
GrameStation: Specifying Games with Graphs *

Braz Araujo da Silva Junior1, Simone André da Costa Cavalheiro1, Luciana Foss1

1Programa de Pós-Graduação em Computação - Universidade Federal de Pelotas
CEP 96.010-610 - Pelotas - RS - Brazil

{badsjunior,simone.costa,lfoss}@inf.ufpel.edu.br

Abstract. This paper presents a platform for creating games using graphs. The
proposed game engine is based on a mathematical formalism called Graph
Grammar. It aims to rescue, within computer science education, the stage of
specification, that precedes programming. The proposal is aligned to the trends
of the problem-solving focus, development of computational thinking, use of
visual languages, game-related environments and the maker movement. The
structure of the platform, the creation and execution of an example game are
described and a brief discussion about specification in computer science educa-
tion is given.

1. Introduction

The undeniable impact of Computer Science (CS) on everyday life has brought major
efforts to make its education available to everyone. As the CS education progressed, the
perception that computing is not just coding and it should rather be focused in problem-
solving skills has grown and conquered ground. A milestone of this progress in the scien-
tific community is a viewpoint recalling the term Computational Thinking (CT) and ad-
vocating it includes general purpose skills that should be learned by everyone, not just CS
professionals [Wing 2006]. Some popular and successful approaches of teaching/learning
CS and fostering CT skills are visual programming activities [Hu et al. 2021]; and gam-
ified programming environments/programming games [Lindberg et al. 2019]. Which are
often aligned with the Maker Culture, putting the learners as creators, rather than just
consumers [Martin 2015].

Aligned with these ideas of being about more than just coding, having problem-
solving as focus, using visual languages, being in game-related environments, and treat-
ing students as makers, we step back from programming to specification by proposing
a new approach for CS education: using Graph Grammars (GG) to create games. A
GG is a formal language used in software engineering for formal specification and ver-
ification of software, a modeling stage that precedes the implementation/coding of the
actual software. We built a game engine based on GG, the GrameStation, to allow
the use of this new approach while following successful trends in CS education. Pre-
vious experiments with GG in k-12 led us to the development of the game engine by
showing that: despite being formal, GG can be friendly (presented without heavy use
of mathematical formulas and notation) due to be visual [Silva Junior et al. 2017]; GG

*O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Código de Financiamento 001, do MCTIC/CNPq (Rede Sacci), da
SMED/Pelotas e da PREC e PRPPG/UFPel.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

499DOI: 10.5753/sbie.2021.218639



concepts (concrete) can be more easily assessed and then associated with CT skills (ab-
stract) [Silva Junior et al. 2019a]; a GG activity can provide data useful for powering as-
sessment if automated [Silva Junior et al. 2018]; and virtual games interfaces and me-
chanics are able to ease and reinforce the learning of GG [Silva Junior et al. 2019b].

The rest of this paper is organized as follows. The Section 2 provides the theo-
retical background and related work, situating the paper within CS education, games in
education and the maker movement, as well as presenting basic notions of GG. The sec-
tion 3 presents the GG-based game engine, its foundational concepts, how to build and
play games using it and the resources for guiding users added to the platform. The sec-
tion 4 concludes the paper with the discussion about what changes when moving from
programming to specification and how GG are related to CT.

2. Theoretical Background and Related Work
2.1. Computer Science Education
It is a recurring concern not to equate CS to programming or coding. Yet, these terms
have been used interchangeably even inside CS education research. For [Armoni 2016],
the differentiation of these terms is important: coding is the most concrete of the terms, it
refers to the making of code, a collection of information represented (coded) in a certain
way; programming refers to the making of programs, abstractions of what is coded, en-
tities that someone (a programmer) created or will create, and can be run or executed; and
CS is the systematic study of algorithmic processes that describe and transform informa-
tion; their theory, analysis, design, efficiency, implementation and application. Although
the distinction is important, programming and machines are essential for CS education
and have been the center of it for a long time now [Denning and Tedre 2021].

A Systematic Literature Review (SLR) captured the main challenges faced by
introductory programming students in higher education [Medeiros et al. 2018]: problem-
formulation, understanding and conceptualizing the problem being addressed; abstrac-
tion, dealing with concepts that cannot be easily related to a real-life object, such as
variables, data types and memory addresses; algorithmic reasoning, organizing thoughts
in a systematic, well defined way, for a machine to be able to execute it; syntax, trans-
forming an informal solution or even a pseudo-code into a syntactically correct program;
control and data structures, selecting the best fit for a given problem according to their
properties; motivation and engagement, being personally interested and willing to learn.

We can trace a relation of those challenges with the classification of programming
languages in generations: the first comprises machine languages, which are binary code
strictly bound to the hardware; the second comprises assembly, which are languages with
lower number of instructions that represent the first abstraction to machine languages; the
third comprises high-level languages, which are machine independent languages such
as C++ and Java; and the fourth generation comprises declarative languages, which are
languages that allow a programmer to specify what should be achieved, rather than how
a goal should be achieved [Gaggioli 2017]. The lower the generation, the higher are
the concerns with syntax, control and data structures. The lower the generation, the more
specific and strict the problem-formulation and algorithmic reasoning must be. The higher
the generation, the higher the abstraction, meaning the closer to human natural languages.
At last, the higher the generation, the higher the motivation and engagement. This last

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

500



statement is yet to be proven, but we can see this trend in CS education, as can be implied
by the rest of this section.

Following this trend of elevating the level of abstraction and minimizing syntax
concerns, the Low-Code Development (LCD) rose. The LCD is described by its prac-
titioners as a programming environment where the coding effort is low [Luo et al. 2021].
It is meant to be non-professional programmers friendly, as in visual programming (drag
and drop) and what you see is what you get (WYSIWYG) platforms. A study gathered
the perceptions of LCD practitioners from two popular online developer communities,
Stack Overflow and Reddit [Luo et al. 2021]. The study collected a series of benefits of
LCD from its practitioners’ perspectives, among them are: faster development; ease of
study and use; newbie friendly; superior usability; and better user experience. Given the
communities where the data were extracted from, the study was business-oriented, show-
ing most of the use of LCD for the development of websites and mobile applications.
Although, if we consider that visual programming is included, then it has been massively
used in education [Hu et al. 2021].

Visual Programming Languages (VPL) has shown a higher performance in edu-
cation environments in comparison to Textual Programming Languages (TPL) when it
comes to motivation [Tsukamoto et al. 2016], basic programming concepts [Tsai 2019]
and academic achievement [Hu et al. 2021]. It is highlighted that VPL specially out-
perform TPL on students with low self-efficacy [Tsukamoto et al. 2016] and on those in
elementary and middle schools [Hu et al. 2021]. Among other VPL used in CS education,
Scratch [Resnick et al. 2009], that offers colorful blocks of code to drag and drop, stand
out, generally linked to CT [Oliveira et al. 2019, de Lima Sousa et al. 2020].

Among other definitions, CT can be defined as “the mental skills and practices for
designing computations that get computers to do jobs for us, and explaining and interpret-
ing the world as a complex of information processes.” [Denning and Tedre 2019]. More
specific definitions split according to their target, some more related to programming
and computing concepts [Brennan and Resnick 2012, Weintrop et al. 2016], others to
more general problem-solving skills [Selby and Woollard 2013, ISTE and CSTA 2011].
A model based on a SLR that gathered the most cited terms in CT defini-
tions [Silva Junior 2017] brings six major lines of CT: abstraction, approaching simpli-
fication, generalization, modeling and pattern recognition; decomposition, approaching
breaking down problems into smaller ones, emergence and reuse; algorithm, approaching
flow of control and parallelism; data, approaching data structures, visualization and rep-
resentation; automation, including development of software, tinkering and simulation;
and evaluation, approaching efficiency, test and debug.

Many efforts have been made to assess CT, being the majority based on
traditional paper-pencil tests and very few presenting reliability and validity evi-
dence [Tang et al. 2020]. This area still needs further research, but looking at the
few with reliability and validity evidence, we highlight: the Computational Think-
ing test (CTt) [Román-González 2015], an online test with closed answer questions
about algorithms, sequences, conditionals, loops, functions and debugging; and the Dr.
Scratch [Moreno-León et al. 2015], a tool that automatically analyzes Scratch projects
and score them in CT competences, such as abstraction, parallelization, flow control
and data representation. Complementary tools are also used to ease or deepen the as-

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

501



sessment. For instance, traditional paper-pencil tests can be improved with F-ATL,
a method that uses fuzzy logic to consider the inherent uncertainty in assessment of
teaching-learning [Cardozo et al. 2019]. While for automated tools, tracking student’s
progress in Scratch is possible with OntoScratch, an ontology to store in a struc-
tured way the trajectory of a project according to the Dr. Scratch’s metrics of assess-
ment [de Araujo et al. 2020].

2.2. Games and Maker Movement in Education

From all teaching and learning strategies, educational games stand out due to
its potential to keep the learner in an optimal engagement [Garris et al. 2002],
a state called Flow [Nakamura and Csikszentmihalyi 2009]. It is a zone
located between boredom and anxiety, where involvement is maxi-
mized [Csikszentmihalyi and Csikszentmihalyi 1992]. This concept is widely used
in game design because it is reached when the player is as challenged as it is able to
answer it, in turn, balancing the task difficulty against the player’s capability is a game
design task by nature [Hiremath et al. 2015]. Educational games and game-related
environments have considerably increased their number of positive results analyzed
and reported within the scientific community, proving themselves as viable educational
approaches [Boyle et al. 2016].

Just like the popularization of digital games attracted the interest of education re-
search, the growth of Do It Yourself (DIY) hobbyists, tinkerers, engineers, hackers, and
artists who creatively design and build projects gave attracted the interest of education
research to the so-called Maker Movement. It proposes active learning, turning the stu-
dent into protagonist of its own education through making, what has shown to: empower
youth to engage in new forms of thinking; lead to powerful forms of learning driven by
recursive feedback, where people learn from the actions of their creations; be playful
and highly tolerant of errors; advocate a growth mindset; and link learning communi-
ties [Lee et al. 2011]. GrameStation aims to bring together a game-related environment,
a maker context and CS education, as Scratch does, and is probably one of the reasons it
is vastly used world-wide [Zhang and Nouri 2019].

2.3. Graph Grammar

A GG describes a system modeling a state of it as a graph (vertices and edges), and
events that may alter the current state as a set of graph transformation rules. A GG must
define how its state graph starts, in what is called the initial graph. Additionally, a
GG may distinguish and restrict its elements by declaring them in a type graph. For
instance, Figure 1 models the Pacman game as a GG. There is a type graph T declaring
the existence of pacmans, ghosts, places (black dots), fruits, counters (white dot) and their
relations in this GG. Then, there is an initial graph Ini that shows a pacman, two ghosts
and a fruit in a 3x3 grid of places, while a counter at the bottom shows that a fruit has been
eaten. Then, there are four rules, moveP , moveG, eat and kill, each being represented
by a pair of graphs linked by an arrow carrying the name of the rule.

The pair of graphs representing rules are the Left-Hand Side (LHS), expressing
a condition for applying the rule, and the Right-Hand Side (RHS), expressing a conse-
quence of applying the rule. As in moveP (Figure 1), the LHS defines the condition of

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

502



Figure 1. A Pacman graph grammar. Source: Adapted from [Ribeiro 2000]
.

having a pacman in a place that has a way to another, while the RHS defines the conse-
quence of removing the pacman from the initial place and putting it into the other. This
representation also implies element-wise mappings between graphs (morphisms). That
is, for each element in one graph, we have to say which element (if one) in the other graph
corresponds to it. For instance, saying if the pacman in the LHS is the same pacman in
the RHS. If an element is successfully mapped (has a correspondent), it means the rule
preserves it, as the pacman of moveP . If an element is left unmapped (has no correspon-
dent) and is in the LHS, then the rule deletes it, as the pacman of kill. If unmapped and
in the RHS, the rule creates it, as the edge from the fruit to the counter of eat.

This pacman is played by applying rules, which is a process that depends on an-
other morphism: the match. The match is a total morphism from the LHS to the state
graph, meaning that we must find a correspondence for each element. In Ini we could
apply moveP mapping any of the three adjacent places and moveG mapping any of the
ghosts and their adjacent places. But not eat and kill, because there is not a pacman and
a fruit/ghost in the same place, so we could not complete a match, since they must respect
source and target of the edges.

The base theory for GG makes no distinction between vertices and edges, i.e. it is
not sufficient to specify that a vertex is a pacman and another is a ghost, they are all simply
vertices. Distinguishing between elements is possible through labeling or typing, which
is mapping every element into a label or a type. For typing, an additional component
enters the GG: the type graph, which is a special graph where each element is considered
distinct from the other. Then, every other graph of the GG must map their elements into
the type graph (typing morphism) and respect the source/target restrictions their types
imposes. For instance, an edge from a black dot can point to another black dot in Ini
(Figure 1), but not to a white dot, because in T there is an edge with the black dot type as
its source and target (a loop), but no edge with the black dot as source and white dot as
target. Again, in the visual representations, the morphisms are implied by the look of the
elements, corresponding looks in different graphs imply they are mapped.

We avoided exposing the underlying math in this paper, but the formal definitions
that we are following comes from an algebraic approach for GG [Corradini et al. 1997],
using Double Pushout for graph transformations, injective matches and the category of
typed attributed graphs and total morphisms [Cavalheiro et al. 2017]. These are com-
mon arrangements for GG, that can be specified in GG automatic tools present in the
literature [Azzi et al. 2018, Taentzer 2003, Rensink 2003]. Our game engine is indeed a

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

503



software that allows the user to specify and run GG as those, but it does not offer tools
for formal specification and analysis as they do. The core distinction is that GrameStation
adapt GG to turn them into games, what we made introducing the concept of Grame,
short for graph game.

A grame is essentially a GG that contains special elements (gears) hidden from
players (but not from creators) to control gaming aspects, such as which player is able to
play at a given time (managing turns) and which rules each are available for each player.
During the execution of grames, the engine offers players a subset of rules (controlled by
gears), so the player can select one of them to start mapping a match to apply the rule.
Gears can also be created or deleted by rules, which means this control is in the grame
creator’s hands. Thus, GrameStation approaches GG centring decision making through a
dynamic environment, where the users respond on the fly to the state transitions caused by
others. While the existing GG tools approaches GG centring formal specification through
a single user environment, where users analyze properties that emerge mostly from the
automatic execution of its rules and the exploration of the generated state space.

3. GrameStation

Figure 2. GrameStation modules and overall organization.
.

We have made educational games based on GG, from physical
boardgames [Silva Junior et al. 2017] to digital games [Silva Junior et al. 2019a].
These previous experiences in turning GG into games matured into the notion of grames.
In turn, a GG framework made in Unity [Technologies 2020] we have developed for
running the digital game matured into the GrameStation. The engine is used for both,
creating and running games, but it is separated into modules for the respective purposes as
seen in Figure 2: the Grame Builder and Grame Player. Additionally, a Grame Explorer
module locates and opens the grames, stored in an Extensible Markup Language
(XML) file defined by a XML Schema Definition (XSD) file we specified.

In adition to the GG, grames count with external files such as images and audio
effects to be used as resources, e.g. for the appearance of the vertices and edge. GrameS-

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

504



tation organizes resources in collections (packs), and currently supports images using
Looks, which are XMLs encapsulating a png or a jpg file. If we want to make a grame,
the very first thing we shall do is to import pre-available packs or to create a new one. For
instance, Figure 3 shows a pack of looks for making a pacman grame.

Figure 3. Looks for the pacman grame.
.

The next step in designing a grame is to define the types that we are going to use.
Thus, the type graph fits the role of a declaration area. All grames begin with an empty
type graph and an empty initial graph. GrameStation allows the users to create new types
by requesting them a kind (vertex or edge), a name, a look and a color (source and target
are also requested if its an edge). As shown in Figure 4, for a pacman grame we filled the
type graph declaring: a Pacman, a Ghost, a Fruit and a Place. Additionally, we added two
vertices to represent Victory and Loss. As a grame is a GG, relations stand out, so we also
declared that: Pacman isAt a Place; Ghost isHaunting a Place; Place may have a wayTo
another Place; and a Place hasA a Fruit.

Figure 4. Type graph for the pacman grame.
.

With everything declared, we proceed to fill the initial graph. GrameStation allows
the users to create new elements in the initial graph by instantiating the ones defined in the
type graph, requesting only a type and a name (source and target are also requested if its
an edge). Continuing our example, Figure 5 shows the initial graph of the pacman grame.
There are our hero pacman, our enemy ghost and our goal fruit at (isAt, isHaunting, hasA,
respectively) different linked (P01, P02, P12, P23) places (P0, P1, P2, P3).

At last, we specify the rules. GrameStation allows the creator to add as many rules
as they want. And to add an element to a rule, it will request if it is deleted, preserved

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

505



Figure 5. Initial graph for the pacman grame.
.

or deleted by the rule, as well as type and name. In our example (shown in Figure 6),
the same moveP from the pacman GG we introduced in section 2 (Figure 1) is modeled
in the GrameStation. This rule preserves a pacman, two places (CurPos,FutPos) and the
way between them (wayTo), while replacing its positioning edge that target a place (delete
wasAt) to one that targets the other (create isGoingTo), effectively moving the pacman.
All the others rules can be defined just like this one.

Figure 6. Rule moveP for the pacman grame.
.

The specified rules can be selected on the top of the screen in the Grame Player
during the execution. If so, their LHS and RHS will be showed and a match can be set
by clicking the LHS elements and their corresponding elements in the board (state graph)
in sequence. If any illegal mapping occurs, such as mapping a pacman into a ghost, a
cross will appear signalizing the error and the current match will be cancelled. Grames
are designed to support parallel, asynchronous rule applications, result of multiple players
playing at the same time. But, as GrameStation does not offer support for online play yet,
an adaptation to allow multiplayer grames is temporarily held as default: once a rule is
applied by a player in a computer, this computer will become the next player (they switch
turns). This is all controlled by gears and could be changed by expert users. Gears bring
a whole new level of freedom to model games, being possible to make real-time grames,
rules that pass the turn backwards or changes the player order and much more. But for
beginners, they should be completely ignored, as we ignored in our pacman grame. By

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

506



default, all is set up to be a simple turn-based that passes the turn when any rule is applied.

Internally, Grame Builder works through a parser reading and executing command
lines, but a grame designer is not supposed to code. A decision tree system, named the
definer, is called every time someone wants to build or edit anything in the module. It
asks the user for consecutive choices that build up a complete definition (a command line),
as result, this constructs a graph linking the new choices with the previous. An example
of the definer is shown in Figure 7: a sequence of expansions in a decision tree to build
the type for pacman. From left to right, top to bottom, first we select that we are building
a vertex, then we enter its name, choose the package of the look (there is only the basic
set available), choose the look, choose the package of the color, then the color.

Figure 7. GrameStation’s definer sequence for creating a pacman type.
.

4. Discussions and Conclusions

There are a number differences between specifying and programming. Specification is
much more problem-focused, much closer to the theoretical foundations of CS. While
programming is much closer the the applications of CS. In a complete workflow, spec-
ification is the stage that confronts the problem, it is where the problem is conceived,
modeled and abstractly solved. Programming comes after, it receives the problem already

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

507



modeled from the specification and then turns it into a concrete solution for the real word.
The specification stage has being neglected in CS education, students try to understand
and model the problem on the fly while already programming. As a result, the CT move-
ment rises and shouts for problem-solving skills to fill this gap. The GrameStation is an
effort to revive the specification stage and automatically bring specifications to the real
world (final product execution).

More than that, some of the skills often claimed for by the CT movement are
related to GG aspects: they raise the level of abstraction by being able to get completely
rid of texts; and by being declarative, where you just specify key graphs (a condition
and a consequence), rather than sequencing orders to describe how to achieve them; the
idea of matching is one of the meanings of abstraction – selecting only the necessary
elements for an event of interest and temporarily ignoring the rest; matching is also pretty
straight forward a pattern recognition process; rules are implications, “conditionals” –
if LHS, then RHS; types are generalizations of elements, while rules are generalizations
of behaviors of subgraphs; it is naturally a parallel model; it is based on well-known data
structures – graphs; and the match being required for rule application implies that GG
execution is compulsorily an evaluation task, you cannot disassociate an operation from
examining its context.

Therefore, we conclude that CS education should be approached further than just
coding, relying on programming as a wider concept that systematizes problem-solving
while consulting the information processes and phenomena studied by CS. And since
problem-solving becomes essential in this approach, CS education shall foster CT skills to
support it. We should also address to the many challenges newcomers face, such as syntax
difficulties and lack of motivation. Accordingly, we propose GrameStation1, a platform
to use graphs for creating games, what classifies it as a latest generation programming
language, LCD, VPL, game-related environment and aligns with the maker movement
practices. At last, we cannot neglect CT assessment, this area still needs further research
and GrameStation might be very helpful by automatizing data gathering and allowing CT
assessment through the association with GG concepts.

Future work involving GrameStation includes adding: pedagogical agents to guide
newcomers; attributes (from attributed graph grammars theory); negative application con-
ditions (NAC); and online/network support. As well as conducting several empirical stud-
ies conducting various activities to test it as an instrument for: developing CT; teaching
GG; teaching specification; and teaching parallel processing.

References

Armoni, M. (2016). Computer science, computational thinking, programming, cod-
ing: the anomalies of transitivity in k-12 computer science education. ACM Inroads,
7(4):24–27.

Azzi, G. G., Bezerra, J. S., Ribeiro, L., Costa, A., Rodrigues, L. M., and Machado, R.
(2018). The verigraph system for graph transformation. In Graph Transformation,
Specifications, and Nets, pages 160–178. Springer, Cham.

1https://wp.ufpel.edu.br/pensamentocomputacional/gramestation-pt/

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

508



Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus,
M., Ribeiro, C., and Pereira, J. (2016). An update to the systematic literature review
of empirical evidence of the impacts and outcomes of computer games and serious
games. Computers & Education, 94:178–192.

Brennan, K. and Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting
of the American Educational Research Association, Vancouver, Canada, volume 1,
page 25.

Cardozo, A., Gayer, C., Cavalheiro, S., Foss, L., Du Bois, A., and Reiser, R. (2019). Flex-
ible assessment in digital teaching-learning processes: Case studies via computational
thinking. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de
Informática na Educação-SBIE), volume 30, page 429.

Cavalheiro, S. A. d. C., Foss, L., and Ribeiro, L. (2017). Theorem proving graph gram-
mars with attributes and negative application conditions. Theoretical Computer Sci-
ence, 686:25–77.

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., and Löwe, M. (1997). Al-
gebraic approaches to graph transformation–part i: Basic concepts and double pushout
approach. In Handbook Of Graph Grammars And Computing By Graph Transforma-
tion: Volume 1: Foundations, pages 163–245. World Scientific, Singapore.

Csikszentmihalyi, M. and Csikszentmihalyi, I. S. (1992). Optimal experience: Psycho-
logical studies of flow in consciousness. Cambridge university press, Cambridge.

de Araujo, N., Primo, T. T., and Pernas, A. M. (2020). Ontoscratch: ontologias para
a avaliação do ensino de pensamento computacional através do scratch. In Anais do
XXXI Simpósio Brasileiro de Informática na Educação, pages 1823–1832. SBC.

de Lima Sousa, L., Farias, E. J., and de Carvalho, W. V. (2020). Programação em blocos
aplicada no ensino do pensamento computacional: Um mapeamento sistemático. In
Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1513–1522.
SBC.

Denning, P. J. and Tedre, M. (2019). Computational Thinking. Mit Press.

Denning, P. J. and Tedre, M. (2021). Computational thinking: A disciplinary perspective.
Informatics in Education.

Gaggioli, A. (2017). The no-code revolution may unlock citizens’ creative potential.
Cyberpsychology, Behavior, and Social Networking, 20(8):508–509.

Garris, R., Ahlers, R., and Driskell, J. E. (2002). Games, motivation, and learning: A
research and practice model. Simulation & gaming, 33(4):441–467.

Hiremath, S. V., Chen, W., Wang, W., Foldes, S., Yang, Y., Tyler-Kabara, E. C., Collinger,
J. L., and Boninger, M. L. (2015). Brain computer interface learning for systems
based on electrocorticography and intracortical microelectrode arrays. Frontiers in
integrative neuroscience, 9:40.

Hu, Y., Chen, C.-H., and Su, C.-Y. (2021). Exploring the effectiveness and moderators
of block-based visual programming on student learning: A meta-analysis. Journal of
Educational Computing Research, 58(8):1467–1493.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

509



ISTE and CSTA (2011). Computational Thinking leadership toolkit. 1 edition.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J.,
and Werner, L. (2011). Computational thinking for youth in practice. Acm Inroads,
2(1):32–37.

Lindberg, R. S., Laine, T. H., and Haaranen, L. (2019). Gamifying programming educa-
tion in k-12: A review of programming curricula in seven countries and programming
games. British Journal of Educational Technology, 50(4):1979–1995.

Luo, Y., Liang, P., Wang, C., Shahin, M., and Zhan, J. (2021). Characteristics and
challenges of low-code development: The practitioners’ perspective. arXiv preprint
arXiv:2107.07482.

Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-
College Engineering Education Research (J-PEER), 5(1):4.

Medeiros, R. P., Ramalho, G. L., and Falcão, T. P. (2018). A systematic literature re-
view on teaching and learning introductory programming in higher education. IEEE
Transactions on Education, 62(2):77–90.

Moreno-León, J., Robles, G., and Román-González, M. (2015). Dr. scratch: Automatic
analysis of scratch projects to assess and foster computational thinking. Revista de
Educación a Distancia (RED), 15(46):1–26.

Nakamura, J. and Csikszentmihalyi, M. (2009). Flow theory and research. Handbook of
positive psychology, pages 195–206.

Oliveira, G., Assunção, O., and Prates, R. (2019). Strategies to introduce computational
thinking to children: An analysis based on cultural viewpoint metaphors. In Brazil-
ian Symposium on Computers in Education (Simpósio Brasileiro de Informática na
Educação-SBIE), volume 30, page 547.

Rensink, A. (2003). The groove simulator: A tool for state space generation. In Pro-
ceedings of International Workshop on Applications of Graph Transformations with
Industrial Relevance, pages 479–485, New York, NY, USA. Springer.

Resnick, M. et al. (2009). Scratch: Programming for all. Communications of the ACM,
52(11):60–67.

Ribeiro, L. (2000). Métodos formais de especificação: gramáticas de grafos. VIII Escola
de Informática da SBC-Sul, pages 1–33.

Román-González, M. (2015). Computational thinking test: design guidelines and content
validation. In Proceedings of 7th Annual International Conference on Education and
New Learning Technologies (EDULEARN 2015), pages 2436–2444.

Selby, C. and Woollard, J. (2013). Computational thinking the developing definition.
University of Southampton (E-prints).

Silva Junior, B. A. (2017). A última árvore, utilizando gramática de grafos em um jogo
educacional para explorar o pensamento computacional. 2017. Thesis (Bachelor’s) –
Bachelor of Science in Computer Engineering, Center for Technological Development,
Federal University of Pelotas, Rio Grande do Sul, 2017.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

510



Silva Junior, B. A., Cavalheiro, S. A. C., and Foss, L. (2018). Uma análise de um jogo
educacional sob a ótica do pensamento computacional. In Simpósio Brasileiro de In-
formática na Educação-SBIE, volume 29, pages 595–604.

Silva Junior, B. A., Cavalheiro, S. A. C., and Foss, L. (2019a). Revisitando um jogo
educacional para desenvolver o pensamento computacional com gramática de grafos.
In Simpósio Brasileiro de Informática na Educação-SBIE, volume 30, pages 863–872.

Silva Junior, B. A., Cavalheiro, S. A. d. C., and Foss, L. (2017). A última árvore: ex-
ercitando o pensamento computacional por meio de um jogo educacional baseado em
gramática de grafos. In Simpósio Brasileiro de Informática na Educação-SBIE, vol-
ume 28, pages 735–744. Porto Alegre: SBC.

Silva Junior, B. A., Cavalheiro, S. A. d. C., and Foss, L. (2019b). Métodos formais
na educação básica: Operando gramática de grafos em um jogo educacional. In
Workshop-Escola de Informática Teórica-WEIT), volume 5, pages 178–186. Passo
Fundo: UPF.

Taentzer, G. (2003). Agg: A graph transformation environment for modeling and val-
idation of software. In Proceedings of International Workshop on Applications of
Graph Transformations with Industrial Relevance, pages 446–453, New York, NY,
USA. Springer.

Tang, X., Yin, Y., Lin, Q., Hadad, R., and Zhai, X. (2020). Assessing computational think-
ing: A systematic review of empirical studies. Computers & Education, 148:103798.

Technologies, U. (2020). Unity real-time development platform — 3d, 2d, vr and ar
engine. Unity Technologies, 2020. Available at: https://unity.com/. Accessed:
2020-02-17.

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts
through visual programming language: The role of self-efficacy. Computers in Human
Behavior, 95:224–232.

Tsukamoto, H. et al. (2016). Textual vs. visual programming languages in programming
education for primary schoolchildren. In 2016 IEEE Frontiers in Education Confer-
ence (FIE), pages 1–7. IEEE.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and Wilensky,
U. (2016). Defining computational thinking for mathematics and science classrooms.
Journal of Science Education and Technology, 25(1):127–147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3):33–35.

Zhang, L. and Nouri, J. (2019). A systematic review of learning by computational thinking
through scratch in k-9. Computers & Education, page 103607.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

511


