

Detection of Programming Plagiarism in Computing

Education: A Systematic Mapping Study

Kaio Pablo Gomes1, Simone Nasser Matos2

1Department of Informatics – Federal University of Technology – Paraná (UTFPR)

Ponta Grossa - PR, Brazil.

2Department of Informatics – Federal University of Technology – Paraná (UTFPR)

Ponta Grossa - PR, Brazil.

kgomes@alunos.utfpr.edu.br, snasser@utfpr.edu.br

Abstract. The programming plagiarism is increasingly a problem in computing

education, and the proposed solutions for this growing concern rely on

automatic detectors. The usage of the automatic tools for this purpose can

provide benefits in education for professors and instructors of programming

assignments, besides, to avoid the lack of essential skills from the students since

they compromise their programming logic by plagiarizing. This paper performs

a systematic mapping study aligned with a snowballing technique to analyzes

the existing solutions for this domain. As contributions, tendencies, as well as

information analysis, are provided to guide new proposals of solutions.

1. Introduction

Plagiarism in computing education, specifically in programming, is a problem that

compromises critical skills for the development of programming logic by the students

[Gomes and Matos 2019]. This misconduct occurs when a person copies either an entire

program or a piece of source code made by other people [Andrianov et al. 2020]. As a

solution for this academic dishonest, the usage of automatic detectors can reduce

plagiarism in student’s assignments. Besides, the detection tools can reduce time

consumption from professors’ grading and increase precision in the plagiarism analysis

task [Gomes and Matos 2019].

 Specific approaches were created to deal with programming plagiarism by

elaborating solutions such as JPLAG, MOSS, Sherlock, SIM, YAP3, and Plaggie. For

example, some of the main techniques for this purpose are tokens, hashes, common

substrings, and signatures (fingerprints) [Allyson et al. 2018]. As shown in [Xu et al.

2020], these solutions for plagiarism detection still are limited by the demand for practical

application. New opportunities and challenges generate the need for different approaches

in order to accomplish other requirements. For example, “the capability to detect partial

plagiarism,” “the resiliency to advanced code obfuscation,” “the interpretability of

detection results,” and “the scalability to process large-scale software.”

 Through a systematic mapping study (SMS) [Varela et al. 2017], the tendencies

and insights about the existing models of plagiarism detection in programming can be

analyzed. In order to extend the coverage for proposed detectors, a review technique such

as snowballing [Wohlin 2014] assists in the search for complementary references. In this

paper, an SMS with the snowballing technique is performed to evaluate solutions that

deal with plagiarism in programming, which can be used for computing education.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1633DOI: 10.5753/cbie.sbie.2020.1633

2. Methodology

The SMS is a specific study that analysis the findings in the literature for a subject of

interest [Varela et al. 2017]. The SMS model adopted in this paper is based on the study

shown in [Rattan et al. 2013] with modifications related to choosing each analyzed

research. A flowchart illustrated in Figure 1 shows the functioning of the performed study,

which can be abstracted into eight stages.

Figure 1. Stages adopted in the systematic mapping study

 The first stage establishes SMS conduction guidelines, for example, the coverage

period that was defined to contemplate from 2013 to 2018, and the subject to be

investigated. From the chosen topic, stage 2 determines the study motivations for creating

research questions. The main goals of this SMS were analysis the automatic detectors of

plagiarism in programming by identifying their approaches, evaluating processes,

supporting languages.

 The following three research questions were created: 1) What are the approaches

used to identify plagiarism in source code? 2) What plagiarism detection approaches have

been evaluated through tests, and how many tests have been conducted? 3) What

programming languages are supported in plagiarism detection approaches?

 Step 3 considers which sources of information are used for searches. The IEEE

Xplore and ACM DL were chosen since they are two of the most relevant in computer

science topics, as shown in [Buchinger et al. 2014]. The search strings used in these

sources of information represent stage 4, which was elaborated according to Table 1.

 From the search results, a selection procedure in stage 5 defines the inclusion and

exclusion criteria for choosing each research. The inclusion factors are the type of paper

that only were considered those from conferences and journals, and the period of

publication as defined in stage 1. The primary factor of exclusion was the presence of

duplicated papers in addition to factors based on titles and abstracts out of scope.

Altogether, at the end of the selection procedure, approximately 65.97% of the included

studies were eliminated by the exclusion criteria.

Table 1. Search strings used in each source of information

Search String Source of Information

1. ((Source*) OR (Software*) OR

(Pro-gram*)) AND (Plagiari*)
IEEE Xplore e ACM DL

 The quality evaluation (stage 6) seeks to rank the found studies as a form of

identifying the most relevant works in the SMS. The adopted criterion was ordered by the

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1634

number of citations, as shown in [Pagani et al. 2015]. After performing the classification,

it was identified that 18.18% of the studies have not yet obtained citations. The average

citation rate that each work has in this rank is five citations. However, a percentage of

76.32% of citations are concentrated among the top ten.

 The data extraction in stage 7 identifies the following information for each

research: title, authors, year of publication, type of paper, evaluation process, supported

language, and approach. It started at the exclusion phase of the selection process in this

paper. The last stage analysis every research in order to answer the three question

elaborated in stage 2. The obtained results are discussed in the next chapter.

3. Results

After passing from the first to the seventh stage, the SMS found 33 studies for results

analysis in the last stage to answer the three research questions [Chan et al. 2013, Choi et

al. 2013, Kim et al. 2013, Tian et al. 2013, Zhang and Liu 2013, Ajmal et al. 2014, Baby

et al. 2014, Kikuchi et al. 2014, Lazar and Banias 2014, Liu et al. 2014, Pohuba et al.

2014, Zhang et al. 2014, Acompora and Cosma 2015, Dutta 2015, Jhi et al. 2015, Oprişa

and Ignat 2015, Sharma et al. 2015, Soh et al. 2015, Tian et al. 2015, Wang et al. 2015,

Ming et al. 2016, Strilețchi et al. 2016, Agrawal and Sharma 2017, Jain et al. 2017, Kargén

and Shahmehri 2017, Karnalim 2017, Luo et al. 2017, Mirza et al. 2017, Mišić et al. 2017,

Schneider et al. 2017, Sudhamani and Rangarajan 2017, Karnalim 2018, Roopam and

Singh 2018].

 As a result of the first research question, 26 different approaches were identified.

Figure 2 shows the usage frequency of approaches. Note that different works use the same

techniques, with the token the most used among all identifications. However,

approximately 46.15% of the approaches had the lowest frequency, indicating a lack of

further validations. From the functioning of each solution, it was possible to perceive a

trend associated with the usage of approaches with more than one technique. Altogether

there were 31 studies, which represent 93.94% of the solutions. There was one technique

only in two studies representing 6.06% out of all.

Figure 2. Frequency of the identified approaches

0

2

4

6

8

10

12

R
K

R
-G

ST
 A

lg
o

ri
th

m

P
ar

al
le

l P
ro

gr
am

m
in

g

To
ke

n

Se
m

an
ti

cs

Lo
gi

c

In
te

rf
ac

e

Se
q

u
en

ce
s

C
ri

ti
ca

l V
al

u
es

A
b

st
ra

ct
 S

yn
ta

x
Tr

e
e

B
yt

ec
o

d
e

Le
ve

n
st

h
e

in
 D

is
ta

n
ce

Fu
zz

y

A
lig

n
m

e
n

t

M
et

ri
cs

St
ri

n
g

N
-g

ra
m

G
ra

p
h

D
is

ta
n

ce
 C

al
cu

la
ti

o
n

A
b

st
ra

ct
 L

in
e

ar
iz

at
io

n

H
u

n
ga

ri
an

 A
lg

o
ri

th
m

B
it

 b
y

B
it

B
in

ar
y

M
ap

p
in

g

Lo
gs

C
re

at
io

n
 P

ro
ce

ss

N
o

rm
al

iz
at

io
n

B
ir

th
m

ar
k

U
sa

ge
 F

re
q

u
e

n
cy

Technique

Answer for Research Question 1

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1635

 Regarding the research question 2, Figure 3 shows the relation of frequency and

number of source codes used in tests. It was found that 96.97% of the works used tests to

validate the obtained results, while only one (3.03%) of them [Pohuda et al. 2014]

proposed a solution without specifying the evaluation process. Points out that in [Roopam

and Singh 2018] did not specify the number of source codes and was considered at least

a test for each different repository.

Figure 3. The number of source codes used in tests and its frequency

 For the evaluation of the approaches, less than 100 source codes for testing were

presented by 60.60% of the studies. The second highest frequency was the usage of

between 100 and 1000 source codes, which was adopted by 30.30% out of all. The least

frequent process used more than 1000 source codes, and it was chosen by 9.10% of the

works.

 It not common to share a source code dataset used for testing, only in the research

made by [Mirza et al. 2017] adopted this type of resource for the evaluation process. The

other works created their tests by developing plagiarism models implemented with the

collaboration of students from computing courses. Another identified way of creating

tests was generating either automatically or manually samples.

 As an answer to research question 3, eight different programming languages were

chosen to be supported for the solutions, as shown in Figure 4. However, 39.39% of the

studies created independent approaches that do not limit the support feature. These studies

show the importance of dealing with different languages, and it has surged a new tendency

of using flexible solutions for supporting any source code.

Figure 4. Frequency of supported programming languages

0 5 10 15 20 25

< 100

>= 100 e <= 1000

> 1000

Frequency

N
u

m
b

e
r

o
f

so
u

rc
e

 c
o

d
e

s Answer for Research Question 2

10

4

11

13

1
1

2
2 2

Answer for Research Question 3

C C++ Java Independent Assembly Perl Python Php JavaScript

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1636

 Among the solutions with a limited number of supported programming languages,

the usage of Java stands out by representing 11 of 33 studies followed by the C language

that is found in 10 of 33. It is identified that these types of dependent approaches tend to

support more than one language.

4. Snowballing

The SMS accomplished in this paper was passed through an evaluation to certify whether

there were changes in its obtained results considering a most recent coverage period. The

snowballing applied to this paper was responsible for contemplating other studies

between 2019 and 2020 in order to aggregate content with analysis and updates.

 The snowballing technique strictly followed every stage in the SMS again except

the two sources of information. Only the most relevant source in the computing between

both was considered, which was the IEEE Xplore, as pointed by [Buchinger et al. 2014].

In all, 11 new studies presented in Table 2 were identified as candidates for the SMS.

Table 2. Data from identified studies between 2019 and 2020 with snowballing

Authors Approach
Number of

source codes
Language

[Pham and Nguyen 2019] K-Grams, RKR algorithm,

and Suffix Array

295 C++

[Mahbub et al. 2019] Support Vector Machine

Classifiers, Deep Neural

Networks and Random

Forests

6063 Language-

Independent

[Kim et al. 2019] Ordered Labeled Tree

and LCS algorithm

768 Language-

Independent for

Android Apps
[Kurtukova et al. 2019] Machine Learning and

Deep neural network

227756 Language-

Independent
[Sun et al. 2019] Bidirectional Static

Slicing and Similarity

Measures

619 Java

[Herrera et al. 2019] Metrics 12426 Language-

Independent
[Cheers et al. 2019] Logic 5 Java

[Ljubovic and Pajic 2020] Machine Learning and

Metrics

11388 Language-

Independent
[Andrianov et al. 2020] Sparse Suffix Trees and

binary mapping

Not mentioned Language-

Independent

[França et al. 2019] Normalization and

Sherlock N-overlap

algorithm

2226 C and Java

[Pajić and Ljubović 2019]

Genetic Algorithm,

metrics, and Similarity

Measures

Not mentioned C and C++

 By analyzing the results from the applied snowballing, it was noted that most

trends identified in the SMS were confirmed in these new studies. Regarding the research

question 1, approximately 81.82% of the solutions were based on combined techniques,

and only 18.18% used a single type. There were ten different techniques found in the

studies in relation to the first SMS, three of which introduced the artificial intelligence

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1637

field as a resource for three approaches. Nearly 42.30% of the techniques used in the SMS

were reused in nine of the 11 new studies, and the most used approach was based on

metrics rather than tokens.

 For the new findings from research question 2, it was found that 100% of the

works had an evaluation process. However, two of them did not mention the number of

source codes used as tests. Among those who mentioned, approximately 88.88%

exceeded the most common range of source code quantity in the SMS.

 Regarding the supported programming languages, approximately 54.55% of the

studies are developing a language-independent approach reiterating to be a desired

feature. One of these solutions is aimed only at Android Apps; therefore, it covers any

implementation language for this type of application. Still reiterating analyzes from the

SMS, for those language-dependent solutions, Java was the most used followed by C and

C++.

5. Concluding Remarks

This paper carried out an SMS to analyze the proposed solutions for the programming

plagiarism problem in computing education. The applied methodology aligned with a

snowballing technique aimed to identify three research questions from the most relevant

studies from 2013 to 2020. The questions looked for retrieve information from the

approaches, tests, and supported languages of the solutions.

 Regarding the identified approaches, it was found the occurring of varied

solutions represented by the usage of 36 different techniques in 44 studies. Also, this

analysis indicated the presence of combined techniques in approximately 90.90% of the

proposals. The evaluation process of these solutions did not occur only in one case, and

three studies did not mention the number of source codes for tests. About the highest

frequency of source codes used in experiments, it was less than 100 in the first SMS, and

more than 100 for studies from 2019 and 2020.

 A trend feature was observed by analyzing the research question 3. The feature is

the creation of language-independent approaches found in 39.39% of the first SMS and

54.55% on the studies through snowballing. Among those language-dependent solutions,

it was identified eight different supported programming languages: C, C++, Java,

Assembly, Perl, Python, Php, and JavaScript. The most used language for supporting was

Java, followed by C.

 As future work, additional research questions can be added to the applied SMS as

well as changes in its stages, such as covering a more extended period. For example, it is

suggested to investigate whether there is a standard dataset for the evaluation process of

the studies to provide conditions for comparing to each other. Besides, the identification

of the performance metrics obtained by the solutions such as recall, precision, and f-

measure can complement the evaluation process analysis.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior – Brasil (CAPES) – Finance Code 001.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1638

References

Acampora, G. and Cosma, G. (2015). A fuzzy-based approach to programming language

independent source-code plagiarism detection. In 2015 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), pages 1–8. IEEE.

Agrawal, M. and Sharma, D. K. (2017). A novel method to find out the similarity between

source codes. In 2016 IEEE Uttar Pradesh Section International Conference on

Electrical, Computer and Electronics Engineering (UPCON), pages 339–343. IEEE.

Ajmal, O., Missen, M. S., Hashmat, T., Moosa, M., and Ali, T. (2014). Eplag: A two layer

source code plagiarism detection system. In Eighth International Conference on

Digital Information Management (ICDIM 2013), pages 256–261. IEEE.

Andrianov, I., Rzheutskaya, S., Sukonschikov, A., Kochkin, D., Shvetsov, A., and

Sorokin, A. (2020). Duplicate and plagiarism search in program code using suffix trees

over compiled code. In 2020 26th Conference of Open Innovations Association

(FRUCT), pages 1–7.

Baby, J., Kannan, T., Vinod, P., and Gopal, V. (2014). Distance indices for the detection

of similarity in c programs. In 2014 International Conference on Computation of

Power, Energy, Information and Communication (ICCPEIC), pages 462–467. IEEE.

Buchinger, D., de Siqueira Cavalcanti, G. A., and da Silva Hounsell, M. (2014).

Mecanismos de busca acadêmica: uma análise quantitativa. Revista Brasileira de

Computação Aplicada, 6(1):108–120.

Chan, P. P., Hui, L. C., and Yiu, S.-M. (2013). Heap graph based software theft detection.

IEEE Transactions on Information Forensics and Security, 8(1):101–110.

Cheers, H., Lin, Y., and Smith, S. P. (2019). A novel approach for detecting logic

similarity in plagiarised source code. In 2019 IEEE 10th International Conference on

Software Engineering and Service Science (ICSESS), pages 1–6.

Choi, J., Han, Y., Cho, S.-j., Yoo, H., Park, M., Han, S., You, I., and Song, I. (2013). A

survey of feature extraction techniques to detect the theft of windows applications. In

2013 Seventh International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing, pages 723–728. IEEE.

Dutta, R. (2015). Efficient approach to detect logical equivalence in the paradigm of

software plagiarism. In Proceedings of the 2015 Third International Conference on

Computer, Communication, Control and Information Technology (C3IT), pages 1–5.

IEEE.

França, A. B., Maciel, D. L., Soares, J. M., and Barroso, G. C. (2019). Sherlock n-overlap:

Invasive normalization and overlap coefficient for the similarity analysis between

source code. IEEE Transactions on Computers, 68(5):740–751.

Gomes, K. P. and Matos, S. (2019). Contributions of bioinformatics for computing

education in the detection of programming assignment plagiarism. In Brazilian

Symposium on Computers in Education (Simpósio Brasileiro de Informática na

Educação-SBIE), volume 30, page 1351.

Herrera, G., Nuñez-del-Prado, M., Lazo, J. G. L., and Alatrista, H. (2019). Through an

agnostic programming languages methodology for plagiarism detection in engineering

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1639

coding courses. In 2019 IEEE World Conference on Engineering Education (EDU-

NINE), pages 1–6.

Jain, S., Kaur, P., Goyal, M., and Dhanalekshmi, G. (2017). Cplag: Efficient plagiarism

detection using bitwise operations. In 2017 Tenth International Conference on

Contemporary Computing (IC3), pages 1–5. IEEE.

Jhi, Y. C., Jia, X., Wang, X., Zhu, S., Liu, P., and Wu, D. (2015). Program

characterization using runtime values and its application to software plagiarism

detection. IEEE Transactions on Software Engineering, 41(9):925–943.

Kargén, U. and Shahmehri, N. (2017). Towards robust instruction-level trace alignment of

binary code. In 2017 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 342–352. IEEE.

Karnalim, O. (2017). Detecting source code plagiarism on introductory programming

course assignments using a bytecode approach. In 2016 International Conference on

Information & Communication Technology and Systems (ICTS), pages 63–68. IEEE.

Karnalim, O. (2018). An abstract method linearization for detecting source code

plagiarism in object-oriented environment. In 2017 8th IEEE International Conference

on Software Engineering and Service Science (ICSESS), pages 58–61. IEEE.

Kikuchi, H., Goto, T., Wakatsuki, M., and Nishino, T. (2014). A source code plagiarism

detecting method using alignment with abstract syntax tree elements. In 15th

IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD), pages 1–6. IEEE.

Kim, B., Lim, K., Cho, S. J., and Park, M. (2019). Romadroid: A robust and efficient

technique for detecting android app clones using a tree structure and components of

each app’s manifest file. IEEE Access, 7:72182–72196.

Kim, Y., Moon, J., Kim, D., Jeong, Y., Cho, S. J., Park, M., and Han, S. (2013). A static

birthmark of windows binary executables based on strings. In 2013 Seventh

International Conference on Innovative Mobile and Internet Services in Ubiquitous

Computing, pages 734–738. IEEE.

Kurtukova, A., Romanov, A., and Fedotova, A. (2019). De-anonymization of the author

of the source code using machine learning algorithms. In 2019 International Multi-

Conference on Engineering, Computer and Information Sciences (SIBIRCON), pages

0612–0617. IEEE.

Lazar, F. M. and Banias, O. (2014). Clone detection algorithm based on the abstract

syntax tree approach. In 2014 IEEE 9th IEEE International Symposium on Applied

Computational Intelligence and Informatics (SACI), pages 73–78. IEEE.

Liu, K., Zheng, T., and Wei, L. (2014). A software birthmark based on system call and

program data dependence. In 2014 11th Web Information System and Application

Conference, pages 105–110. IEEE.

Ljubovic, V. and Pajic, E. (2020). Plagiarism detection in computer programming using

feature extraction from ultra-fine-grained repositories. IEEE Access, 8:96505–96514.

Luo, L., Ming, J., Wu, D., Liu, P., and Zhu, S. (2017). Semantics-based obfuscation-

resilient binary code similarity comparison with applications to software and algorithm

plagiarism detection. IEEE Transactions on Software Engineering, 43(12):1157–1177.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1640

Mahbub, P., Oishie, N. Z., and Haque, S. R. (2019). Authorship identification of source

code segments written by multiple authors using stacking ensemble method. In 2019

22nd International Conference on Computer and Information Technology (ICCIT),

pages 1–6. IEEE.

Ming, J., Zhang, F., Wu, D., Liu, P., and Zhu, S. (2016). Deviation-based obfuscation-

resilient program equivalence checking with application to software plagiarism

detection. IEEE Transactions on Reliability, 65(4):1647–1664.

Mirza, O. M., Joy, M., and Cosma, G. (2017). Style analysis for source code plagiarism

detection—an analysis of a dataset of student coursework. In 2017 IEEE 17th

international conference on advanced learning technologies (ICALT), pages 296–297.

IEEE.

Mišić, M. J., Protić, J. Ž ., and Tomašević, M. V. (2017). Improving source code plagiarism

detection: lessons learned. In 2017 25th Telecommunication Forum (TELFOR), pages

1–8. IEEE.

Opris a̧, C. and Ignat, N. (2015). A measure of similarity for binary programs with a

hierarchical structure. In 2015 IEEE International Conference on Intelligent Computer

Communication and Processing (ICCP), pages 117–123. IEEE.

Pagani, R. N., Kovaleski, J. L., and Resende, L. M. (2015). Methodi ordinatio: a proposed

methodology to select and rank relevant scientific papers encompassing the impact

factor, number of citation, and year of publication. Scientometrics, 105(3):2109–2135.

Pajić, E. and Ljubović, V. (2019). Improving plagiarism detection using genetic algorithm.

In 2019 42nd International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pages 571–576.

Pham, M. T. and Nguyen, T. B. (2019). The domjudge based online judge system with

plagiarism detection. In 2019 IEEE-RIVF International Conference on Computing and

Communication Technologies (RIVF), pages 1–6. IEEE.

Pohuba, D., Dulík, T., and Jank, P. (2014). Automatic evaluation of correctness and

originality of source codes. In 10th European Workshop on Microelectronics Education

(EWME), pages 49–52. IEEE.

Rattan, D., Bhatia, R., and Singh, M. (2013). Software clone detection: A systematic

review. Information and Software Technology, 55(7):1165–1199.

Roopam and Singh, G. (2018). To enhance the code clone detection algorithm by using

hybrid approach for detection of code clones. In 2017 International Conference on

Intelligent Computing and Control Systems (ICICCS), pages 192–198.

Schneider, J., Bernstein, A., Vom Brocke, J., Damevski, K., and Shepherd, D. C. (2017).

Detecting plagiarism based on the creation process. IEEE Transactions on Learning

Technologies, 11(3):348–361.

Sharma, S., Sharma, C. S., and Tyagi, V. (2015). Plagiarism detection tool “parikshak”.

In 2015 International Conference on Communication, Information & Computing

Technology (ICCICT), pages 1–7. IEEE.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1641

Soh, C., Tan, H. B. K., Arnatovich, Y. L., and Wang, L. (2015). Detecting clones in

android applications through analyzing user interfaces. In 2015 IEEE 23rd

international conference on program comprehension, pages 163–173. IEEE.

Strileţchi, C., Vaida, M., Chiorean, L., and Popa, S. (2016). A cross-platform solution for

software plagiarism detection. In 2016 12th IEEE International Symposium on

Electronics and Telecommunications (ISETC), pages 141–144. IEEE.

Sudhamani, M. and Rangarajan, L. (2017). Code clone detection based on order and

content of control statements. In 2016 2nd International Conference on Contemporary

Computing and Informatics (IC3I), pages 59–64. IEEE.

Sun, W., Wang, X., Wu, H., Duan, D., Sun, Z., and Chen, Z. (2019). Maf: method-

anchored test fragmentation for test code plagiarism detection. In 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering Education

and Training (ICSE-SEET), pages 110–120. IEEE.

Tian, Z., Zheng, Q., Liu, T., and Fan, M. (2013). Dkisb: Dynamic key instruction

sequence birthmark for software plagiarism detection. In 2013 IEEE 10th

International Conference on High Performance Computing and Communications &

2013 IEEE International Conference on Embedded and Ubiquitous Computing, pages

619–627. IEEE.

Tian, Z., Zheng, Q., Liu, T., Fan, M., Zhuang, E., and Yang, Z. (2015). Software

plagiarism detection with birthmarks based on dynamic key instruction sequences.

IEEE Trans. Software Eng., 41(12):1217–1235.

Varela, A. S. N., Pérez-Gonzalez, H. G., Martı́nez-Perez, F. E., and Soubervielle-

Montalvo, C. (2017). Source code metrics: A systematic mapping study. Journal of

Systems and Software, 128:164–197.

Wang, H., Zhong, J., and Zhang, D. (2015). A duplicate code checking algorithm for the

programming experiment. In 2015 Second International Conference on Mathematics

and Computers in Sciences and in Industry (MCSI), pages 39–42. IEEE.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a

replication in software engineering. In Proceedings of the 18th international

conference on evaluation and assessment in software engineering, pages 1–10.

Xu, X., Fan, M., Jia, A., Wang, Y., Yan, Z., Zheng, Q., and Liu, T. (2020). Revisiting the

challenges and opportunities in software plagiarism detection. In 2020 IEEE 27th

International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 537–541. IEEE.

Zhang, F., Wu, D., Liu, P., and Zhu, S. (2014). Program logic based software plagiarism

detection. In 2014 IEEE 25th International Symposium on Software Reliability

Engineering, pages 66–77. IEEE.

Zhang, Li, P. and Liu, Dong, S. (2013). Ast-based multi-language plagiarism detection

method. In 2013 IEEE 4th International Conference on Software Engineering and

Service Science, pages 738–742. IEEE.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020)

1642

