X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

Introductory Computer Science Course
by Adopting Many Programming Languages

Francisco de Assis Zampirolli; Fernando Teubl, Guiou Kobayashi,
Rogério Neves, Luiz Rozante, Valério Ramos Batista

'Federal University of ABC (UFABC)
Av. dos Estados, 5001 — Santo André — 09210-580 — SP — Brazil

Abstract. Teaching programming logic by means of a single Programming Language
(PL) may lead the whole process to a particular syntax and specific libraries. In
order to let every student choose their preferred PL we have developed a method
that includes didactic material in many PLs by means of notebooks in Colab. We
created a filter that generates Lecture Notes in different combinations of PLs from
these notebooks. Moreover; each student can choose different PLs to practice with
exercises and send their solutions as programming codes, which are individualized
because of the parametric questions generated with MCTlest+Moodle+VPL. Herewith
we present our method, which is easily adaptable, validated with 5 remote classes
comprising a total of 223 students, whose average pass rate was 90%.

1. Introduction

Conceived by D. Knuth in 1984, the Literate Programming is a paradigm that fosters
the alternation between codes and documentation, so that programming can result in either
a literary work or a scientific paper [Knuth 1984]. “The main idea is to treat a program as a

piece of literature, addressed to human beings rather than to a computer”. !

The content development environments Jupyter (jupyter .orq) and Google Colab
(colab.research.google.com) also follow this concept by grouping codes and
documentation in a JSON file with ipynb extension. These files combine cells of text and
of code, and the latters can be formatted in Markdown, IIEX, HTML or JavaScript. In these
environments Python is the native PL for the code cells but they can also run others. The
ipynb file is called notebook, the name we shall use throughout from now on.

These environments not only allow for literate programming, but can also be used in
order to produce material complementary to didactic books, which normally include a specific
PL in their examples. For instance, in [Géron 2019] the author created a notebook for each
chapter, with which the reader can easily reproduce all of the examples described in the book
by opening files on Jupyter and running the cells.

Our present work complements [Géron 2019] because our method generates notebooks
in many PLs by customizing the first line of text and code cells, which define the PLs they
are referring to. We have also implemented a filter that automatically generates specific
notebooks in different PLs. Moreover, this filter converts the notebooks into other formats
like HTML and PDF, and it also assembles many notebooks in digital book format. In
this way, professor and students can each choose their preferred PLs independently, be it

*Grant #2018/23561-1, Sao Paulo Research Foundation (FAPESP).
lwww—cs—faculty.stanford.edu/~knuth/lp.html

DOI: 10.5753/shie.2021.217464 1118

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

to lecture or to study. Additionally, the integration MCTest+Moodle+VPL enables each
student to choose the PLs in which they will solve activities individualized by parametric
questions. These solutions consist of program codes, whose corrections are then carried
out automatically on Moodle [Zampirolli et al. 2020]. We have applied our method as part
of a fully remote course called Introduction to Computer Science (ICS), which has been
giving from May to August 2021 and encompasses 5 classes. Didactic material includes the
book [Neves and Zampirolli 2017] with lecture notes in the form of notebooks.

2. Background

The Brazilian Syllabus Guidelines for Computer Science (goo.gl/35CmzT)
determine that the five types of graduation disciplines in the country must prepare graduates
to “solve problems through programming environments”. Therefore, a PL represents one
of the means to solve problems but it is not the main purpose of a course by itself. This is
specially important for heterogeneous classes, in which students will follow different Areas
of Knowledge. Herewith we present an important resource to make this new teaching paradigm
viable, once it is based upon competencies.

2.1. Programming Environments in Many PLs

Regarding web platforms and online services, they both have been under sunstantial
development over the years. For instance, modern users can write codes in a web window
with their preferred PL, and they do not even have to install software therefor. Many of these
Programming Environments (PEs) offer various PLs and a resourceful text editor, all built-in on a
web page that also displays feedback whenever the user debugs or runs the source-code remotely.

Some well-known PEs are Studio App Center (MicroSoft Azure), replit.com, and
codepen. io among others. Differently from services devoted to developers, like GitHub and
jetbrains, those enable beginners to try diverse PLs and get familiar with their special features
by means of tutorials, examples and practical experience.

However, the hitherto available online and printed didactic material have both been
adapted to each PL. As a consequence, students face distinct experiences among PLs. Also, the
adopted teaching methods bring along discrepancies in levels of difficulty and thoroughness.

Both Jupyter and Colab project teams have been offering multiplatform tools and
services, which aim at standardizing the learning process and also make programming available
to a broader public. Any other method similar to the one presented in this paper is still incipient.

2.2. Automatic Correction of Codes

The Virtual Programming Lab (VPL - vpl.dis.ulpgc.es) is a Moodle
extension introduced in [Rodriguez del Pino and et al. 2010], namely one of the most important
works regarding automatic correction in code programming activities.

Comprising various PLs, VPL has been developed consistently over the years with
improvements as the one achieved in [Rodriguez-del Pino and et al. 2012]: an integrated
plagiarism detector to increase the reliability on authorship in scored activities.

Later in [Thiébaut 2015] the author shows the application of VPL to evaluate
automatically two classes of PLs. One the one hand the results turned out to be positive but
one the other hand the paper revealed some characteristics that had not been supported by VPL

1119

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

yet. For instance, it could neither deal with random input nor allow for penalizing marks in
case of delayed submissions. Now we have overcome these two limitations with our method.

In [Christian and Trivedi 2016] the authors compare eleven tools devoted to evaluating
codes of programming exercises, specially regarding the diversity of supported PLs, the
architecture and the grading metrics.

2.3. Problems of Adopting a Single PL.

Adopting a single PL to a whole class will make each student face different challenges.
For example, some can have difficulty in memorizing either its syntax or structuring, others
may want to use resources that only exist in another language, and so on. There are numerous
works that aim at making things easier for beginners. In [Sorva et al. 2013] the authors present
an extensive survey of generic program visualization systems devoted to introductory courses.

In a class where some of the students have already worked with another PL, these can
oppose the adopted PL because their skills diverge therefrom. Moreover, some PLs are simpler
but more restrictive than others, and there is no ideal choice for a heterogeneous class. However,
many works [Dingle and Zander 2000, Wainer and Xavier 2018] compare differences between
two or more PLs in the same discipline as an attempt to identify which one is the most adequate
for each course.

Our present paper differs from the aforementioned works because we propose many PLs
for the same programming course. Namely, every student is free to choose one of the available
PLs in each activity. Our experiment involved only parametrized activities, which generate
individualized exercises in order to curb plagiarism. Moreover, correction is fully automatic
and includes feedback to the student. Our method is original to the best of our knowledge.

3. Method

Here we contextualize the application of our method to the course Introduction to
Computer Science (ICS), and also present the notebook filter and the format converter that
both produce notebooks for the lecture notes of the course.

3.1. Contextualization

ICS is offered by our university and consists of three plus two weekly hours of
theoretical and practical lectures, respectively. The latters are devoted to computer lab, and ICS
takes 12 weeks in total. Due to the covid-19 pandemic all courses became fully remote, and our
institution allowed professors to choose either synchronous or asynchronous lectures. Moreover,
in order not to hinder low income students, who normally have little access to computer and
internet, every activity that counts for the final mark remains available for at least 72h.

Therefore we planned eight lists of exercises, each list for a specific week of the course,
so that another four weeks are devoted to revision and exams. Individualized through parametric
questions, the lists are generated in PDF and emailed to each student automatically by MCTest,
an open source system that also performs automatic correction of the students’ solutions (see
vision.ufabc.edu.br for details).

However, MCTest corrects multiple-choice questions, whereas ICS requires the student
to send program codes. These are corrected automatically via Moodle+VPL, and for that we
have prepared lists and exams consisting of four parametrized questions each.

1120

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

During every week students can watch the lectures that help solve the corresponding
list. Either synchronous or asynchronous lectures refer to typical classroom’s five weekly hours,
which now mostly include emailed questions answered by professors and TAs. Each list was
scheduled to be sent on a Tuesday and the submission deadline of student’s solutions on the
following Monday, in both cases at 6am for a technical reason: at this time the three VPL
servers set up for the automatic corrections do not get overloaded.

Concerning how to create these lists of exercises with parametrized questions, for
details we refer the reader to [Zampirolli et al. 2020]. Exams follow the same format as the
weekly lists. The programme of the course can be checked in Table 1.

Table 1. Course Programme.

Week Subject Evaluations
1 Introduction List 1
2 Organizing a Code (functions) List 2
3 Simple and Composed Conditionals List 3
4 Loops List4
5 Revision and Exercises Exam 1
6 Arrays - Part 1 List 5
7 Arrays - Part 2 List 6
8 Matrices - Part 1 List 7
9 Matrices - Part 2 List 8
10 Revision and Exercises Exam 2
11 Revision and Exercises Replacement Exam
12 Revision and Exercises Retake Test

3.2. Didactic Material

The content in Table 1 was adopted to publish a book for the course Introduction
to Computer Science [Neves and Zampirolli 2017]. There we have seven chapters that cover
Foundations, Code Structuring, Conditionals, Loops, Arrays, Matrices, and Advanced Topics
in this order. For each of the first six chapters we supplied an ipynb file, namely a notebook
with the lesson notes that deal with the concepts and their respective examples in the following
PLs: Python, R, Java, JavaScript, C++ and C. Besides these conceptual notebooks we have
also created others for the lists of exercises in the practical lectures. All these notebooks were
stored in the folder all depicted in Figure la.

(a) Elll v capl.partl.ipynb] (b) = all > = 1.c > ALL.html
= figs o> capl.part2.lab.ipynb @ = figs > = l.cpp > ALL.ipynb
4 filterNotebook.py @ cap2.partl.ipynb L] 4 filterNotebook.py 2 1.java > = ALL.pdf
T gen ©> cap2.part2.lab.ipynb @ =7 gen > = 1js > B ALL.tex
latex_begin.txt o cap3.partl.ipynb o latex_begin.txt capl.partl.py.html
README.md ° cap3.part2.lab.ipynb @ README.md = 1r > capl.part1.py.ipynb
cap4.partl.ipynb o 2 2.c+cpp > = capl.partl.py.pdf
cap4.part2.lab.ipynb @ 2 2.c+java > capl.part1.py.slides.html
capb.partl.ipynb o 2 2.ctjs > B capl.partl.py.tex
capb.part2.lab.ipynb @ 2 2.c+py > capl.part2.lab.py.html
cap5.part3.lab.ipynb @ 2 2.c4r > capl.part2.lab.py.ipynb
cap6.partl.ipynb ° = 2.cpp+java > = capl.part2.lab.py.pdf
cap6.part2.lab.ipynb @ = 2.cpp+js > capl.part2.lab.py.slides.html
cap6.part3.lab.ipynb @ 7 2.cpp+py > B capl.part2.lab.py.tex

Figure 1. (a) Structure of files and folders; (b) Cutout showing the structure of files
and folders generated automatically. Here we detail the subfolder 1.py for Python.

Figure la also shows how theoretical and practical activities were named:

cap*.part*.ipynb and cap*.partx*.lab.ipynb, respectively. The folder figs
contains all pictures employed to the notebooks.

1121

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

3.3. Cell Filter

In each of the ipynb file from the all-folder the first line of either text or
code cell contains the chosen PL for that cell content. It follows the syntax # [type;]#
[types] #---# [type,]#, in which type; is the file extension of the code in the chosen
PL. For instance, Table 2 illustrates code cells in the six PLs. On the left handside we have the
code and on the right handside its compilation/execution on Colab. For some PLs like Python,
R, Java and JavaScript one can execute the code inside the very cell depicted on the left, so
it is not necessary to save the code in a file (with the command %%writefile and then run
it). In Figure la the file filterNotebook.py filters such cells from the all-folder into
the folder gen, whose content is then generated automatically (see Figure 1b).

Table 2. Code cells before applying the filter. After executing filterNotebook.py

the first line containing # [type;]# will be removed. Moreover, cells whose first line
indicate another PL will not appear in the notebooks created automatically.

code compile/run

#[pyl#
tswritefile capOlexemOl.py #lpy)#
print("Hello, World!") !python cap0lexem0l.py
#[r]# #(r)#
$swritefile capOlexemOl.r : q
cat("Hello, World!") IRscript capOlexem0l.r
#[JIs1# #[Js)#
t%writefile capOlexem01.js inod 01 01.5
console. log("Hello, World!l") cil=s G G o))
#[java]# .
t%writefile capOlexem0l.java #[java)#
class capOlexem0Ol { !javac cap0lexem01.java

public static void main (String[] args) { 1java cap0lexem0l

System.out.println("Hello, World!"); 3} :
#[c]#
t%writefile capOlexemOl.c #[c#
#include <stdio.h> !gcc capllexem0l.c -o output
int main(void) {
1

printf("Hello, World!")}; return 0; } | ./output
#[cpp]#
stwritefile cap0OlexemOl.cpp #lcppl#
#include <iostream>
using namespace std; 1g++ capOlexem0l.cpp -o output
int main(void) { !./output

cout << "Hello, World!" << endl; }

In Figure 1b the subfolders of gen are named n.type;+--+n.type,, which
indicates the n chosen PLs with their signatures, as filtered by filterNotebook.py (see
details in Subsection 3.4).

3.4. Converters

Every subfolder of gen contains files in several formats besides the notebook
with extension ipynb, exemplified as ALL. ipynb in Figure 1b. There we see that the
implemented filter also converts notebooks into HTML, I5IgX and PDFE. These conversions
are performed by the following command:

Jjupyter nbconvert file.ipynb —--to format

The parameter format can assume many formats defined at the beginning of the file
filterNotebook.py by means of the variable Formats. For example, Formats =
['"html', 'slides', 'latex'].?

In order to personalize the generated PDF we resorted to another conversion command,
namely from I£TEX to PDF:

pdflatex —--shell-escape —-interaction nonstopmode file.tex

These are some formats into which conversion is possible with the command jypyter nbconvert,
see nbconvert.readthedocs.io/en/latest/usage.html.

1122

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

Figure 1a indicates the file latex begin.txt, which contains a header to the tex file.
The header includes a cover and a summary into the automatically generated PDF. Figure 2
illustrates it for Python.

2 Sumério

Sumirio

1 Processands s Informagie: Cap. 1: Fundamentos 3
Processando a Informagdo: um livro prético de 1 Instrugtes S - 3
programagcio independente de linguagem 3 I - .

EDUFABC

Notas de Aulas inspiradas no livro

Utilizando a(s) L deP

PY

Exemplos adaptados para Corregiio o Moodle+VPL

Francisco de Assis Zampirolli

14 de maio de 2021

Figure 2. Cover and contents of the PDF for Python generated automatically.

Next we give the full explanation of the command to run the implemented filter in
filterNotebook.py:

python filterNotebook.py file type format

file: can be a file as all/capl.partl.ipynbor even the whole folder all;

type: can be one of the extensions py, js, Jjava, c¢, cpp, r or even all (the six exten-
sions). The user can also choose typej;+--+typen as explained above, e.g. py+js, but they
will come in alphabetical order js+py;

format: html, slides, latex, all or none (if omitted).

For instance, python filterNotebook.py all py will filter all text and
code cells in Python from the whole content of the folder all, hence generating the ipynb
files inside the folder 1.py (see Figure 1b).

In the previous example, by replacing py with all we also get the files
gen/+/ALL.ipynb together will the entire set gen/x/x.ipynb, as indicated in
Figure 1b. Moreover, these files will also be converted to HTML, I5[gX and PDE. As an
example, the first two pages of gen/1.py/ALL.PDF can be seen in Figure 2.

The reader may use this filterNotebook.py and other files to sim-
ulate examples like the one just presented here. Such files are available at
https://github.com/fzampirolli/filterNotebook and also at https:
//editora.ufabc.edu.br/matematica-e—ciencias—da—-computacao/
58-processando—a-informacao.

As indicated in Figure 1b, the number N of combinations of PLs that can gen-
erate subfolders depends on the number of PLs defined by the variable Types in the
header of filterNotebook.py. For instance, with Types = ['py', 'Jjs',
'Java', 'c', 'cpp', 'r'] we generated 63 subfolders. The last one was named
6.ctcpp+java+js+py+r, which comprises the cells of all six PLs per notebook contained

in the folder all. Itis easy to see that N=3""", #;)!p!, where m is the number of PLs in
Types.

1123

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

4. Results and Discussion

Here we detail the context in which the course ICS was conducted, specially regarding
our experiments.

4.1. Experiments

Both the method and didactic material presented in Section 3 were adopted by five
classes, just one evening class thereof, with a total of 223 matriculated students. To these classes
were assigned four professors, who agreed on evaluation criteria informed to the students
already in the first remote lecture. They consist of students that will follow many different Areas
of Knowledge because the course belongs to the Bachelor in Science and Technology, which
is multidisciplinary. Thereafter, students may choose other bachelor programs, engineering, etc.

Regarding the three professors who were each assigned to only one class, they opted
for weekly synchronous lectures (both theoretical, 3h, and practical, 2h). Since program codes
were submitted to an automatic corrector, which included a plagiarism detection tool, these
professors required their students to record short explanatory videos for the activities after
Week 2 in Table 1. The videos were worth 50% of the activities’ mark. Their three classes
consisted of 137 students (referred to as Group 1).

The fourth professor posted his asynchronous lectures every Monday, prepared with
Colab and slides, and he forfeited the explanatory videos. His two classes consisted of 86
students (Group 2). However, the remaining was identical for the five classes: programme
of the course, weekly evaluations, exams, unified corrections, and the PL. Python (in fact, the
students preferred Python to the others).

Next we are going to analyze these two groups statistically, and see whether their
distinction had any influence in the teaching strategies.

4.1.1. Questionnaire: Student’s Profile

At the very beginning of the course students were asked to fill out an online
questionnaire devoted to identifying the profile of each class.® This enabled each professor
to elaborate their teaching strategies. For instance, classes ('} to C5 had a total of 39, 40, 30,
35 and 38 responses, respectively.

The questionnaire asked for: the student’s personal data, information about their access
to computer and internet, their previous knowledge of PLs, which one they preferred for
ICS, and their interest in synchronous or asynchronous lectures in either case (theoretical
and practical). Only 23% preferred theoretical synchronous lectures compared with 34% for
practical ones, while 21% remained indifferent in this case.

Regarding previous knowledge of some PL we had 48% Python, and 45% willing to
learn this language in the course. Other PLs they either know or want to learn are scattered
among JavaScript, Java, C, C++ and R. It is worth mentioning that ICS is offered in the third
academic term. In the first one the students attend the introductory course Foundations of
Computer Science, for which we attempted to unify the didactic material and evaluations in
2020 by means of Colab, Python and its library Pandas, devoted to handling CSV files.

3Questionnaire in Portuguese: https://forms.gle/DOMrGpNvg4QQvpdd?

1124

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

4.1.2. Questionnaire: Student’s Feedback

During Week 9, right before the last exams, the students received another questionnaire.
Now this one aimed at detecting potential flaws in the coordination of the five classes.*

They were asked about general topics, didactic material and evaluations as follows:

01. My PREVIOUS knowledge of PL was already quite good before the course

02. My knowledge of PL improved a lot AFTER the course

03. Handling several PLs can be useful for my ACADEMIC LIFE in OTHER COURSES

04. Handling several PLs can help in my PROFESSIONAL CAREER

05. SYNCHRONOUS THEORETICAL lectures are the best choice for learning

06. SYNCHRONOUS PRACTICAL lectures are the best choice for learning

07. It is important to offer the DIDACTIC MATERIAL in many PLs at the student’s wish

08. COLAB is an important DIDACTIC MATERIAL for the course

09. I would recommend this course to my colleagues because it offers DIDACTIC MATERIAL in
many PLs

10. Regarding the DIDACTIC MATERIAL in many PLs, the one offered to my class is very good

11. It is important to offer EVALUATIONS in many PLs at the student’s choice

12. It is appropriate to use Moodle+VPL in the EVALUATIONS with automatic correction and
immediate feedback

13. I approve of the 2min-explanatory VIDEO applied to every EVALUATION, because this
improved my learning (if your class was discharged, would it have been useful?)

14. The INDIVIDUALIZED EVALUATION helps curb plagiarism and therefore improves learning

15. The Individualized Weekly EVALUATION is important

16. I would recommend this course to my colleagues because it offers EVALUATIONS in many PLs

17. Regarding the EVALUATIONS in many PLs, the ones offered to my class are very good

Moreover, the following query was added separately:

Suggestions you would give to improve our teaching-learning method for this course. If you
disagree with some of the questions 1-17, could you propose improvements?

Since only three questions can really be a watershed between Groups 1 and 2, namely
5, 6 and 13, we are going to show their answer graphs from both groups. At the end of this
section we present the overall averages of both groups, together with some statistical analysis.

Figure 3a illustrates the BoxPlot graphs of answers to questions 1-17. There the 1st
quartile is the threshold that separates the lowest 25% of the scores; the 2nd quartile is the
median; the 3rd quartile separates the highest 25% of the scores; the white square stands for the
average [Jw 1977]. Among these graphs we highlight questions 3 and 4 about the importance
of knowing several PLs in academia and in the lab our market, respectively. They both got
the best scores. We also emphasize Figure 3b, which shows the 88% average approval rate
of questions 7 and 8. Average scores of questions 11-17 are summarized in Figure 3c. They
dealt with Evaluations, and we point out question 13, which attained an approval rate of just
56%. Although only 53 students responded to this questionnaire, maybe due to the final exams
of various courses, we were able to carry out the following analysis.

We adopted Student’s T Test [Lowry 2014] to compare the averages of the two
independent groups, with questions in the questionnaire with confidence level > 90%: 1,
6,9, 13, 14, 16 and 17. For example, in question 6, with population averages p; = 4.000
(Group 1) and pi5 = 3.368 (Group 2). These groups were defined in Subsection 4.1. The
hypothesis test is Hy: pi1 = i vs Hy : j11 7 5. Groups 1 and 2 consist of 34 and 19 students,
respectively. H, was rejected when the T Test was performed at the 94.827% confidence level,
with p-value=0.052. Therefore, we assume that the method applied to Group 1 is statistically
better. Only in question 13 is Group 2 statistically better. °

The pass rate of the five classes remained around the historical values, namely all close
to 61%. Hence the two groups do not differ statistically [Zampirolli et al. 2021].

“4Questionnaire in Portuguese: https://forms.gle/ak2KLtaA7Nyme3jc7
SFor details of statistics: vision.ufabc.edu.br/MCTest/public/filterNotebook

1125

X Congresso Brasileiro de Informatica na Educagéo (CBIE 2021)
Anaisdo XXXII Simpésio Brasileiro de Informética na Educacdo (SBIE 2021)

(a) (b)

©

Figure 3. Answers to the questionnaire Student’s Feedback separated by question

topics: (a) General, (b) Didactic Material and (c) Evaluations.
4.2. Discussion

Besides the previously given technical exposition, one of the professors reported his

experience with some morning students, who privately revealed how important our method
had become for them. The Covid-19 pandemic compelled them to have a job besides studying,
as evening students typically do. Particularly, these morning students now urgently need to
learn PLs, which vary from company to company.

We have no knowledge of how many students face this challenge, but one of the greatest
advantages of our method is precisely the participant’s freedom to choose their preferred PL
for the same course. Even after overcoming the pandemic, which may spare such students
from working, that advantage will remain because students will be able to quickly revise the
course in any PL required in a future job.

Namely, before the pandemic each whole class used the same PL during a course, but
the evening students were losing the chance of profiting the time when another PL. was required
in their jobs. That was an unfortunate drawback, because workplaces vary a lot in terms of
their needs and speciality.

5. Conclusions and Future Work

In the paper we presented a method to generate didactic material in many PLs by
converting JSON files from Colab/Jupyter into many different formats. In the first line of each
text/code cell one inserts a tag that describes which PLs are to be used. This method was applied
to five classes of PI with a total of 223 students that underwent the same weekly individualized
evaluations that were corrected automatically via MCTest+Moodle+VPL, but with a distinction
between two groups: 1 with synchronous lectures on Colab and explanatory short video for the
submitted codes, and 2 asynchronous lectures forfeiting the video. Didactic material and evalu-
ations were supplied in six PLs: Python, Java, JavaScript, C, C++ and R, at the student’s choice.
In this experiment all five classes opted mostly for Python. In order to validate the method we

1126

