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Abstract. The feedback on the Intelligent Tutoring Systems (ITS) providing the
necessary support and guidance to students successfully complete a given task,
improving their learning. However, building proper feedback demands time,
whereas instructors are often overloaded, and several interactions with experts
of the domain knowledge to know the several paths students, which is often in-
feasible and increases the costs and the complexity to develop ITSs at scale. To
address this problem, we proposed a novel approach to build feedback using
students’ collective intelligence (CI), where our ITS might learn such paths in-
crementally building a knowledge graph with more detail than those predicted
by instructors, optimizing the identification of problem-solving paths, and fa-
cilitating the iterative designing of meaningful and fine-grained feedback for
the instructors by presenting domain model’s updated, meaningful visualiza-
tions. To evaluate our approach we developed an ITS in a domain of numerical
expressions that was used by 99 students. As a result, we observed that our ap-
proach helps to create a knowledge graph with a quality equivalent to that built
by specialists in less time and considerably reducing the instructor’s overload.

1. Introduction
Feedback is prominent for learning. In an analysis of several meta analyses,

[Wisniewski et al. 2020] found that feedback has an overall medium effect on student
learning, especially on cognitive and motor skills outcomes, and that its type significantly
moderates that effect. Specifically, [Wisniewski et al. 2020] indicate high-information
feedback (i.e., corrective plus self-regulatory information) seems to be the most effective
type. Students will benefit from feedback both when they successfully complete a learn-
ing task (e.g., confirming their correct approach) as well as when they face difficulties
(e.g., explaining mistakes, guiding on how to avoid/correct them). Similarly, feedback
is an essential part of advanced educational technologies, such as Intelligent Tutoring
Systems (ITS), which will tutor students during problem-solving tasks [VanLehn 2006].

However, providing proper feedback is challenging for instructors. In ITS, the
common practice is to design all feedback before deployment [VanLehn 2006]. First,
this adds another task for the already overloaded instructors to spend time with. Second,
to ensure feedback is available since the first use, this requires instructors to predict the



possible solutions/steps students might undergo while working on the learning activities.
Nevertheless, feedback timing might also affect is effectiveness [Wisniewski et al. 2020],
which could maximize the learning gap left by the lack of technological support. Thereby,
either in the context of ITS or regular classrooms, the ideal scenario for providing feed-
back to students demand time and understanding of their solutions/steps.

Collective Intelligence (CI) is an approach that might help to address those
challenges. CI refers to a group of individuals collectively doing things that are
intelligent [Leimeister 2010]. Among its benefits, CI enables sharing ideas eas-
ily, quickly, and safely, which is often the case of discussion forums, blogs,
and wikis [Baker and Green 2005]. Additionally, CI enables constructing knowl-
edge bases, as the world’s largest encyclopedia, Wikipedia [Malone et al. 2010], and
Duolingo [Von Ahn 2013]. Despite CI holds great potential for the educational domain
[Tenório et al. 2021, Meza et al. 2018], the researchs using CI to help instructors with
feedback generation are limited [Tenório et al. 2020].

In a literature review, [Tenório et al. 2021] found the main purposes of CI on on-
line educational technologies are improving collaboration on the educational process and
creating educational content. Despite the attention to educational content creation, the au-
thors found such studies mostly explore resource translation, video lectures and subtitles,
and concept maps. In contrast, [Tenório et al. 2022] introduced a process to use students
CI to author ITS’s inner-loops. In an experimental study using an ITS equipped with CI,
the authors found that their process generated a knowledge graph similar to the one in-
structors generated. However, the available research is limited to a computational process
aimed for ITS, which cannot be easily used to augment instructor intelligence. Therefore,
this paper sought to answer how can we use Collective Intelligence to augment instructor
intelligence and optimize the process of designing feedback?

To answer that question, we introduce an algorithm that iteratively learns problem-
solving patterns from students’ solutions, as well as the (in)frequent paths students might
undergo, and generates meaningful visualizations to augment instructor intelligence. Note
that despite our approach depends on technology to process student data, the visualiza-
tions do not. Then, we demonstrate this approach in action with a case study for a nu-
merical problem and discuss how it can be further used in practice to augment instructor
intelligence. Based on that, this study helps instructors, regardless of their access to tech-
nology, with a tool that generates meaningful visualizations of problem-solving patterns
based on students CI. Thus, our contribution is twofold, empowering instructors by re-
moving the effort required to identify such patterns, hence, optimizing the generation of
feedback for each problem-solving step.

2. Learning Problem-Solving Paths
To provide feedback at each step for the student, the instructor/ITS must have the

integrated knowledge of the possible resolutions and, consequently, the possible states,
steps, and actions in a kind of knowledge network. So, we defined a knowledge graph
(KG = (V,A)), with V being the set of all possible states (E) and A being the set of all
possible steps (S). An example of KG represented visually can be seen in Figure 1.

In the KG, each node represents a possible state of the problem, highlighting the
initial states with a dashed edge line and the final states with a double-edged line. A state
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Figure 1. Example of Visual Representation of a Knowledge Graph KG

can contain more than one input and output step. In turn, each edge (represented by a
directed arrow) represents a possible step to be performed by students using an action A.
A resolution R is a path in the graph. Other information using colors are also included,
as the correctness of the states (i.e., green nodes are correct states and red nodes are
incorrect states) and the validity of the steps (i.e., green edges are valid steps and red
edges are invalid steps). In the graph, a correct resolution only contains green vertices
and edges, while an incorrect resolution contains one or more red vertices or edges.

To build each KG for the ITS problems, we had developed an algorithm that it-
eratively learns problem-solving patterns from students’ solutions. Briefly, the algorithm
receive as input a resolution R and the evaluations of feedbacks received from the students
and performs the following steps:

• Retrieve the current knowledge graph of problem P . If there is no registered
graph, it is necessary to initialize a new empty knowledge graph or the instructor
could be initialize a new graph with at last one correct resolution.

• Evaluate and update values referring to elements (states or steps) in the knowledge
graph linked to feedback evaluations.

• For each step S contained in the resolution R:

I. Retrieve the source state of step S in the graph. If this state is not repre-
sented in the graph, it must be created. If S is the first step of R, this state
must be marked as initial state in the graph.

II. Retrieve the target state of step S in the graph. If this state is not repre-
sented in the graph, it must be created. If S is the last step of R, this state
must be marked as final state in the graph.

III. Retrieve the step in the graph whose source state, target state and action
are equal to step S. If it does not exist in the graph, it must be created.

• For each retrieved/created state/step in the before instruction:
I. Update the values referring to correctness and validity in the knowledge

graph of the elements (states and steps) involved in the resolution R.

The last instruction aims to update the correctness values of the states and steps
of the KG. To estimate these values, we define mechanisms based on the idea that
correct/incorrect steps and states will be present in correct/incorrect resolutions, re-
spectively, and after we validate with the students. So, considering CR as the set of the
resolutions used to build the KG, CRC the subset of the correct resolutions and CRI the



subset of the incorrect resolutions, the PE function (Equation 1), which indicates whether
an element (state or step) is present or not in a resolution and the PEC function (Equa-
tion 2) that counts how many times a given element is present in a set of resolutions, we
defined the correctness function C(E or S) as indicated in Equation 3. In summary, the
equation counts how many times an element appeared in the correct resolutions and sub-
tracts how many times it appeared in incorrect resolutions and finally divides by the total
number of appearances in the set of resolutions. The range of the function is [−1, 1].

PE(E,R) =

{
1 se E ∈ R
0 se E ̸∈ R

(1) PEC(E,CR) =

|CR|∑
i=1

PE(E,Ri) (2)

C(E) or C(S) =
PEC(E,CRC)− PEC(E,CRI)

PEC(E,CR)
(3)

Finally, we calculate the correctness of a resolution as the sum of the average
correctness of the states E with the average of the validity of the steps S contained in R,
divided by 2 to normalize the results, keeping the interval in C(R) = [−1, 1], as presented
in Equation 4 and considering CE the set of states and CS the set of steps of R.

C(R) =
1

2 ∗ |CE|
∗

|CE |∑
i=1

C(Ei) +
1

2 ∗ |CS|
∗

|CS |∑
j=1

C(Sj) (4)

A state/step/resolution is previously considered correct if C(E/S/R) ≥ 0.8 or in-
correct if C(E/S/R) ≤ -0.8. After, we ask to students to confirm the results. The system
analyzes each state/step of the student’s solution and compares it with ones present in the
graph, selecting that ones are presented in both or present on alternative paths that are in
some way linked to the student’s solution.

3. Learning A Numerical Problem’s Paths
This section uses a numerical problem to exemplify our algorithm in action. We

first provide a brief description of the data collection process, then we demonstrate the
visualizations our algorithm generates based on each student solution.

3.1. Data Collection
To accomplish this process, we used a low-fidelity prototype of an ITS that fea-

tured the following numeric problem: 2 + [7 − 2 ∗ 3 + (28 − 12)] − 4, designed by a
math instructor. The goal was to use a problem with reduced difficulty so that more users
would be able to work on it. Concerning the prototype, it presented the problem descrip-
tion, five possible answers for the user to chosen from, and a area where the user could
solve the problem step-by-step. Specifically, the latter started with a single blank line that
the user could write the next step towards completely solving the process. Nevertheless,
the prototype also allowed the user to add new lines so that the user could take as many
steps as they wanted to answer the problem. Once the user confirmed their answer, the
prototype saved the steps sequence, which would then be used by the algorithm.



To collect data, we used Amazon Mechanical Turk1, a crowdsourcing tool widely
used by social science researchers for data collection [Paolacci et al. 2010]. Accordingly,
we chose to use it following recommendations on its benefits to increase sample size and
external reliability [Landers and Behrend 2015]. We made our study available for five
days, and enforced no restriction regarding participants’ profiles to prevent selection bias.
Once the user started their participation, the system would provide brief instructions con-
cerning numerical expressions as well as the task to be done and ask the participant to
self-report their math knowledge in the topic using a one to 10 scale (the higher the num-
ber, the higher the self-reported knowledge). Subsequently, the user would start solving
the problem, which had a 10-minute limit.

As a result, we gathered 99 answers. On average, users took 237 seconds to com-
plete the problem, used seven steps, and self-reported a 7.9 knowledge. Of all answers,
18 (18%) were mathematically invalid due to, for instance, resolutions without being step
by step or texts outside the scope of the problem. Of the 81 valid answers, 56 (69%) and
25 (31%) were correct and incorrect, respectively. Interestingly, we received 12 different
answers among the 25 incorrect ones. Next, we demonstrate our learning algorithm in
action based on these data.

3.2. Iterative Learning
Figure 2 demonstrates the visualizations generated after the algorithm processed

the first and second solutions. In Figure 2(left), the solution steps - represented as rectan-
gles - demonstrate the steps the user went through to achieve the correct solution, which is
indicated by their green colors. Nevertheless, all steps feature a orange shade to indicate
they have been recently created. Figure 2(right), for instance, adds a second solving path
and highlights it with the orange shade, whereas the already existent steps become all
green. These colors similarly apply to arrows, which indicate transitions between steps.
Moreover, each arrow feature a numeric value ranging from -1 to +1, which indicates
the algorithm’s confidence in that transition’s correctness2. Following that pattern, Figure
3 demonstrates the visualization generated after processing wrong and invalid solutions
with 20 solutions (25%) and the Figure 4 shows the graph with 40 solutions (50%).

The states/steps colors change according to correctness values calculated for each
student’s solution added (see the yellow states/steps in Figures 3 and 4). In addition,
there is another aspect that involves the size of the node and the thickness of the edge,
which allows us to quickly visualize which are most frequent states and steps of the stu-
dents. We highlighted in blue the most frequent correct path used by students, as well as
added orange arrows pointing to the most frequent errors, which may involve errors of
mathematical operations (1 and 3), or even misconceptions (2 and 4).

3.3. Graph Analysis
The final generated graph contains 117 states (18 initial, 86 support and 13 final),

with 37 correct, 74 incorrect and 6 unknown and 160 steps. First, we asked to a instructor
evaluate the graph and compared the instructor and algorithm results generating the con-
fusion matrix presented in Table 1. The algorithm success rate was 87.18% (102 of 117)
for the states and 97.50% (156 of 160) for the steps.

1https://www.mturk.com/
2Note that all transitions of Figure 2 have +1 confidence because both solutions were correct.



Figure 2. Visualizations generated after the algorithm processed one (left) and
two (right) solutions

Expert - States Expert - Steps
State Correct Incorrect Step Valid Invalid

P1

Correct 29 8 Valid 74 3
Incorrect 1 73 Invalid 0 82

Inconclusive 6 0 Inconclusive 1 0

Table 1. Confusion Matrix with Model and Expert Data

However, we noted that the knowledge graph for a given problem tends to grow,
becoming increasingly complex. So, we were concerned with analyzing growth/stability
metrics of the graph to verify at what moment the changes will become minimal, since the
number of added information on the graph tends to decrease for each new added solution.
This problem is equivalent to the cold start problem in recommender systems, since it
needed to verify what the number of solutions are necessary for the construction of the
minimum recommended graph. So, we analyzed the growth of the number of created
(total/correct/incorrect) nodes and edges, presented in Figures 5A and 5B, respectively.

We observe in Figure 5A that the number of created nodes grows rapidly in the first
45 resolutions, decreasing the growth rate, becoming stable with 65 resolutions. On the
other hand, Figure 5B shows that the number of created edges grows rapidly in the first 52
resolutions, but maintains the same behavior of the nodes. These findings are confirmed
when we analyze the individual number of nodes and edges created individually for each
solution, as shown in Figures 5C and 5D, respectively. We also analyzed the averages of
nodes and edges created for each solution, as shown in Figures 5E and 5F. In both figures,



Figure 3. Visualization generated after the algorithm processed twenty solutions,
including incorrect and invalid ones.

the creation averages start with a high value (7 nodes and 6 edges per resolution) and has
a strong decay trend, ending with an average lower than one node and two edges created
per resolution. In this sense, we conclude that at least 40 resolutions are necessary, with a
recommended number of 65 resolutions to guarantee the stability of the graph.

4. Discussion - Augmenting Instructor Intelligence
This section discusses some situations our solution can be used to augment in-

structor intelligence in real learning settings. First, consider a math instructor at some un-
derprivileged school with no internet or technology available. Neither this instructor nor
their students can benefit from any of the several ITS available for this subject. Neverthe-
less, if interaction data from students’ solutions are available, one can use our algorithm
to create a graphical visualization of, among other information, students’ common mis-
takes. Then, such visualization can be printed and used by the instructor to analyze such
mistakes, come up with meaningful feedback for each one, and optimize this instruc-
tor’s practice during lessons. Similarly, one follow this process to design confirmatory
feedback for correct steps or warn students when they enter a incorrect step. Ultimately,
such usage would enhance students’ learning experiences by facilitating the instructor’s
process of finding problem-solving issues and preparing to promptly deal with them.

Second, consider a math instructor with access to a ITS with our algorithm inte-
grated. The ITS will generate all visualizations for the graph, updating them whenever a
new solution is added and making them available to the instructor (including the entire
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Figure 5. Metrics for Graph Analysis for Each Solution: A) Total Number of
Created Nodes, B) Total Number of Created Edges, C)Indiv. Number of Cre-
ated Nodes, D)Indiv. Number of Created Edges, E)Average of Created Nodes,
F)Average of Created Edges

history) after a moderating automatically performed by the system to identify and elimi-
nate inappropriate information. Thus, the instructor can focus on analyzing the patterns
contained in the graph and perform a manual moderation with the aim of refining the
quality of the information contained in the system to maximize the benefits of the pro-
cess, which considerably decreases the instructor’s workload. Furthermore, instead of
creating abstract feedbacks for the problem itself, the instructor will be able to identify
points in the graph where feedbacks are most needed, which will allow the construction
of feedbacks that are more specific to the real needs of the students. In addition, the in-
structor can identify the main mistakes of the students (including miss conceptions) and to
adjust the contents provided in the classroom in order to minimize the learning problems.

According the instructor’s workload, working with step-by-step resolutions and
more specific feedback requires additional work from the instructor, which is a weak
point that can harm the results obtained with the application of step-by-step resolutions.



Some studies have estimated that 200–300 hours of development will be spent per hour
of instruction, which can be reduced by half using tools like CTAT[Aleven et al. 2006].
In this sense, we evaluated the time spent to build the knowledge graph using the students
solutions: 23,425 seconds, or approximately 6.5 hours. Even though there is no way to
directly compare these numbers, we can observe that the time spent building the graph
using CI is less than the time spent when experts are used. Furthermore, we show that the
generated graph using CI had a high success rate (87.18% for nodes and 97.50% for the
steps) and presents stability behavior from a determined number of solutions.

The literature results demonstrate that CI has substantial potential for use with
online educational technologies to enhance collaboration, interaction, and the learning
processes, thereby affecting not only students but also teachers [Tenório et al. 2021]. The
findings in this work corroborate the potential of using CI to build educational content,
allowing to build important information from the ITS domain model with a quality equiv-
alent to that built by specialists in less time and considerably reducing the instructor’s
overload. In addition, we can use the students’ CI not only by analyzing their answers
and confirming with them about the correctness, but we can also use techniques to auto-
matically identify which are the points in the graph that need more attention and feedback
and, subsequently, ask to the students to register such feedbacks, which will be used by the
ITS to help other students. These feedbacks can be evaluated by the students themselves,
allowing the system to be able to identify and recommend better feedbacks, through an
incremental process. The instructor would no longer be a content/feedback creator, but he
becomes a moderator of the content, having more time to attend to students’ needs.

5. Final Remarks
Despite feedback is prominent for learning, designing it is a time-consuming task

that demands understanding the specific cases wherein students will be assistance. Aim-
ing to address these challenges, this paper explores students Collective Intelligence as an
alternative to reveal learning paths and facilitate feedback generation. Hence, we first de-
tail an algorithm that learns such paths from students step-by-step solutions and generates
meaningful visualizations that inform instructors on (in)correct paths, as well as the most
frequent ones. We present a case study based on a numerical math problem to demonstrate
this algorithm in action, discuss how it augments instructors intelligence, and investigate
how long it takes to converge into a representative representation of that math problem.

Based on that context, this paper has a number of implications. For practitioners,
we provide an algorithm that optimizes their practices by revealing the possible solu-
tions, difficulties, misconceptions, and common and uncommon paths students might use
to solve a problem. Hence, we reduce the overload needed to reflect on those aspects,
making room to invest time in creating meaningful feedback and working on other tasks.
For researchers, we introduce an algorithm that generates meaningful, static feedback and
investigate its convergence for a specific math problem. Thereby, we open room for fu-
ture studies on the effectiveness of the generated visualizations as well as convergence
tests for other problems. Furthermore, by focusing on static visualizations, our approach
enables reaching even those of underprivileged contexts wherein technological resources
are limited. Thus, we contribute towards making learning inclusive and equitable for all
by allowing underprivileged instructors and students to benefit from knowledge generated
by those with.
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