicates the mi-
croorganism in the sample belongs to the taxonomy (species, genus, family, etc) targeted
by the classifier. Otherwise, C = false. Each leaf node corresponds to a unique entry in
the PMF pattern. A PMF pattern is a tuple x with n elements. The i-esim element stores
the abscissa of the spectral peak related to a ribosomal protein expressed in the sample.

An evidence x = (x1,k1 , x2,k2 . . . xn,kn) informs the features of an object of inter-
est. If a value, xi,ki ∈ x, is not observed, its corresponding entry is empty. The most
probable classification hypothesis c∗ given the evidence X is computed as:

c∗ = arg max
c∈{true,false}

P (c|x′) = P (c)
n∏

i=1

P (xi,ki |c) .

Let it D be a supervised dataset with N instances defined on X ∪ {C}. If D is
complete, it is possible to obtain a maximum likelihood estimate of naive Bayes parame-
ters by calculating the relative marginal frequency for C and the conditional frequencies



for Xi|C. A dataset is complete when each entry of every instance has an assigned value.
Otherwise, it is incomplete and contains missing values.

If a bacterium does not express a specific ribosomal protein, its PMF pattern is
incomplete (Cuenod et al., 2021). If a feature is missing because the organism does not
express the respective protein in the spectrum, data presents a class conditional missing-
ness pattern (Lin and Haug, 2008). It is a missing not-at-random pattern (MNAR) and
should not be ignored since it encodes evidence against/for a classification hypothesis.

The mainstream strategies for learning naive Bayes from incomplete data do
not handle class conditional missing patterns. Data removal, which deletes all in-
complete cases, could discard valuable information. Data imputation and Expectation-
Maximization-like algorithms estimate missing values from the observed ones. Thus,
they do not explore CPM as evidence. Furthermore, distinguishing between a missing at
random (MAR) event and a MNAR one. An alternative is to proceed with feature stratifi-
cation. In this technique, any missing entry of a feature Xi that presents an MNAR pattern
is replaced by a constant value (nob) (Henry et al., 2013).

Stratification assumes categorical features or is encoded into a discretization al-
gorithm. It copies with practices in the implementation of Bayesian classifiers, where
discretization is a typical preprocessing step (Yang and Webb, 2009). Firstly because dis-
cretization avoids the necessity of estimating conditional densities for P (Xi|y). It is a
difficult task if you do not have a large sample or have limited knowledge about the un-
derlying data distribution. Secondly, experimental evidence supports that discretization
can improve naive Bayes performance (Mubaroq et al., 2019).

Tahan and Asadi (2018) also highlight that discretization can mitigate the impact
of class imbalance on supervised learning. This is interesting because the class imbalance
is a common condition in bioinformatics (Zhang et al., 2020). In binary classification, a
dataset is considered class imbalanced if the number of cases labeled as c (the majority
class) is significantly greater than the number of cases in c (the minority class). Let Nc and
Nc be the number of cases in each class. Class imbalance is measured with the imbalanced
ratio (IR = Nc

Nc
).

Let Xj be a feature with a continuous domain Ωj . A supervised discretization
algorithm aims at partitioning Ωj in l intervals (or bins) so that the discretized Xj pre-
serves its association with class labels. Navas-Palencia (2022) presents two mathematical
programming-based procedures for solving supervised optimization problems given the
following requirements: (a) missing values are binned in separate; (b) each bin has a min-
imal percentage of cases; and (c) the partitioning process should allow the computation
of probabilistic divergence measures. Both of them try to maximize Jeffrey’s divergence
measure. The first algorithm employs backtracking constrained search (Hentenryck and
Michel, 2013) and the second, mixed integer linear programming (Floudas, 1995).

3. MATERIAL AND METHODS
The effectiveness of stratification for dealing with CMP patterns was evaluated in two
experiments during the development of binary classifiers for genus identification using
MS fingerprints. The experiments were run on eight datasets extracted from the PUCHUY
dataset (Silva et al., 2019). That database contains 14700 fingerprints distributed on 1133
genera. Each fingerprint has 58 entries corresponding to ribosomal proteins.



The datasets used in the tests were generated as follows. Firstly, the PUCHUY
database was copied to a temporary file. Next, every instance belonging to the target
genus was labeled as true, and the remainder were labeled as false.

The first and fifth columns of Table 1 list the datasets used in the tests and the
respective target genus of each task. Table 1 also lists the number of selected features for
each classification task (second and sixth columns) and the features/proteins that present
a class CMP pattern (third and seventh columns). The fourth and eighth columns list the
imbalance ratios of the datasets.

Table 1. Datasets and target genus of each test.

Genus ♯ feat. CMP IR Genus ♯ feat. CMP IR
patterns patterns

Bordetella 33 L7AE 22.9 Campylobacter 35 L7AE, L30 60.3
Corynebacterium 30 L7AE, S21 62.4 Escherichia 34 L7AE 15.2
Klebsiella 33 L7AE 31.0 Mycoplasma 41 L25, L30 65.2
Pseudomonas 31 L7AE 29.9 Salmonella 34 L7AE 21.4

Feature selection began by executing a procedure to identify class CMP patterns
by checking which features, Xj , were not observed in the target class. These columns
were removed from datasets used in tests with Gaussian naive Bayes but retained in
datasets used with categorical classifiers. Next, the Mann-Whitney test was employed
to verify whether there were differences between the readings of each class (Pérez et al.,
2015). If a significant difference was found for an attribute Xj , it was preselected; other-
wise, it was discarded. Finally, the relief algorithm (Kononenko, 1994), as implemented
in CORELEARN R package1 was run on all preselected features. Covariates whose relief
index was higher than 0.02 were selected to form the final datasets. The threshold was
experimentally optimized.

The first experiment consisted of training Gaussian and categorical naive Bayes
classifiers (Reddy et al., 2022) on each dataset from Table 1. For Gaussian classifiers,
missing data were imputed using the MICE algorithm (Buuren and Groothuis-Oudshoorn,
2011) implemented in Scikit-learn (Pedregosa et al., 2011). The training of categori-
cal classifiers was performed on discretized/feature-stratified datasets. Data discretiza-
tion was performed with the constrained programming and MILP-based supervised dis-
cretization procedures implemented in the OptBinning package Navas-Palencia (2022)
(available at http://gnpalencia.org/optbinning). Feature stratification was applied after
discretization.

That experiment was conducted with missing entry rates of 10%, 20%, and 30%.
The classification performance under these conditions was estimated by calculating the
average and standard deviation of balanced accuracy using 10-fold cross-validation. To
compare the performance of categorical (feature-stratified datasets) and Gaussian (im-
puted datasets) classifiers, an ANOVA test with post hoc analysis was conducted. Table 2
lists each group considered in the ANOVA test.

The second experiment analyzed the impact of class imbalance on the perfor-
mance of categorical naive Bayes trained on incomplete data treated with stratification.

1https://cran.r-project.org/web/packages/CORElearn/index.html



For that, a correlation analysis estimates the linear dependency between class imbalance
and classifiers performance. Such analysis was repeated for each classifier and missing
entries rate.

4. Results and discussion
Table 2 presents the experimental results. The first column enumerates the datasets. The
next three pairs of columns list the mean balanced accuracy of each classifier for datasets
with 20% and 30% of missing entries. The abbreviations GNB, NB-CP, and NB-MILP
refer to Gaussian naive Bayes, naive Bayes with constrained programming-based dis-
cretization, and naive Bayes with mixed-integer LP-based discretization, respectively.
The values in bold indicate the higher performances in each condition. The last two
columns indicate whether ANOVA detected a significant difference among the groups of
procedures described in the methodology (+) or not (-).

Table 2. Classification performance/missing rate and ANOVA.

Dataset Balanced accuracy
GNB NB-CP NB-MILP ANOVA

20% 30% 20% 30% 20% 30% 20% 30%
Bordetella 0.984 0.985 0.971 0.985 0.989 0.978 - -
Campylobacter 0.992 0.985 0.991 0.987 0.997 0.989 - -
Corynebacterium 0.991 0.992 0.994 0.972 0.996 0.994 - +
Escherichia 0.944 0.935 0.995 0.995 0.995 0.995 + +
Klebsiella 0.914 0.910 0.989 0.972 0.990 0.981 + +
Mycoplasma 0.979 0.985 0.996 0.994 0.996 0.996 + +
Pseudomonas 0.923 0.878 0.994 0.994 0.994 0.995 + +
Salmonella 0.945 0.942 0.991 0.990 0.995 0.995 + +

The results presented above indicate that categorical naive Bayes with MILP dis-
cretization and feature stratification achieved the highest accuracy in the majority of tests
(7 out of 8). Gaussian naive Bayes with MICE imputation showed the best performance
in only one test (Bordetella/30% of missing entries). The ANOVA test confirmed that
the performance of categorical classifiers was consistently superior to that of Gaussian
classifiers. Further evidence was provided by the post hoc analysis, which demonstrated
that categorical classifiers outperformed Gaussian classifiers in most tests, regardless of
the rate of missing entries.

The correlation analysis results are shown in Table 3. The first column indicates
the proportion of missing entries in each dataset. Column IR ×∆1 presents the correla-
tion between the imbalanced ratio and the performance differences between NB-CP and
GNB, while Column IR ×∆2 does the same for GNB and NB-MILP. The negative values
in these columns indicate a weak linear relationship between class imbalance and perfor-
mance differences (Benesty et al., 2009). This suggests that the gains obtained through
discretization and feature stratification are not significantly affected by class imbalance.

5. Conclusion
This work evaluated the effectiveness of feature stratification in exploring class-
conditional missing patterns present in MALDI-TOF-MS fingerprint datasets used for



Table 3. Correlation analysis - IR × performance gain

Missingness Correlation Correlation
rate IR ×∆1 IR ×∆2

30% -0.35 -0.48
50% -0.39 -0.38

developing software for bacteria identification. The tests utilized the naive Bayes model
for classification and employed two procedures to realize discretization and feature strati-
fication. The ANOVA results showed that discretization/feature stratification significantly
improved the predictive performance of classifiers in most of the tests. Post hoc analysis
indicated that Gaussian naive Bayes fitted on imputed data never outperformed models
trained on discretized datasets during the tests.

Furthermore, the correlation analysis demonstrated that the improvement in per-
formance achieved by discretizing/stratifying the data is not strongly influenced by class
imbalance. This finding is of practical interest, as MALDI-TOF-MS data used in bacteria
identification often exhibit imbalanced class distributions.

Future research aims to investigate the relationship between the results obtained
through the stratification of CMP patterns and factors such as class overlap and class
separability.
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