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Abstract. This paper proposes a GNSS-free strategy allowing a robot to nav-
igate through orchards autonomously. It relies on a perception system made
of four cameras arranged to enlarge the robot’s field of view. Thanks to this
choice, it becomes possible to perform complete navigation (both alley cross-
ing and headland maneuvers) using only visual data, thus increasing the task’s
robustness. Results validate the proposed strategy.

1. Introduction
Agriculture in the twenty-first century has to face two main challenges: (i) the increase of
the world population [Foley et al. 2011] and its necessary production augmentation under
both economic and environmental constraints [Lenain et al. 2019]; and (ii) the farm labor
shortages due to the insufficient attractiveness of agricultural work. Agricultural robotics
technologies can tackle these two challenges by providing systems able to allow precision
farming and help workers to fulfill their tasks. It may then be possible to maximize
production while taking care of the environment [Vougioukas 2019].

The ARPON (Autonomous Robotic Platform for Orchard Navigation) project be-
longs to the movement aiming at using robotics as a tool to develop sustainable agriculture
where production increase matches environmental and societal concerns. It is a joint inter-
national project between CNRS-LAAS and CIn, UFPE funded by both French and Brazil-
ian research agencies (ANR and FACEPE). The goal is to design a framework allowing a
mobile robot to autonomously navigate in commercial orchards. Indeed, guaranteeing a
safe motion in these environments is a prior condition to the realization of any treatment



or operation such as fruit transportation, harvesting, thinning, etc. Thus building a safe
navigation strategy is a mandatory step towards efficient precision horticulture.

Autonomous navigation has been widely studied in robotics
[Siegwart et al. 2011]. However, it appears that its application to orchards is chal-
lenging for several reasons. First, the GNSS signal is not always available to localize the
robot because of the tree canopy, whereas this signal is widely used in the agricultural
robotics domain especially in open fields [Li et al. 2009, Verbiest et al. 2020]. Second, as
the orchard is a natural environment, it is subject to large visual variations. Its appearance
significantly varies depending, not only on the seasons and the treatments applied to the
trees but also on the weather and the daytime. It is then necessary to develop robust
perception and control systems and to regularly update the environment map which is
required to realize the large displacements. Moreover, the climatic conditions modify the
ground, making it more or less slippery or accidental and inducing vibrations or undesired
slippage. Finally, the orchard is an environment shared with human operators, other
vehicles, or animals, leading to potential safety issues. All these aspects significantly
challenge the design of a proper control strategy which, in addition, cannot rely on
absolute data but only on local information, this latter being sometimes significantly
reduced in some areas of the orchard, such as the headland1 where fruit trees are not
present.

To create such an efficient navigation system, we have designed an approach rely-
ing on a vision-based control strategy coupled with a topological map. The latter is less
sensitive to environmental variations, while the former offers the necessary reactivity to
unexpected events. Before describing the different methods, we first present the robotic
system and its instrumentation which has been thought to be adapted to orchards.

2. The robotic system
The considered robot is the Hunter 2.0 robot by Agilex (see Fig. 1). It has been chosen for
the following reasons. First, it is a car-like robot that has two control inputs, the steering
angle, and the linear velocity. Its minimum turning distance is 1.6m, while its maximum
velocity is fixed at 6 km/h. This mechanical structure appears to be well-suitable for the
orchard because it eases the headland maneuvering and avoids damaging soils. Second, it
can carry up to a 150kg payload, which makes it evolutive in terms of equipment. Third,
it is also able to climb small slopes (less than 10 degrees) and small obstacles (less than
5cm), which is an interesting feature in an orchard.

As shown by Fig. 1, the robot has been equipped with several exteroceptive low-
cost sensors: a laser-rangefinder (Slamtech RPLIDAR S1), and four RGB-D Intel Real
Sense cameras (two D455 and two D435). The range of the D455 cameras is larger than
the 435 one (0.6 – 6m versus 0.3 – 3m). It has thus been decided to fix the former at the
front of the robot and the latter on its left and right sides. This particular positioning allows
benefiting from an enlarged field of view which makes possible the detection of the trees
both in the headlands and in the alleys. In this way, it will be possible to control the robot
using exteroceptive information only and thus improve the execution robustness. The
proposed sensor-based strategy mainly relies on the vision system and the corresponding
perception algorithm.

1The free space beyond the alleys.



Figure 1. Robotic platform.

3. Perception
The perception system provides the required information for the row following and the
U-turn. It relies on the algorithm [Durand-Petiteville et al. 2018] which computes the po-
sitions of the tree trunks by processing in real-time the range component of the point cloud
data. It first computes a top view of the point cloud in which the trees are materialized by
concavities corresponding to the empty spaces they leave in the point cloud (see orange
triangles in Fig. 2). Then, it determines the origins of these concavities using an original
coin-dropping technique [Durand-Petiteville et al. 2018].

Figure 2. The orchard point cloud (left) and its top view (right)

This algorithm is separately applied to each of the four onboard RGB-D cameras,
providing the tree trunk positions in the corresponding camera frame. These latter are
then expressed into a unique frame (the laser frame in our case). A calibration process
based on [Li et al. 2011] is then run prior to the navigation to determine the pose of each
camera relative to the laser. An example of a result of this calibration is shown in Figure
3 where a vertical bar (in blue) was positioned between the two front cameras. After re-
projecting the four point clouds in the laser frame, it can be seen that the structure of the
bar is kept, thus showing the success of the calibration process.

The proposed algorithm has been implemented on an NVIDIA Jetson Xavier NX
GPU which has been installed on our robot. It runs at a 15Hz rate, which is suitable for



Figure 3. Calibration results: re-projection of the point clouds in the laser frame.

the planning and control process which are described hereafter.

4. Planning and control
The orchard navigation task mainly consists of sequencing row traversing with U-turns
in the headland. To do so, we first compute a reference path before designing a control
law to follow it. To define the reference path, we use the 3-D trunk coordinates provided
by the perception system. From these data, we compute at each iteration a set of suitable
points. Then an adequate curve is fitted to create the path.

Figure 4. Examples of path generation. Green circle: tree - Black circle: pivot
point - Orange circle: Voronoi vertex - Dark red circle: Spiral point - Blue
curve: NURBS - Step 1/5: alley crossing - Step 2: path connecting the alley
crossing to the headland maneuver - Step 3: headland maneuver - Step 4:
path connecting the headland maneuver to the alley crossing..

To obtain the points, we consider separately the alley crossing and the headland U-
turn. In the first case, a Voronoı̈ diagram computed using 3-D trunk coordinates provides
points roughly in the middle of the row (see Fig. 4, steps 1⃝ and 5⃝). In the second
case, the spiral model proposed in [Boyadzhiev 1999] is used. It is centered on the last
detected tree2 whose position is updated at each instant (cf. Fig. 4, step 3⃝). The spiral

2In particular cases, the spiral can be centered on an object fixed at the end of the alley, such as a
tensioner or a bin.



parameters are adapted at the beginning and the end of the U-turn to connect the (first
(respectively, last)) spiral point to the (last (respectively, first)) Voronoı̈ diagram vertices
(cf. Fig. 4, steps 2⃝ and 4⃝). Once the points are available, a NURBS (Non-Uniform
Rational B-Spline [Piegl and Tiller 1996]) curve is fitted on these points to provide the
reference path.

Now, it remains to follow this reference. Two control inputs are available on
the robot: the linear velocity and the steering angle (see section 2). The first one
has been fixed to a constant nonzero value to fulfill classical path following techniques
[Cadenat et al. 2006]. The second one has been computed thanks to a Nonlinear Model
Predictive Control (NMPC) [Grüne and Pannek 2017]. This optimal control technique
allows computing a sequence of steering angles which minimizes the position and orien-
tation errors between the robot and the path over a predefined prediction horizon under the
constraints that the inputs are limited. The proposed control thus enables a geometrical
convergence towards the path to be followed.

5. Orchard mapping

The presented reactive control strategy does not require localizing the robot. However, at
a higher level of abstraction, the completion of certain tasks might require the localiza-
tion of the robot, i.e., only certain rows have to be harvested or the robot has to report a
leak at a specific area. To do so, it is not necessary to metrically localize the robot with
high accuracy, such as it is done in [Mur-Artal et al. 2015] or in [Pire et al. 2019] for an
agricultural environment. Although this approach eases the control of the robots, it is
limited to environments that are mainly static, structured, and of limited size. It might
then be sufficient to rely on topometric or topological localization methods, giving the
robot the ability to localize itself within sectors of the orchard. Indeed, topological maps
offer an abstract and compact representation of the environment relying on graphs, where
nodes represent distinctive places in the environment and arcs define the relations between
them [Burgard et al. 2016]. When relying on a camera as the primary sensor, the topo-
logical mapping/localization problem can be seen as the visual place recognition problem
[Lowry et al. 2016]. First, a set of images at several places in the environment are stored
to create the graph. Next, the localization system has to match the current image with the
image of the data set taken at the closest location to the robot’s current pose.

In this project, we use a visual place recognition system relying on a set of Self-
organizing Maps (SOM) [da Silva Júnior and Araújo 2022] coupled with the VGG-16
feature extractor [Simonyan and Zisserman 2014]. Thus, the image-matching process re-
lies on visual features, instead of the raw image, reducing the sensibility of viewpoint
variation and decreasing the amount of memory required to store the data. Moreover, the
VGG-16 descriptor allows robustly extracting visual features in changing environments
and does not require any environment-specific training. Regarding the visual map, it is di-
vided into a given number of sub-sets used to train several SOMs. Thus, each node of the
SOMs represents a sub-cluster of the original data set. This subspace clustering method
to handle high-dimensional input data aims to perform the match process only inside a
set of clustered images, instead of the entire data set. This approach significantly reduces
the localization processing time, a necessary condition for using localization processes
online.



6. Results
In this section, we present the preliminary results obtained during two experimental tests3.
For the first test, the robot drives in an alley (Fig. 5(a)), starts a left-side U-turn at the end
of the row (Fig. 5(b)), performs the headland maneuvers (Fig. 5(c)), and finally reaches
the next alley (Fig. 5(d)) where it re-starts a row crossing. A similar sequence is presented
in Fig. 6 where the robot switches from one alley to the next one by performing a right-
side U-turn. In both experiments, the robot was able to cross the alley and perform the
U-turn maneuvers despite the distribution of trees and branches, as well as variations in
light and shade. This shows that our approach allows the robot to navigate in an orchard,
based solely on onboard sensors and not requiring the use of GNSS.

(a) Alley crossing (b) Beginning of the U-turn

(c) U-turn (d) End of the U-turn

Figure 5. Key steps of the first experiment (left-side U-turn)

7. Conclusion
This paper has proposed a fully reactive GNSS-free navigation strategy for orchards. Its
main strength relies on using data provided by four cameras adequately fixed on the robot
to provide a wide field of view of the surroundings. In this way, it is possible to control the
robot using exteroceptive data only, whether it is navigating in the row or in the headland.
In addition, the use of such information makes the strategy less sensitive to orchard natural
variations. Finally, it has been thought to be easily extendable to take into account new
constraints, thus improving its adaptation skills to the evolution of the environment. The
proposed methods have been validated on our robotic platform and the results have shown
their interest in orchard navigation.

For future works, we plan to improve the perception algorithm by adding a fil-
tering process to detect and track the trees and considering deep learning algorithms to

3Video: link

https://e.pcloud.link/publink/show?code=XZIPpBZSxaRA4MmvxQQdyVrOMJq3j4t66Jk


(a) Alley crossing (b) Beginning of the U-turn

(c) U-turn (d) End of the U-turn

Figure 6. Key steps of the second experiment (right-side U-turn)

use also 2D information. The control strategy will also be enhanced by introducing con-
straints to deal with obstacle avoidance. Finally, the topological mapping and localization
algorithm will be modified to deal with repetitive environments.
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