IX Congresso Brasileiro de Informatica na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

Parameterized and automated assessment on an
introductory programming course

Francisco de Assis Zampirolli; Paulo Henrique Pisani,
Joao Marcelo Borovina Josko, Guiou Kobayashi, Francisco J. Fraga,
Denise Hideko Goya, Heitor Rodrigues Savegnago

'Federal University of ABC (UFABC)
Av. dos Estados, 5001 — Santo André — 09210-580 — SP — Brazil

{fzampirolli, paulo.pisani, marcelo.josko}@ufabc.edu.br,
{guiou.kobayashi, francisco. fraga, denise.goya}@ufabc.edu.br,

heitor.rodrigues@aluno.ufabc.edu.br

Abstract. The generation of individualized exams can contribute to a more re-
liable assessment of the students. Manually performing this procedure may not
be feasible, even more on a large scale. An alternative to deal with it is the au-
tomatic generation of questions. This paper discusses an innovative solution to
simplify test generation and correction through parameterized questions in the
context of a four-month Introduction to Programming course under a blended-
learning (IP-BL) approach. It combines the open-source tool MCTest with Moo-
dle and VPL plugin to generate and also automatically evaluate parameterized
programming language questions. We applied an intervention based on this
solution in two IP-BL groups (a total of 171 enrolled students) using Java.

1. Introduction

In programming course tests, Automated Assessment (AA) of questions is a topic that has
been extensively discussed. By using AA, the student can receive feedback automatically.
Empirical evidence justifies its use, including for Programming Exercises (PE), as the
following paragraphs illustrate. Some key aspects are the improved motivation due to
automatic feedback and higher grades obtained by the students.

Gordillo (2019) reported that AA improved the motivation of the students and
their programming skills when compared to a group that did not adopt this approach.
Furthermore, AA can lead to higher grades, as observed by Wang et al. (2011). They
evaluated a system named AutoLEP in 4 classes comprising 30 students. The final result
was an average grade of 79.3 for the students who used AutoLEP, against 73.2 when it
was not.

Current paradigms for assessing students’ competencies and skills in program-
ming require tools capable of continuous assessment learning (Galan et al., 2019). In this
sense, the authors presented an extensive study in a practical programming course from
2011 to 2018, in the Bachelor of Computer Science course, at the National University of
Distance Education. They reported positive results from the adoption of AA.

*Grant #2018/23561-1, Sao Paulo Research Foundation (FAPESP).

DOI: 10.5753/cbie.shie.2020.1573 1573

IX Congresso Brasileiro de Informatica na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

Based on empirical evidence that supports the use of AA, this paper presents an
innovative solution to simplify the generation and correction of parameterized questions
(paper or online tests) that can be used by various educational institutions. A param-
eterized question contains code which is computed to generate several versions of the
question, a concept related to calculated questions'.

Although there are several tools for AA (Staubitz et al., 2017; Demir et al., 2010)
and some online judges (e.g. BOCA? (de Campos, 2004), URI® (Bez et al., 1308)), to the
best our knowledge, the number of studies dealing with automatic generation of individu-
alized/parameterized questions is not that large. The main contribution of this paper refers
to a novel proposal to integrate an open-source system named MCTest # (Zampirolli et al.,
2019) and the Virtual Programming Lab (VPL) Moodle plug-in (Rodriguez-del Pino et al.,
2012).

The remainder of this paper is organized as follows: Section 2 introduces some
related work; Section 3 describes the methodology and our proposal for automated param-
eterized assessment; Section 4 shows and discusses its preliminary results; and, finally,
Section 5 presents our main conclusions and opportunities for future work.

2. Related work

As discussed in the introduction, automatic feedback can increase the motivation to study.
Gordillo (2019) presented a work carried out to verify the impact on the use of Automated
Assessment (AA) tools in a web development course, in the third year of the Bache-
lor of Telecommunications Engineering using Moodle. They used a tool called IAPAGS
(Instructor-centered Automated Programming Assignments Grading System) for auto-
mated correction. It was reported that AA improved the motivation of the students and
their programming skills when compared to the group that did not adopt this approach.
Another study (Venero and Mena-Chalco, 2019), which used Moodle and VPL for AA in
a programming course, showed positive results.

Moreover, AA can lead to higher grades. In Wang et al. (2011), an automated
learning and evaluation system named AutoLEP was presented. They evaluated it in 4
classes comprising 30 students. The final result was an average grade of 79.3 for the
students who used AutoLEP, against 73.2 when it was not. Aleman (2010) also pre-
sented empirical results of using another AA system, named Mooshak, in a programming
course. They concluded that the tool promoted student interest and produced a statisti-
cally significant difference in scores between the experimental and control groups. Later,
Rubio-Sanchez et al. (2014) presented additional empirical assessments of the Mooshak
system in a course of algorithms design and analysis.

Some studies also dealt with the generation of individualized/parameterized ques-
tions. The work from RadoSevi¢ et al. (2010) proposed a method for creating individ-
ual questions using Programming Exercises (PE), in which the teacher must program

YCalculated questions “offer a way to create individual numerical questions by the use of wildcards”,
by docs.moodle.org/en/Calculated_question_type. At MCTest, wildcards can be texts,
numbers, equations and figures.

2ime.usp.br/~cassio/boca

3urionlinejudge.com.br

4github.com/fzampirolli/mctest

1574

IX Congresso Brasileiro de Informatica na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

his questions in C++. Students submit the codes in the Learning Management System
(LMS) through the web interface, but without automatic correction. Another proposal is
from DuFrene (2020), which proposed a method to create PE and applied it to generate
exercises for the “loops” topic. Later, Hagiya et al. (2019) proposed methods to automati-
cally generate programming questions, though it may require human intervention at some
stages.

3. Materials and methods

A key aspect of our investigation is the proposal of a method to implement parameterized
Automated Assessment (AA). It involves designing parameterized questions supporting
AA and feedback. This section describes our attempt in this direction.

3.1. Dissertation questions

MCTest (Zampirolli et al., 2019) supports multiple-choice and dissertation (or essay)
questions, in which the latter is the basis to describe Programming Exercises (PE). In the
next section, two types of dissertation questions are described: assessment with manual
correction (Section 3.1.1) and assessment with code submission on the computer (Sec-
tion 3.1.2).

3.1.1. Dissertation questions: assessment with manual correction

As an example of a dissertation question, consider the topic “looping and table test” (the
following question was applied in IP-BL course, Exam1, in 2019.1, in Section 4 this
course is contextualized). A screenshot of the MCTest system and an English version are
shown in Figures 1 and 2, respectively.

Figure 3 provides the complete description of the Table Test question, shown in
Figures 1 and 2, including LaTeX text and Python code, as detailed below (the red text is
the parameterized part of the question):

Part I. Description of question: Provide the description that will appear on the stu-
dent exam, see Figures 1 and 2. Note that the description shows the text a =
[[code:al0]] andb = [[code:al]]. These valuesofa = 16andb =
19 that appear in Figure 2 are random values, defined in Python, as detailed in
Figure 3, see lines 2 and 3 of the myRandom function (Part IV.a). Variables a0
and a1l receive random values between 11 and 19 (python randrange function);

Part II. Table shown in Figure 2: As defined by variables a0 and a1, it shows in the pro-
gram description (left column in Figure 2, program to be simulated - left column
in Figure 3), variations a2 and a3 (row 1 from the program in Figure 3, Part Il.a),
a4 (row 7) and a5 (row 13);

Part III. The correct answer on the back of the sheet: This part of the question descrip-
tion presents the template (correct answer) in the mySimulation variable. The
content of this variable is defined in the algorithm function return, described be-
low;

Part I'V. Python code between “[[def:” and “]]”: This part contains Python code to
provide the contents of the variables that appear in the question description, as
presented in the previous parts. Important: This Python code can be simulated

1575

Question Update

IX Congresso Brasileiro de Informética na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

See this question in PDF format

Choose Topic = [ED]<template>

Short Description Table Test - 18.2

It will save all your questions to a file in json format

Group = Only one question per group will be sorted for each exam

Simulate the execution of the PROGRAM below by performing a TABLE TEST. Note in the TABLE TEST table all rows that modify one of the values

Description

program. Consider as input a = [[code:a0]] and b = [[code:a1]]

% continue ...

Type = Text Question

Difficult = Very easy level question

Bloom Taxonomy = remember: recognizing, recalling

Parametric = Yes

Who Created

Last Update = 2019-09-04

Answer Text:

Answer Feedback:

Delete:

Questions of the disciplines that | am enrolled
Contact your discipline coordinator

1. Simulate the execution of the PROGRAM below by performing a TABLE TEST. Note in the TABLE TEST table
all rows that modify one of the values contained in the indicated variables until the algorithm ends. At the same time,
write down in the OUTPUT column all outputs (write command) of the program. Consider as input a = 16 and b = 19.

You do not have to repeat values when the variable has not been updated.

program { fuction begin() {

1 integer a=-1, b=-2, ¢=5, d=4
2 read(a)

3 read(b)

4 while (d>0) {

5 d=d—-1

6 if (b<a) {

7 a=a—1

8 write (”\n111”)
9

10 if (b>a) {

11 write (”\n222”)
12} else {

13 b=b+2

14 write(”\n333”)
15}

16 }

1

authors).

a. Function to create random variables:

contained in the indicated variables until the algorithm ends. At the same time, write down in the OUTPUT column all outputs (write command) of the
You do not have to repeat values when the variable has not been updated

(o=

Figure 1. MCTest screen to edit a question. This screen presents the characteris-
tics of the Table Test question (Source: The authors).

TABLE TEST

b

Cc

OUT.

Figure 2. Generated PDF by clicking the See-PDF button in Figure 1 (Source: The

in online interpreters, such as repl.it/languages/python3, to make sure
everything is correct. Initially, myRandom function was defined:

to create the 6 random variables

needed in the question description. This function returns an A vector con-
taining these 6 random variables, which will be the input argument of the
algorithm function below;
b. Function that implements the code solution: this function algorithm imple-
ments the code solution presented in the left column of the question, see

1576

% Part I: description of the question

Simulate the execution of the PROGRAM below by performing a
TABLE TEST. Note in the TABLE TEST table all rows that
modify one of the values contained in the indicated variables until
the algorithm ends. At the same time, write down in the OUTPUT
column all outputs (write command) of the program. Consider as
input a = [[code:a0]] and b = [[code:al]]. You do not have to repeat
values when the variable has not been updated.

% Part 1I: table

‘\newcolumntype {C} {>{\centering\arraybackslash}p{3.lem} }
\begin{multicols} {2}

\begin{lstlisting}

% Part ILa: program to be simulated - Left Column
program { function begin() {

integer a=-1, b=-2, c=[[code:a2]], d=[[code:a3]]

2 read(a)

3 read(b)

4 while (d>0) {
5 d=d-1
6
7
8

if (b<a) {
a=a-[[code:a4]]
write("\n111")
9}
10 if (b>a) {
11 write("\n222")
12 }else {
13 b=b+{[[code:a5]]
14 write("\n333")
15 }
16}
H
\end {lstlisting}
\columnbreak

% Part ILb: location of Student Response - Right Column
\centering
\begin {tabular} {|]|C|C|C|C|C|c|}
\hline
‘\multicolumn {6} {|c|} {\textbf {TABLE TEST}} \\ \hline
row &a &b &c &d & OUT. \\\hline
& & & & & \\\hline
% ...
\end {tabular}
\end {multicols}
\newpage

Figure 3. Full description of the table test question presented in Figures 1 and 2

(Source: The authors).

IX Congresso Brasileiro de Informética na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

% Part I1I: the correct answer on the back of the sheet
{\color{bubbles}

\begin {verbatim}

[[code:mySimulation]]

\end {verbatim}

}

% Part IV: python code between "[[def:" and "]]"
[[def:

import random

def myRandom() :

global a0,al,a2,a3,a4,a5
a0=random.randrange (11, 20, 1)
al=random.randrange (11, 20, 1)
a2=random.randrange (5, 7, 1)
a3=random.randrange(l, 7, 1)
ad=random.randrange(l, 4, 1)
aS=random.randrange (1, 4, 1)
return [a0,al,a2,a3,a4,a5]

def algorithm(A):

a=-1;b=-2;c=A[2] ;d=A[3]

mySimulation = "al0=%d al=%d\n" % (A[0] A[1l])
mySimulation += "row a b c d\n"

mySimulation += " 1 %d %d %d %d\n" % (a,b,c,d)
mySimulation += " 2 %d %d %d %d\n" % (a,b,c,d)
a=A[0]
mySimulation += " 2 %d %d %d %d\n" % (a,b,c,d)
b=A[1]
mySimulation += " 3 %d %d %d %d\n" % (a,b,c,d)
while d>0:
d-=1
mySimulation += " 3 %d %d %d %d\n" % (a,b,c,d)
if b<a:
a-=A[4]
mySimulation += " 7 %d %d %d %d\n" % (a,b,c,d)
mySimulation += " 8 111\n"
if b>a:
mySimulation += " 11 222\n"
else:
b+=A[5]

mySimulation += " 13 %d %d %d %d\n" % (a,b,c,d)
mySimulation += " 14 333\n"
mySimulation += str(len(mySimulation))
return str(mySimulatien)

while True:

A=myRandom ()

mySimulation = algorithm(A)
if 250<len(mySimulation)<300:

break

1l

Figure 2. This function has as input the vector A, with the random vari-
ables, created by myRandom, and returns a text in the mySimulation
variable containing the simulation code, according to the random values

stored in A;

c. Choose A with equivalent numbers of iterations: code to choose random
values in A to have simulations stored in mySimulation with a similar
number of characters, in this case between 250 and 300 characters, which
is proportional to the number of iterations in the code to be simulated.
Important: choose ranges of values in myRandom that do not generate an

infinite loop in this part.

3.1.2. Dissertation questions: assessment with code submission on the computer
This section presents a question to be solved in the computing laboratory. The question

described in this section was applied to [IP-BL in Exam2, to be solved using a program-
ming language, described in Section 4. Although IP-BL adopted Java, any programming

1577

IX Congresso Brasileiro de Informatica na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

language supported by Moodle VPL could be used to solve the question. A version of the
question in English is shown in Figure 4.

A key capability of MCTest is the support for parameterized questions. The exam-
ple of the question shown here involves an operator and two vectors. The operator and the
size of the vectors are parameters and can be modified to obtain several models/versions
of the same question. In this example, six variations (from model A to F) were generated:

Model A. largest operator, with a vector of 20 elements;
Model B. largest operator, with a vector of 21 elements;
Model C. largest operator, with a vector of 22 elements;
Model D. smaller operator, with a vector of 20 elements;
Model E. smaller operator, with a vector of 21 elements;
Model F. smaller operator, with a vector of 22 elements.

1. Create 2 vectors E1 and E2 of integers with 22 positions each.

Read 22 elements by storing them in the E1 vector.

Fill in the vector E2 from E1 based on the following rule, while k is the index variable that will be used to access
both vectors:

e if k =0, E2[k] receives smaller elements into {E1[21], E1[0], E1[1]};
e if k = 21, E2[k| receives smaller elements into {E£1[20], E1[21], E1[0]};

e if k its between 1 anb 21, that is, 1 < k < 21, E2[k] receivessmaller elements into {E1[k — 1], E1[k], E1[k + 1]}.
ATTENTION:

Submit the file exam.java (with the answer) and the file model.txt, containing only the text Model: F. First upload
the java file and then the txt file.

Example:

input :

18608
output: 0 1 0 0 0

Figure 4. Automatically generated example for a dissertation question. The val-
ues drawn in the question description should yield similar examples. In
IP-BL, practical Exam2, different models were generated for each ques-
tion. In this example, Model F has been drawn. The student must submit
their Moodle VPL solution in the corresponding template (Source: The au-
thors).

The variation of the operators automatically updates the input and output example
shown to the student (Figure 4). It is up to the teacher to elaborate parameterized ques-
tions, defining which values can be chosen for each variation to maintain the same level
of difficulty among the models/versions.

To provide the students with automated feedback on the questions in the labo-
ratory, the answers could be submitted to the Moodle VPL plugin (Rodriguez-del Pino
et al., 2012). Since there are several models/versions of each question, the student had
to submit a file containing the model identifier (letter) of the question together with the
answer. Based on that, the test cases file is selected. An example of the format of test
cases is shown in Figure 5.

The following are all the details of the question in Figure 6. The red text is the
parameterized part of the question. This figure has several parameter values, it can become
complex. A more detailed description of the question is presented below:

Part I. Description of question: Displays the description that will appear on the student
exam. In the first paragraph, two parametric values were defined, var1l and aO0.
The first assumes a random letter between A and G. Variable a0 assumes a random

1578

case=test1

IX Congresso Brasileiro de Informética na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

input =61583558521877345062
output=66888588858887755666

case=test2

input =02551644303828371088
output=85556664438888877888

Figure 5. Test cases to be used by Moodle VPL for Model F (Source: The authors).

% Part I: description of the question
Create 2 vectors $ [[codemvarl]] 1§ and $ [[code:varl]] 28 of
integers with $[[code:a0]]$ positions each.

Read $[[code:a0]]$ elements by storing them in the $ [[code:varl]]
18 vector.

Fill in the vector $[[code:varl]] 28 from $ [[code:varl]] 1 $ based
on the following rule, while $ [[code:var(]| § is the index variable
that will be used to access both vectors:

\begin {itemize}

\item if § [[code:var0]] = 08,

$[[code:varl]] 2[[[code:var0]] 1§ receives [[code:al]] elements
into $\{[[code:varl]] 1[[[code:aO-1]]], [[code:varl]] 1[0],
[[code:varl]] 1[1]\}$;

\item if $ [[code:var0]] = [[code:a0-1]]$,

$[[code:varl]] 2[[[code:varQ]]]$ receives [[code:al]] elements
into $\{[[code:varl]] 1[[[code:a0-2]]], [[code:varl]] 1[
[[code:a0-1]]], [[code:varl]] 1[O\}$;

\item if § [[code:var0]]$ it's between 1 anb $[[code:a0-1]]$, that
is, $1\leq [[code:var0]] < [[code:a0-1]]$,

$ [[code:varl]] 2[[[code:var0]]]$ receives[[code:al]] elements
into S$\{ [[code:varl]] 1[[[code:varQ]] -1], [[code:varl]] 1[
[[code:var0]]], [[code:varl]] 1[[[code:varO]] +1]\}$.

‘\end {itemize}

‘noindent\textbf { ATTENTION:} A\ Submit the file
\textbf{exam java} (with the answer) and the file
\textbf{model.txt}, containing only the text \textbf{Model:
[[code:model]]}. First upload the java file and then the txt file.

% Part II: the correct answer, like an example
\vspace {Smm}‘noindent\textbf{ Exemplo: }
\begin{verbatim}

[[code:mySimulation]]

‘\end {verbatim}

% Part I11: python code between "'[[def:" and "]]"
[[def:
import random, numpy as np

a_tam =2

a_inicio = 20

a0=random. randrange (a_inicio, a_iniciota_tam+l, 1)
oper = ["larger", "smaller"]

al=random.choice (oper)

letters = ["A","B","C","D","E", "F","G"]

model = letters[oper.index(al)*(l+a_tam)+(a0-a_inicio)]
var0 = random.choice(["i","3","x", "y","w", "k" ,"p"])
varl = random.choice (letters)

global mySimulation

vl = np.random.randint(9, size=a0)

v2 = np.zeros (a0, dtype='int')

mySimulation='input : '+' '.join([str(i) for i im vl])+'\n'
for i in range (a0):
aux = [vl[(i-1)%a0], v1[i], v1[(i+1)%a0]]

if al==oper[0]:
v2[i]= np.max (aux)
if al==oper[1]:
v2[i]= np.min (aux)
mySimulation += 'output: ' + '

Il

'.join([str(i) for i in v2])

Figure 6. Full description of the dissertation question (Source: The authors).

value between 20 and 22 (representing the size of the vectors). Thus, in Figure
4 were drawn the values E and 22, respectively. Another important variable that
appears in the description of the question is al, which can assume the values
“larger” or “smaller”. The central part of this question is to create examples and

choose a question model, as follows;

Part II. The correct answer, like an example: Formats the example, containing the ques-
tion inputs and outputs, drawn and calculated in Part I11;

Part III. Python code between “[[def:” and “]]”: This part contains Python code
to provide the contents of the variables that appear in the question description, as
presented in the previous parts:

a. Create random variables: Note that, unlike Subsection 3.1.1, no function
has been defined in this description to create the variables that appear in the
question description. In addition to the variables already mentioned in Part
I, arandom vector v1 was created as input and the output vector v2, which
must be calculated using the code solution. The content of v1 was ob-
tained with the command vl=np.random.randint (9, size=a0),
generating a vector v1 of random elements a0, see Figure 5;

b. Implements the code solution: This part presents the solution of the prob-
lem implemented in Python, however, with the concern of formatting the

1579

IX Congresso Brasileiro de Informatica na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

input and output vectors.

3.2. Proposal to integrate MCTest and VPL - applied in 2019

The main contribution of this article is the use of parameterized questions with automated
assessment using the VPL plugin (Rodriguez-del Pino et al., 2012). MCTest produces
parameterized questions, as described in the previous sections. However, a major diffi-
culty for teachers in programming courses with many students is correction and feedback.
The VPL plugin came to provide this part, however, so far, without addressing the para-
metric part. To solve this, this section describes how we can automate the parameterized
Programming Exercise (PE), which is the main contribution to the state of the art of In-
formation and Communication Technology (ICT) in education presented in this article.

As the default VPL question cases file accepts only a single version of a question,
it would be necessary to create a PE for each version of every question in an exam. For
example, an exam with three questions, each with six variations, the teacher would need to
create and configure 18 different PE. Then, the students would have to choose the correct
versions according to the exclusive exams, something that could lead to confusion and
mistakes.

Using the modified system, the teacher needs to create only 3 PE with 6 internal
version files. Then, the student needs to submit a second text file containing a single
line as “MODEL: A” which is the model/version of the question. This text file will be
parsed using a regular expression, isolating the version/model code for that student, and
then be used to choose the correct version of the test case files used by the teacher. Every
version X has its own vpl_evaluate X.cases file, which replaces the default VPL
vpl_evaluate.cases file.

After a Moodle VPL activity is created, in the runtime files, the teacher would
have to add six test cases and the other files available at github.com/fzampirolli/
mctest/VPL_modification/Vl-select_using_second_file. These files
were used for the question presented in Figure 4 and applied to Exam?2’s first question in
the two IP-BL classes in 2019.1.

4. Preliminary results and discussions

Introduction to programming (called Processamento da Informacdo) is a 12-week course
of the Bachelor of Science and Technology at the Federal University of ABC. In the
first four months of 2019, it received 1,437 students enrolment divided into 46 laboratory
or blended learning classes (IP-BL). Laboratory adopted Java (36/46=78% of classes)
or Python (8/46=17%) programming languages. In contrast, IP-BL classes applied a
pseudocode-to-Java combination (2/46=4%), i.e., students developed pseudocode solu-
tions and translated them (through Portugol Studio tool - available at 1ite.acad.
univali.br/portugol) to Java code. The focus of this section is on IP-BL where
our proposal was applied in 2019.

Figure 7 shows a summary of the distribution of the grades obtained by the stu-
dents over the last years in IP-BL. The final grade is the result of Formative Assessments
(18 Multiple-Choice Tests = 5% and 17 PE = 5%), Examl1 (35%), Group project of 3
students (15%) and Exam?2 (40%). However, there were some differences among the
assessment criteria in some periods. For example, in periods 18.3, 18.2, and 17.3, the

1580

IX Congresso Brasileiro de Informética na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

student was required to take a recovery exam if the grade in Exam2 were F. Moreover,
it must also be noted that in 19.1, 18.1, 17.2, and 17.1 additional motivational messages
were sent to the students. These findings suggest that distinct evaluation methods can im-
pact students’ grades and adopting uniform rules for assessments may avoid such a grade
variation.

HA BB c B o B r:O

19.1 L .
*18.3 I 4 4
*18.2 L —

18.1 I 4
*17.3 -. 4

17.2 I 4 4

17.1 I 4 4

0% 25% 50% 75%

Figure 7. IP-BL performance in recent years. A high failure rate is observed in
periods 18.3, 18.2, and 17.3, when an Exam2 = “F” rule was used, so that
the student was required to take the recovery exam. The grade “O” means
failure due to a high number of absences in a class (Source: The authors).

Despite these differences among the periods, we observed an overall improvement
in the distribution in 19.1 when AA was applied. However, we cannot say that this is
the reason for the improved performance. Perhaps, the fact of adopting AA was one
of the reasons for the observed results. This analysis is not conclusive and requires a
long-term study. To exemplify this need, class Al (with 116 students) obtained 86.21%
approval, while class A2 (with 55 students) obtained 54.55%. Both IP-BL classes had
the same teachers, content, exams, and evaluation criterion. A possible justification for
this difference in results between classes is that class A1 was taught in Santo André and
A2 in Sdo Bernardo do Campo, with different student profiles on each campus.

5. Conclusions and future works

The discussion presented in this paper is evidence that it is important to join ef-
forts in Information and Communication Technology (ICT) development to help teach-
ers fairly and efficiently evaluate several students at the same time, creatively using
MCTest+Moodle+VPL exams. The MCTest was adopted in this article to elaborate pa-
rameterized questions, including examples that were used in the VPL activities in Moo-
dle, such as test cases for Automated Assessment (AA). This process was used in two
blended learning classes (a total of 171 students), with activities in the Java programming
language.

A key advantage of our proposal is the automated generation of several mod-
els/versions of exams and its integration between MCTest and VPL plugin in Moodle.
This is useful to avoid that the students share solutions since the exams would not be
exactly the same. This feature can be particularly important for exams applied remotely.

Finally, after the 2019.1 offer, we have worked on an improvement of our proposal
to generate individualized exams for each student, with AA in the VPL, without the need
to submit a file informing the question model/version. This improvement is currently
under validation and may be discussed in the future.

1581

IX Congresso Brasileiro de Informatica na Educacdo (CBIE 2020)
Anais do XXXI| Simpdsio Brasileiro de Informética na Educacéo (SBIE 2020)

References

Aleman, J. L. F. (2010). Automated assessment in a programming tools course. [EEE
Transactions on Education, 54(4):576-581.

Bez, J. L., Ferreira, C. E., and Tonin, N. (2013/08). Uri online judge academic: A tool
for professors. In Proceedings of the 2013 International Conference on Advanced ICT
and Education, pages 744-T747. Atlantis Press.

de Campos, C. P. ; Ferreira, C. E. (2004). Boca: A support system for programming
contests. In Brazilian Workshop on Education in Computing.

Demir, O., Soysal, A., Arslan, A., Yiirekli, B., and Yilmazel, 0. (2010). Automatic
grading system for programming homework. Computer Science Education: Innovation
and Technology, CSEIT.

DuFrene, A. (https://digitalcommons.calpoly.edu/cscsp/95 (accessed June 23, 2020)). Au-
tomatic Generation and Grading of Programming Exercises.

Galan, D., Heradio, R., Vargas, H., Abad, I., and Cerrada, J. A. (2019). Automated
assessment of computer programming practices: The 8-years uned experience. /[EEE
Access, 7:130113-130119.

Gordillo, A. (2019). Effect of an instructor-centered tool for automatic assessment of
programming assignments on students’ perceptions and performance. Sustainability,
11(20):5568.

Hagiya, M., Fukuda, K., Tanabe, Y., and Saito, T. (2019). Automatically generating pro-
gramming questions corresponding to rubrics using assertions and invariants. In Tat-
nall, A. and Mavengere, N., editors, Sustainable ICT, Education and Learning, pages
89-98. Springer International Publishing.

Radosevi¢, D., Orehovacki, T., and Stapi¢, Z. (2010). Automatic on-line generation of
student’s exercises in teaching programming. In In Central European Conference on
Information and Intelligent Systems, CECIIS.

Rodriguez-del Pino, J. C., Rubio Royo, E., and Hernandez Figueroa, Z. (2012). A virtual
programming lab for moodle with automatic assessment and anti-plagiarism features.
Conference: International Conference on e-Learning, e-Business, Enterprise Informa-
tion Systems, & e-Government.

Rubio-Sanchez, M., Kinnunen, P., Pareja-Flores, C., and Veldzquez-Iturbide, A. (2014).
Student perception and usage of an automated programming assessment tool. Comput-
ers in Human Behavior, 31:453-460.

Staubitz, T., Teusner, R., and Meinel, C. (2017). Towards a repository for open auto-
gradable programming exercises. In 2017 IEEE 6th International Conference on Teach-
ing, Assessment, and Learning for Engineering (TALE), pages 66—73. IEEE.

Venero, M. F. and Mena-Chalco, J. (2019). Ensino de programag¢ao avancada incentivando
a metacognicao: uma experiéncia positiva usando Moodle+VPL. In Brazilian Sympo-
sium on Computers in Education (Simpdsio Brasileiro de Informdtica na Educagdo-
SBIE), volume 30, page 279.

Wang, T., Su, X., Ma, P., Wang, Y., and Wang, K. (2011). Ability-training-oriented
automated assessment in introductory programming course. Computers & Education,
56(1):220-226.

Zampirolli, F., Teubl, F.,, and Batista, V. (2019). Online generator and corrector of para-
metric questions in hard copy useful for the elaboration of thousands of individualized
exams. In CSEDU (1), pages 352-359.

1582

