
Evaluating multiple regressors for the yield of orange orchards
Kleber X. S. de Souza1, Sônia Ternes1, João Camargo Neto1, Thiago T. Santos1,

Alécio Souza Moreira2, Luciano V. Koenigkan1, Roberta de Souza1

1Embrapa Agricultura Digital
Av. André Tosello, nº 209 Campus da Unicamp, Barão Geraldo

Caixa Postal: 6041 CEP: 13083-886 - Campinas - SP

2Embrapa Mandioca e Fruticultura
Rua Embrapa s/no – Caixa Postal 007 – 44380-000 – Cruz das Almas – BA – Brasil

{kleber.sampaio, sonia.ternes, joao.camargo, thiago.santos}@embrapa.br
{alecio.moreira, luciano.vieira}@embrapa.br, robplaceres@gmail.com

Abstract. Accurate fruit yield estimation is crucial for making informed deci-
sions about harvesting, storage and marketing. However, estimating fruit yield
can be challenging. Currently, yield estimation relies on labor-intensive ma-
nual counting combined with statistical methods. However, computer vision
has emerged as a potential alternative by enabling automatic fruit counting,
thus simplifying the process. In this paper, we assess the effectiveness of vari-
ous machine learning regressors for yield forecasting based on fruit detection in
images captured within the orchard. Our results indicate that deep forward neu-
ral networks outperform the other regressors examined, making them the most
effective choice for yield prediction.

1. Introduction
Agriculture plays a vital role in Brazil’s economic development, contributing significantly
to the country’s GDP and generating substantial revenue and employment opportunities.
In agriculture, citrus cultivation is a key sector. Brazil is responsible for more than half
the world’s production of orange juice, making it a key player on the international market.

Predicting orange yield is crucial for making informed decisions about harvesting,
storage, and marketing. However, the annual orange crop forecast process, conducted by
Fundecitrus [Fundecitrus 2022], involves a labor-intensive operation of manually felling
fruits from samples of approximately 1,500 trees spread across the citrus belt. These
sampling and counting procedures are widely used to collect pre-harvest fruit yield data.
Due to the high cost and labor-intensive nature of this process, there is a need to explore
alternative methods to streamline the forecast.

One promising approach is the use of automatic fruit identification, tracking, and
counting methods. These methods leverage computer vision and image analysis techni-



ques to automate the process, reducing the reliance on manual labor and improving effi-
ciency. By accurately identifying, tracking, and counting fruits, these automated methods
offer a more cost-effective and time-efficient solution for forecasting orange yield. The-
refore, counting the number of fruits is essential to estimate harvest.

Nonetheless, computer vision and image analysis are not sufficient for predicting
orange yield. It has been observed that a portion of the fruits are located inside the inner
part of the plant canopy, making them invisible in the images collected in the field, even
considering multiple views of the same side of the plant. As a consequence, there is a
need for a regressor that can fill the gap and estimate the actual number of fruits based on
the identified and tracked fruits.

The main contribution of this work is the application and evaluation of different
types of machine learning-based regressors to estimate the number of fruits. The perfor-
mance of these regressors is assessed based on their coefficient of determination.

This is organized as follows: Section 2 provides background information and re-
lated literature on the subject. Section 3 presents the data set used and the regressors
studied. Section 4 shows the results obtained for each regressor. Finally, Section 5 pre-
sents our concluding remarks.

2. Related work

The prediction of yield is the final step in a pipeline that utilizes computer vision techni-
ques to identify and count oranges in images. The process begins with the application of
convolutional neural networks (CNN) to detect and locate oranges in field images. The
identified fruits are then tracked across adjacent images to ensure accurate counting. Fi-
nally, the number of fruits is combined with other variables such as plant height, variety,
and additional factors described in Section 3.

For detailed information on the fruit identification process and the algo-
rithms used, please refer to the following references: [Camargo Neto et al. 2019],
[Cerqueira et al. 2020], and [Sousa et al. 2021]. These sources provide comprehensive
insights into fruit identification methods, including the use of YOLO (You Only Look
Once), Faster R-CNN (Region-based Convolutional Neural Networks), and SSD (Single
Shot MultiBox Detector) algorithms. This paper specifically focuses on the yield estima-
tion step of the pipeline.

The methods for yield estimation vary depending on the type of data collected or
the crop. [Wulfsohn et al. 2012] sample trees from an orchard and select branches and
segments of branches using a multi-stage systematic sampling approach. They then apply
statistical methods to propose a yield estimator.

On the other hand, [Häni et al. 2020] used machine learning and tracking to pro-
vide a direct estimation of fruits. In their case, the structure of the plants makes the fruits
visible on the surface of the canopy, allowing for direct counting. Direct estimation of
fruits based on images was also performed in [Maldonado and Barbosa 2016].

In our problem, direct estimation is not viable because we identified a large gap
between the visible fruits and the total number of fruits obtained through manual harves-
ting. This gap may result from the fact that some fruits are located inside the canopy.



To address this issue, we evaluate regressors for the yield that considers the num-
ber of fruits identified by computer vision algorithms and other relevant variables, as
detailed in Section 3. A similar approach was used in estimating mango fruit load, where
[Koirala et al. 2019] applied a correction factor per orchard to estimate the fruit load per
orchard. However, unlike using a regressor, as we are proposing, this correction factor
is calculated per orchard based on the average ratio of the number of fruits identified in
images to the manual harvest count per tree in that orchard.

3. Materials and methods
The plant images, along with other relevant data, used to train the regressors, were obtai-
ned by Fundecitrus, our partner in the research project1. Although we received raw data
for 1,543 trees, only 1,197 trees could be successfully processed in the previous stages of
the pipeline, due to problems while processing the images. Table 1 shows the first four
lines of the dataset. The previous stages of the pipeline generated the last two columns,
CbyT-A and CbyT-B, which correspond respectively to the fruits automatically counted on
sides A and B of the plant. These two columns were aggregated to other data about the
plants and the complete information was provided to the regressor. However, not all 1,197
records could be used for training the regressor, as we had to exclude plants presenting
missing data and those without fruit counting from tracking for either side, resulting on a
final dataset of 1,139 trees.

ID Sector Region VarG Var. AG F1 F2 F3 F4 H W D CbyT-A CbyT-B

103 Norte LIM VT Val. 1 0 5 26 1 280 280 300 15
1031 Sul LIM NT Nat. 3 0 5 54 10 290 360 295 19
106 Norte DUA PRME Pera 2 0 0 58 36 340 300 335 10 10
104 Norte DUA PRME Pera 3 400 0 11 0 310 460 495 32

Tabela 1. Sample containing the first four lines of the dataset used for training
and testing of the regressor. ID corresponds to the plant identifier; Sector
and Region are references for geographical location; VarG and Var refer
to the variety group and variety of the plant, respectively; AG is a classifi-
cation for the age of the plant; F1, F2, F3 and F4 are the number of fruits
manually counted in sizes corresponding to the first to the fourth flowe-
ring; H, W and D are the dimensions of the plant; CbyT-A and CbyT-B are
the number of visible fruits automatically counted using the vision-based
pipeline for both sides of the plant.

3.1. Data preprocessing
Before submitting data to the regressors, it is necessary to perform some operations to
adequate these data to the dynamics of the processing of those regressors. The following
operations were executed over the dataset:

Transformation of categorical variables: most machine learning algorithms only ac-
cept numerical values as inputs to their neurons, which means that categorical
variables must be transformed into numerical values [Géron 2019]. For example,
the value Hamlin, which is one of the possible values for the variable VARIETY,
has to be converted to a number. In this work we use One Hot Bit Encoding
[Géron 2019] in this transformation.

1Projeto SEG 10.18.03.016.00.00 - ”Estimativa de quantidade de frutos em pés de laranja por meio de
inteligência computacional”.



Standardization of numerical values: to facilitate convergence to the optimal training
point, numerical values should be standardized. Variables with very discrepant
scales, such as one ranging from [0–100,000] and another from [-1.0–1.0], can
cause problems because the gradients calculated on model’s parameters will have
very different effects when applied to different scales. This work employs stan-
dardization of numerical values [Géron 2019].

3.2. Machine learning regression models

In this paper, we are evaluating several machine learning algorithms for the re-
gression problem, such as Support Vector Regression [Cortes and Vapnik 1995,
Drucker et al. 1997], Random Forest [Breiman 2001], Gradient Boosting
[Friedman 2001] and multilayer feed-forward neural network [Goodfellow et al. 2017].
The models were implemented in the Python programming language, using SciKit-Learn2

and Keras3 libraries. Due to lack of space, we will not provide details of each algorithm,
but only a brief description. The interested reader should refer to the literature.

The regression problem involves find the minimum of a loss function, which re-
presents the error distance L(f(x), y) between the value projected by the regression func-
tion f(x) and the true value y present on the dataset. This loss function is implemented
using appropriate metrics such as mean absolute error (MAE), Root Mean Squared Error
(RMSE), or coefficient of determination (R2), depending on the specific requirements of
the problem. In this work, we will be using these three measures to compare the perfor-
mance of the models.

Support Vector Regression: Support Vector Regression (SVR) is a machine learning
algorithm that combines regression techniques with Support Vector Machines
(SVM). It is specifically designed for solving regression problems where the goal
is to predict continuous numeric values rather than discrete class labels. SVR uti-
lizes kernels, which allow it to work in high-dimensional feature spaces without
explicitly calculating the coordinates of the data points. The core commands in
Python to use RBF are presented in the box below. Among the kernel functions
tested, the Radial Basis Function (RBF) presented better results compared to the
polyline and linear kernels. The parameter C is a regularization parameter that
controls the trade-off between the model’s simplicity and its accuracy on the trai-
ning data. By setting it to 100 we are weighting more the training data. Setting
Gamma to ’auto’ means that the kernel coefficient for the RBF is automatically de-
termined based on the number of features (n features). Additionally, Epsilon=0.1
limits the penalty margin accepted in the training loss function.

from sklearn.svm import SVR
model = SVR(kernel=’rbf’, C=100, gamma=’auto’, epsilon=.1) )

Random Forest: Random Forest is an ensemble learning technique used for both clas-
sification and regression tasks. For a regression task, each tree in the Random
Forest predicts a continuous value for the input sample. The final predicted va-
lue is usually the average (or weighted average) of the individual tree predictions.

2https://scikit-learn.org/
3https://keras.io/



The Random Forest Regressor was trained with 10, 20 and 50 estimators, with a
maximum depth of 10 for each tree. The stopping criterion was the Mean Square
Error (MSE).

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n estimators=20, max depth=10, criterion=’mse’)

Gradient Boosting: Gradient Boosting is also an ensemble learning technique used for
both classification and regression tasks. It builds multiple weak learners (typically
decision trees) sequentially, where each new learner corrects the errors made by
the previous ones. The first step is to initialize the model with a base learner, which
can be a simple model like a decision tree. The base learner makes predictions
based on some initial rule, such as the mean value for regression. After the initial
predictions are made by the base learner, the algorithm calculates the residuals,
i.e. the differences between the true target values and the initial predictions made
by the base learner. A new weak learner is trained to predict the residuals rather
than the original target values, and its predictions are added to the ensemble with
appropriate weighting. The final prediction for regression tasks is obtained by
summing up the predictions from all the weak learners in the ensemble. The
Gradient Boost Regressor was trained with 100, 200, 1.000 and 2.000 estimators,
all of them starting with random state = 0 to allow for reproducible output
across multiple runs.

from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor(random state=0,n estimators=1000)

Multilayer Feed-forward Neural Network: Neural networks are highly flexible in their
assembly. This flexibility is also a weakness, as it necessitates searching through
a wide range of configurations to find the most suitable one for a specific problem
[Géron 2019]. A common heuristic approach is to gradually increase the number
of layers and neurons and evaluate how the results converge towards the desired
outcome. We conducted experiments with neural networks comprising one to
six layers, and varying the number of neurons per layer from seven to 28. The
last layer of the regressor consists of a single neuron, which is responsible for
the calculation of the yield estimation. Among the tested architectures, the one
presented in Table 2 demonstrated the best results.

Layer (type) Output Shape Num. Params

dense 1 (Dense) (B, 7) 294
batch normalization 1 (B, 7) 28
dense 2 (Dense) (B, 7) 56
dense 3 (Dense) (B, 1) 8

Total params: 386
Trainable params: 372
Non-trainable params: 14

Tabela 2. Feed-forward neural network architecture employed on yield regres-
sion. B corresponds to the batch size, i.e., the number of data entries.



3.3. Cross validation

In our pursuit of finding the best parameter configuration, we relied on cross validation, a
widely used technique in machine learning, to statistically assess whether one computa-
tional experiment performs better than another [Kohavi 1995]. Cross validation involves
running the same algorithm multiple times, allowing for more reliable performance sta-
tistics and a certain level of confidence.

For our research, we divided the training dataset into ten parts, also known as
folds. The process entails training the algorithm on nine folds while reserving the tenth
fold for evaluation. This process repeats until all ten folds have been used as the test set.
To determine the level of certainty regarding the superiority of a model, we employed a
statistical hypothesis test. Since we had ten folds, the assumption that the data follow
a normal distribution does not hold true. The normal distribution is typically reserved
for datasets larger than 30 elements with known variance [King and Zisserman 2019].
Instead, we used the t-Student distribution for our set of ten performance measurements.
We set a p-value of 0.05 to ensure that we select a model with 95% confidence.

4. Results and discussion
Using the dataset of 1,139 plants, the regressors were specifically designed to estimate the
sum of fruits from the first to the third flowering, represented by the sum F1 + F2 + F3.
The fruits of the fourth flowering are too small to be detected by the previous stages of
the pipeline. Out of the 1,139 fruits, 911 were used for training of the neural network
regressor, and the remaining 228 were reserved for testing.

As part of the cross-validation process, each model was trained 10 times for each
parameter configuration, and the test set was kept separate for final evaluation, not be-
longing to any of the folds used in cross-validation. The results of the four models using
the test set are presented in Table 3. Among the tested regressors, Support Vector Re-
gression and Feed-forward Neural Networks showed similar performance, both achieving
R2 = 0.61. Random Forest yielded R2 = 0.53, while Gradient Boosting had the lowest
performance with R2 = 0.47.

This tendency is confirmed in other performance measures as well. The Mean Ab-
solute Error (MAE) is better in Feed-forward Neural Networks (185.216) when compared
with Support Vector Regression (MAE = 190.37), Random Forest (MAE = 201.66)
and Gradient Boosting (MAE = 211.03). As for the Root Mean Squared Error (RMSE),
the results also favor Feed-forward Neural Networks (241.40) when compared with Sup-
port Vector Regression (RMSE = 288.27), Random Forest (RMSE = 319.19) and
Gradient Boosting (RMSE = 325.47).

Searching for a cause of the low performance of the regressors, we noticed a
considerable gap between the total number of fruits detected (CbyT-A + CbyT-B) and the
manually counted fruits used for the regressor (F1+F2+F3). This gap might be attributed
to the poor quality of the images, resulting in failures during the image processing phase.
Notably, a significant number of samples contained fewer than 40% of the counted fruits.
To address this issue, we introduced a threshold of acceptance for the images, where
(CbyT-A + CbyT-B)/(F1+F2+F3) ≥ Threshold.

Implementing a threshold of 30%, the results in Table 3 demonstrate notable im-



provements in the performance of all regressors. The neural network showed the best
performance, reaching R2 = 0.85. The other regressors also improved, with results ran-
ging from 0.77 to 0.79, and the most significant improvement was observed in Gradient
Boosting, increasing from 0.47 to 0.78. These findings suggest that the introduction of a
threshold for image acceptance effectively enhances the performance of the regressors in
estimating orange yield.

The superiority of Feed-forward Neural Networks is again confirmed for the pro-
blem at hand. Even in the scenario of 30% threshold implementation. The Mean Absolute
Error (MAE) is better in Feed-forward Neural Networks (117.56) when compared with
Random Forest (MAE = 128.46), Gradient Boosting (MAE = 134.03) and Support
Vector Regression (MAE = 145.42).

As for the Root Mean Squared Error (RMSE), the results also favor Feed-forward
Neural Networks (164.33) when compared with Random Forest (RMSE = 199.90), Sup-
port Vector Regression (RMSE = 205.93) and Gradient Boosting (RMSE = 211.08).

Algorithm Global R² R² 30% Global MAE MAE 30% Global RMSE RMSE 30%

SVR 0.61 0.77 190.37 145.42 288.27 205.93
Random Forest 0.53 0.79 201.66 128.46 319.19 199.90
Gradient Boosting 0.50 0.78 211.03 134.03 325.47 211.08
FF Neural Network 0.61 0.85 185.21 117.56 241.40 164.33

Tabela 3. Results of the four models tested on the same dataset. The second
column shows the global results for the whole dataset, and the third, the
results under the restriction that at least 30% of the fruits are visible

5. Conclusion

In this paper, we conducted tests on four machine learning algorithms to estimate the
actual number of fruits in a tree, given the number of fruits identified and counted by
computer vision methods. This estimation is a crucial part in the harvest estimation pro-
cess. Among the algorithms tested, Feed-forward Neural Networks exhibited the best
performance, achieving R2 = 0.85, provided that at least 30% of the fruits are visible and
identified in the collected images. Other algorithms, namely Support Vector Machines,
Random Forest and Gradient Boosting, also showed good performances, with R2 values
of 0.77, 0.79 and 0.78, respectively, under the same scenario. The superiority of Feed-
forward Neural Networks is also confirmed for other evaluation metrics, namely MAE
and RMSE, as one can see in the previous section. We also concluded that the perfor-
mance of any of these regressors is strictly linked to the quality of the images acquired in
the field.

Referências

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Camargo Neto, J., Ternes, S., de Souza, K. X. S., Yano, I. H., and Queiros, L. R. (2019).
Uso de redes neurais convolucionais para detecção de laranjas verdes. In ANAIS DO
CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, Indaiatuba, SP.



Cerqueira, L. M., de Souza, K. X. S., Ternes, S., and Camargo Neto, J. (2020). Usando a
rede neural faster-rcnn para identificar frutos verdes em pomares de laranja. In CON-
GRESSO INTERINSTITUCIONAL DE INICIAÇÃO CIENTÍFICA, Campinas, SP. Em-
brapa Informática Agropecuária.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–
297.

Drucker, H., Chris, Kaufman, B. L., Smola, A., and Vapnik, V. (1997). Support vec-
tor regression machines. In Advances in Neural Information Processing Systems 9,
volume 9, pages 155–161.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5).

Fundecitrus (2022). Relatório de atividades: junho 2021/maio 2022. Technical report,
Fundo de Defesa da Citricultura (Fund for Citrus Protection) – Fundecitrus.

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
Incorporated.

Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep Learning. MIT Press.

Häni, N., Roy, P., and Isler, V. (2020). A comparative study of fruit detection and counting
methods for yield mapping in apple orchards. Journal of Field Robotics, 37(2):263–
282.

King, A. P. and Zisserman, A. (2019). Statistics for Biomedical Engineers and Scientists.
Academic Press, first edition.

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’95), pages 1137–1143.

Koirala, A., Walsh, K., Wang, Z., and McCarthy, C. (2019). Deep learning for real-time
fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’.
Precision Agriculture, 20:1107–1135.

Maldonado, W. and Barbosa, J. C. (2016). Automatic green fruit counting in orange trees
using digital images. Computers and Electronics in Agriculture, 127:572–581.

Sousa, M. A., de Souza, K. X. S., Camargo Neto, J., Ternes, S., and Yano, I. H. (2021).
Usando a rede neural ssd para identificar frutos verdes em pomares de laranja. In
CONGRESSO INTERINSTITUCIONAL DE INICIAÇÃO CIENTÍFICA, Campinas, SP.
Instituto de Zootecnia.

Wulfsohn, D., Zamora, F. A., Téllez, C. P., Lagos, I. Z., and Garcı́a-Fiñana, M. (2012).
Multilevel systematic sampling to estimate total fruit number for yield forecasts. Pre-
cision Agriculture, 13:256–275.


