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Abstract. Traditional soil fertility analyzes are laborious, expensive, time-
consuming and produce hazardous waste. Although many works using machine
learning (ML) has been done to address these issues, some algorithms and di-
mensionality reduction strategies require further investigation. Therefore, in
this study we evaluated the potential of Support Vector Regression and Ridge
regression in determining soil attributes, and compared principal components
regression and partial least squares regression (PLSR). The results showed that
Ridge was the most effective model. In addition, our experiments revealed that
PLSR was able to achieve statistically equivalent results, and in some cases su-
perior to the baseline, but using a much smaller average number of components.

1. Introduction
Soil fertility is essential to achieve efficient and profitable agricultural production. There-
fore, a high-density and fine-scale monitoring of soil properties1 is a crucial step, as it
allows the construction of soil maps to guide farmers in better management decisions in
crop fields [Wollenhaupt et al. 1994, Wei et al. 2022]. In practice, several laboratory ana-
lyzes are necessary to diagnose soil fertility before determining which – and the amounts
of – soil amendments and fertilizers to use. However, these traditional approaches are
expensive and time-consuming, making it hard to increase the density of soil data anal-
ysis [Benedet et al. 2021]. Additionally, these strategies produce hazardous waste due
to the use of strong acids, strong bases, and other chemical reagents. Hence, it is cru-
cial to identify alternative approaches to assess and potentially predict the nutrient levels
available in soils.

In this context, researchers have investigated different soil sensing techniques and
their applicability in agriculture, such as proximal detection technologies. Proximal soil
sensing technologies such as visible and near-infrared diffuse reflectance spectroscopy
(Vis-NIR) and X-ray fluorescence spectroscopy (XRF) are dry chemical techniques that

1Soil attributes and properties are used interchangeably in this work.



allow for rapid and ecological analyzes of soil fertility [Tavares et al. 2022]. The central
idea is to use these spectral data to predict agronomic attributes. To that purpose, machine
learning (ML) techniques have been applied. The objective is to use these data to build
specific calibrations (models), transforming spectral data into predictions of soil physical
and chemical properties [Folorunso et al. 2023].

In recent years, several works have been developed, e.g., considering the task
a classification problem [Suchithra and Pai 2020, M and C D 2021, Sunori et al. 2022]
or predicting the physical and chemical properties of the soil as a regression prob-
lem [Benedet et al. 2021, Wei et al. 2022]. Some works have focused on preprocess-
ing techniques, e.g., dimensionality reduction [Laili et al. 2020, Wei et al. 2022]. Indeed,
spectral data often have many variables (e.g., n > 300) [Wei et al. 2022], while some may
not effectively contribute to the prediction. In some cases, they may even decrease the
model effectiveness, due to the curse of dimensionality [Verleysen and François 2005].
Besides, it is important to consider the cost of processing these variables in a real-time
setting and the trade-off with effectiveness gains.

Despite some recent advances, current methods are still not suitable for real-world
practice considering the limited effectiveness and the large variations in success levels for
different soil properties. In addition, many works use simple or optimistic experimental
validation processes. The effectiveness of the model is evaluated using only one valida-
tion set. While this approach is common, it may lead to misinterpretations when applied
to small datasets like the one utilized in [Wei et al. 2022], which comprises only 102
samples. After all, owing to the stochastic nature of data partitioning, the model’s ef-
fectiveness may have been confined solely to that specific subset. Therefore, novel tech-
niques must be proposed to allow better predictions and be validated with strict protocols
for reliable conclusions. For example, alternative data preprocessing strategies could be
evaluated as well as other ML algorithms.

In this work, we evaluated the partial least squares regression (PLSR) as a dimen-
sionality reduction strategy. Unlike principal component analysis (PCA), which creates
composite variables based only on the independent variables, PLSR also considers the
dependent variable, so that composite variables have higher correlations with the target
attribute [Liu et al. 2022]. In this sense, it is expected that the PLSR would contribute
to the generation of more robust predictive models, while using fewer components than
the PCA. Moreover, this work experimentally assessed the effectiveness of alternative
ML algorithms, specifically Support Vector Regression (SVR) and Ridge regression, in
determining soil physical and chemical attributes. Ridge regression, for example, can
be used to eliminate multicollinearity, and thereby better define the relationship between
independent and dependent variables.

2. Related Works

In [Benedet et al. 2021], Generalized Linear Model (GLM) and Random Forest (RF) were
used to generate and fit predictive models able to explain some soil properties related
to fertility (available potassium (av.K), available phosphorus (av.P), exchangeable Ca2+

(ex.Ca), exchangeable Mg2+ (ex.Mg), exchangeable Al3+ (ex. Al) and remaining phos-
phorus (P-rem)), which were extracted from different types of soil. The models were eval-
uated from multiple measures, such as determination coefficient (R2), root mean square



error (RMSE), and mean absolute error (MAE). Among the generated models, the RF
achieved the best effectiveness. Considering R2 (0.49, 0.56, 0.68, 0.70, 0.71, 0.83 for ex.
Al, av. K, av. P, ex. Mg, P-rem, ex. Ca, respectively).

[Yang et al. 2020] were able to predict several soil properties (P, N, OC, K and pH)
using ML methods such as artificial neural network (ANN), PLSR, SVR, Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN). The best architecture was
CCNVR, which combines CNN and RNN, with the lowest RMSE value (6.40, 0.45, 3.30
and 0.35 for OC, N, CEC and pH, respectively) and the highest R2 (0.73, 0.70, 0.73 and
0.86 for OC, N, CEC and pH, respectively).

In [M and C D 2021], soil fertility was classified as low, medium and high, based
on soil attributes: pH, EC, OC, P, K, S, Zn, B, Fe, Cu and Mn. A set of classifiers such
as Naive Bayes, Logistic Regression, Support Vector Machines, Decision Trees, Boosted
Regression Tree (BRT) and RF were used to estimate fertility levels. In general, the RF
classifier outperformed the other classifiers considering multiple measures.

In [Wei et al. 2022], prediction models were adjusted from regression methods
with the proposal to predict soil properties such as Clay, OM, CEC, pH, V(%), P, K, Ca
and Mg, which are related to soil fertility. The best values of R2 were obtained by the
principal components regression (PCR) and Lasso regression, ranging from 0.33 to 0.96
and 0.03 to 0.84 for XRF and Vis-NIR sensors, respectively.

Despite the recent results, there are still some limitations to be tackled. Although
some of these studies, for instance [Yang et al. 2020], have applied a cross-validation pro-
cess for defining hyperparameters, the effectiveness of the model is evaluated using only
one validation set. Moreover, it is worthwhile to explore algorithms that incorporate reg-
ularization strategies such as Ridge regression or those capable of leveraging nonlinearity
in the data like SVR. Additionally, although some works explore dimensionality reduc-
tion, there is still a lack of analysis that compares different reduction strategies. Thus, in
this study, we explored SVR and Ridge regression in the task of determining soil physical
and chemical attributes and compared them to PLSR and PCR, which have demonstrated
promising effectiveness in previous works [Wei et al. 2022].

3. Experimental Workflow and Settings
The experimental process proposed in this work is illustrated in Figure 1. There are
four stages: Data Collection (Section 3.1), preprocessing and model training (including
optimization and validation) (Section 3.2), and, finally, the evaluation and analysis of the
model (Section 3.3).

3.1. Data Collection
The dataset used comprises 102 soil samples from the soil database of the Laboratory of
Precision Agriculture at the Luiz de Queiroz College of Agriculture at the University of
São Paulo [Tavares et al. 2022]. Two fields used for agricultural production had samples
collected from 0 to 20 cm deep; 58 samples were collected in the municipality of Piraci-
caba, State of São Paulo (Field 1), and the remainder n = 44 in the municipality of Campo
Novo do Parecis, Mato Grosso (Field 2).

The samples were analyzed following Vis-NIR and XRF analysis techniques. Soil
fertility analyzes were carried out in a commercial laboratory, where the following vari-
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Figure 1. Experimental workflow conducted in this work.

ables intrinsically related to soil fertility were determined: Clay (g kg−1); OM: organic
matter content (g kg−1); CEC: cation exchange capacity (mmolckg

−1); pH: potential of
hydrogen; V(%): base saturation (mmolckg

−1); P: phosphorus (mmolckg
−1); K: potas-

sium (mmolckg
−1); Ca: calcium (mmolckg

−1); Mg: magnesium (mmolckg
−1).

3.2. Data Preprocessing and Experimental Setup

This study used two main algorithms, i.e., SVR and Ridge regression. In addition, exper-
iments were also carried out using PLSR and Ridge regression with PCA (named from
now on as Ridge-PCA). Basically, PLSR is a technique that reduces the predictors to a
smaller set of uncorrelated components and performs least squares regression on these
components instead of the original data [Liu et al. 2022]. PLSR is especially useful when
the predictors are highly collinear. In our context, this algorithm is applied to generate
a model capable of identifying the relation between the spectral measurements and the
physical and chemical properties of soil. With this, it is expected to adjust the model
using a highly reduced number of components, and still keep competitive effectiveness.

Table 1. Hyperparameters tested for each of the algorithms used in this work

Algorithm/Classifier Hyperparameters Tested values Standardization
Ridge Regression Alpha [0,100] ÷ 100 No

Ridge-PCA Alpha [0,100] ÷ 100 YesComponents [1,30]

Support Vector Regression
C (0.1, 1, 10)

NoGamma (1,0.1,0.01)
Kernel (rbf, linear, sigmoid)

PLSR Components [1,30] Yes

The dataset was partitioned into training and test sets. It was randomly parti-
tioned using the 75/25 ratio, with 75% for training and the remaining 25% for the test set.
This process was performed 100 times considering each of the soil properties separately.
The training set was used to build the models that were optimized via hyperparameter
optimization (Table 1) through grid search using cross-validation based on k-folds, with
k = 10 and considering the R2 as maximization criteria. The test set is used to evaluate
the overall effectiveness of the models. Before carrying out the training, for some of the
algorithms (PLSR and Ridge-PCA), the data were standardized using the z-score normal-
ization (z = (x−µ)/s), where x is the sample, µ is the mean of the training samples, and s
is the standard deviation of the training samples. Preliminary experiments using standard-



ization for SVR and Ridge-PCA were also conducted but this decreased the effectiveness
of the generated models, therefore z-score was not used with these algorithms.

The experimental process presented in Figure 1 was executed 100 times for each
algorithm, considering each of the soil properties individually. Thus, the result reported
in this work corresponds to the average of these executions. To keep comparative com-
patibility, the same procedure was applied to the baseline, described in Section 3.3.

3.3. Evaluation

The effectiveness of the models was assessed based on the Root Mean Squared Er-
ror (RMSE) and R2. The models generated were compared with the ones developed
in [Wei et al. 2022]. Specifically, we used the PCR method as a baseline, which achieved
promising results by reducing the number of components. Specifically, PCR is a regres-
sion method that combines principal components analysis with least squares regression.
For the strict comparison of the effectiveness results, the developed models were com-
pared to the baseline using Wilcoxon’s Signed Rank Test in order to assess the statistical
significance of the results.

4. Results and Discussions
A general analysis of the models generated in this work in comparison to the baseline is
presented in Section 4.1. Given the baseline mainly regards the process of dimensionality
reduction, in Section 4.2 we provide a comparative analysis between the PLSR, Ridge-
PCA and PCR.

4.1. General effectiveness analysis

Table 2 presents the effectiveness of the models developed in this study, as well as of the
baseline. The statistically significant superiority of the evaluated algorithms in relation to
the baseline is highlighted in bold. In turn, statistically significant inferiority is marked
with “*”. The remainder indicates statistical equivalence.

Considering the models generated in this study, Ridge regression achieved the best
results, considering both sensors and both measures. It was even statistically higher than
the baseline for all target properties, except for the P in Vis-NIR, and OM and CEC in
XRF. Thus, in a scenario where the effectiveness of the model is the most important factor,
the model obtained by Ridge would be the most suitable for practical use. It is noteworthy
that, specifically for the P, none of the evaluated algorithms was able to generate a model
that effectively captures the relationship between the input data and that property. Thus,
future experiments must be conducted to deal specifically with this target.

As observed, in general Ridge regression achieved the best effectiveness consider-
ing individual properties, which may be the result of the underlying regularization process
present in that method. When applying a penalty, the slope is reduced and, therefore, the
model becomes less sensitive to changes in the independent variable [Saleh et al. 2019].
Therefore, the regression fits better to the data of interest, generating a more robust model.
From these findings, some experiments were conducted to evaluate the use of PCA with
Ridge regression. Considering the Vis-NIR sensor, the Ridge-PCA outperform the base-
line for CEC and Ca attributes. In turn, taking XRF sensor, the Ridge-PCA was sta-
tistically superior to baseline for the CEC attribute. For the rest of the proprieties was



statistically equivalent. Therefore, when accurate predictions of CEC and Ca properties
are crucial, Ridge-PCA is the recommended approach over the baseline.

Table 2. Experimental results of the algorithms evaluated in this work

Baseline PLSR Ridge-PCA Ridge SVR
Sensor Target R#CR RMSE R2 R#CR RMSE R2 R#CR RMSE R2 RMSE R2 RMSE R2

Clay 19.79 30.808 0.882 10.8 30.937 0.880 23.23 *32.221 *0.872 29.446 0.892 *31.973 *0.874
OM 19.87 3.185 0.696 9.96 3.184 0.695 24.14 *3.293 *0.677 3.037 0.725 2.978 0.736
CEC 13.65 17.623 0.490 7.65 17.340 0.504 22.44 16.758 0.540 16.645 0.543 16.431 0.561
pH 20.03 0.330 0.394 11 0.330 0.392 25.81 *0.356 *0.307 0.270 0.591 0.296 0.511

Vis-NIR V% 24.46 9.431 0.805 13.08 9.095 0.819 24.99 *10.350 *0.764 8.019 0.858 9.481 0.803
P 3.34 13.890 -0.096 3.04 13.916 -0.107 3.77 13.804 -0.082 13.813 -0.127 *14.402 -0.162
K 12.07 1.407 0.618 7.04 *1.439 *0.604 12.12 1.401 0.624 1.358 0.646 1.421 0.610
Ca 16.58 10.982 0.646 8.83 11.059 0.641 24.85 10.596 0.672 10.359 0.686 10.485 0.680
Mg 15.97 8.046 0.553 8.73 *8.281 *0.526 22.17 *8.239 0.536 7.832 0.573 8.056 0.557

Average 17.80 10.227 0.636 9.64 10.208 0.632 22.47 10.402 0.624 9.621 0.689 10.140 0.655

Clay 23.82 37.458 0.827 5.97 36.105 0.840 24.27 37.347 0.829 32.953 0.865 32.597 0.868
OM 13.3 4.619 0.371 3.63 *4.688 *0.352 12.23 4.613 0.373 *5.008 *0.258 *4.927 *0.282
CEC 19.55 14.951 0.630 3.03 14.780 0.638 19.57 14.901 0.633 *15.504 *0.599 14.833 0.633
pH 11.83 0.390 0.169 3.28 0.392 0.159 12.78 0.390 0.170 0.364 0.252 0.369 0.238

XRF V% 24.99 8.264 0.849 6.05 7.751 0.868 24.21 8.261 0.849 6.576 0.906 6.297 0.913
P 11.54 13.955 -0.114 3.27 13.938 -0.119 11.45 13.900 -0.104 12.984 -0.024 13.996 -0.101
K 16.41 1.353 0.650 4.2 1.337 0.657 16.55 1.352 0.649 0.926 0.837 0.938 0.833
Ca 25.94 7.630 0.830 3.65 7.495 0.835 25.98 7.646 0.829 6.888 0.861 6.907 0.860
Mg 25.44 7.088 0.652 3.76 6.850 0.673 25.31 7.091 0.651 5.772 0.766 5.766 0.767

Average 20.16 10.219 0.622 4.20 9.925 0.628 20.11 8.914 0.623 9.249 0.668 9.079 0.674

#C: Number of components Average: Average of results without considering property P

Similar to the Ridge regression, the SVR also showed results that were statistically
superior to the baseline for most of the analyzed attributes. This is even more highlighted
for the SVR generated for the XRF data, especially for the V%, K, Ca, Mg properties.
Still considering XRF, it is also observed that the SVR presents numerical superiority in
relation to the Ridge for some of the target variables, such as the CEC, OM and V%.
Therefore, in a scenario where these attributes are the most important, the SVR would be
the more appropriate.

In Table 2 we also present the average of the measures used. The average of com-
ponents was also calculated for the algorithms that relied on a reduction strategy. Con-
sidering the Vis-NIR, Ridge regression obtained the best overall result (R2 = 0.689). On
the other hand, for XRF, SVR achieved the highest effectiveness (R2 = 0.674). Hence,
in a real-world situation, combining these two models would yield the optimal outcome,
considering the assessed models. For the algorithms relied on a reduction strategy, the
baseline obtained the highest average (R2 = 0.636), followed by PLSR (R2 = 0.632) on
Vis-NIR. In turn, for XRF, PLSR demonstrated the highest effectiveness (R2 = 0.628),
while the baseline achieved (R2 = 0.622). For both cases, it is noted that the numerical
difference between them is practically insignificant. However, PLSR achieved this effec-
tiveness using a much smaller number of components than the baseline, especially for the
XRF sensor, where the average number of components used was approximately 5 times
lower than the baseline. Regarding that, further discussion is provided in Section 2.

4.2. Dimensionality reduction analysis
Besides the effectiveness of the models, Table 2 also indicates the number of components
(#C) used by algorithms that relied on a reduction strategy (PLSR, Ridge PCA and Base-
line). According to the results, the PLSR produced the smallest number of components



for both sensors. In addition, the PLSR was as effective as the baseline, with the advan-
tage of using fewer components (less than half in many cases). Considering the XRF,
it was statistically superior for Clay, CEC, V%, K, Ca, and Mg properties. Thus, in a
scenario where effectiveness and efficiency are both important factors, PLSR would be
the most recommended to be used, considering that it achieved competitive results with
a highly reduced number of components. These outcomes suggest that the soil attributes
are strongly correlated with some directions2 in the data, especially for XRF.

Considering PLSR, its application on XRF raw data used fewer components when
compared to Vis-NIR raw data, except for P. This behavior was different for Ridge-PCA
and the baseline. Such findings differ from the ones in [Wei et al. 2022], where the appli-
cation of PCR on raw XRF data used fewer components when compared to raw Vis-NIR
data, except for OM, pH and P. The observed result could have been influenced by the
validation sample used in the baseline work. In that study, the authors assessed the ef-
fectiveness of the approach using only one hold-out validation set. In contrast, our study
employs validation across multiple (100 times) random test sets, providing a more strict
evaluation of the model’s effectiveness. This approach enhances the reliability and ro-
bustness of our findings.

Figure 2 illustrates the relationship between the number of components and the ef-
fectiveness of the baseline, PLSR, and the Ridge-PCA. Considering the dispersion, PLSR
was able to obtain competitive results (y-axis), and using fewer components. This out-
come is quite relevant since PCA is the common choice in many applications. In contrast,
for determining soil properties, the experiments indicate that PLSR is more appropriate,
considering that this model would need to process less input data to make the decision.

Figure 2. Scatter between the number of components and the effectiveness. In
(a) for Vis-NIR sensor; in (b) for XRF

5. Conclusion
In this study, the potential of SVR and Ridge regression to determine physical and chem-
ical soil attributes was evaluated. Furthermore, we compare the PCR, PLSR and Ridge-
PCA dimensionality reduction approaches. The experimental results pointed to the Ridge
regression as the most effective model, being statistically superior to the baseline for most
of the analyzed properties. This indicates that this model was able to better capture the

2Directions represent the coefficients orientation of the linear combination. The direction is determined
by a sign, which in turn, indicates the direction of association of the predictor with the composite variable.



existing relationships between the spectral data and the properties of the soil. It was also
verified that the PLSR was mostly superior to the PCR in the dimensionality reduction
process, considering that there was a greater reduction of the components, still maintain-
ing a statistically superior or equal effectiveness to the baseline. Despite these findings, it
is still necessary to carry out further investigations. Given the small number of samples
from the dataset, future works should evaluate the strategies in this study on larger sets.
Furthermore, new experiments should direct efforts to deal specifically with the predic-
tion of property P, given that none of the evaluated algorithms was able to generate an
appropriate model for this soil attribute.
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