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Crediné S. de Menezes2
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Abstract. Concept maps (CMs) are tools for visualizing relationships between
ideas, facilitating more effective comprehension and learning. However, the
automatic generation of CMs from unstructured text presents a challenge, of-
ten requiring semantic markup and subsequent complex processing. This paper
introduces a novel approach to address this hurdle by harnessing the capabili-
ties of fine-tuned Large Language Models (LLMs). Our innovative methodology
uses these models to extract structured propositions from unstructured text, sub-
sequently serving as the foundation for constructing a CM. This process reverses
the transformation of CM relations into first-order logic propositions, a concept
explored in our previous work. To achieve this, we train the LLM using fine-
tuning techniques, leveraging the latest advancements in artificial intelligence
and machine learning. We evaluate our proposed solution based on precision
and recall metrics, comparing our outcomes against models crafted by experts.
Notably, the results indicate that our method can contribute significantly to ad-
vancements in the automatic generation of CMs, illustrating another application
bolstered by recent breakthroughs in artificial intelligence. As a stepping stone
in this promising direction, future research should continue to refine the model
and explore potential applications across diverse domains.

1. Introduction
Concept maps (CMs) are graphical tools for organizing and representing knowledge.
They play a key role in the more profound understanding of complex information, al-
lowing students and researchers to visually represent the relationships and connections
between concepts, helping them understand, communicate and retain knowledge. Howe-
ver, manually creating CMs from unstructured text is time-consuming and cognitively
demanding, requiring substantial experience and effort.

Recent years have demonstrated the incredible potential of artificial intelligence
(AI), primarily related to Natural Language Processing (NLP), with considerable advan-
ces, particularly with the advent of Large Language Models (LLMs). These models in-
creasingly demonstrate an unprecedented ability to understand and generate human-like
text, opening space for many applications, from chatbots and content generation to more
sophisticated tasks, such as summarizing and translating text.



Despite these advances, the automatic generation of CMs from unstructured text
remains a significant challenge. Unsurprisingly, a secondary study by [Aguiar et al. 2016]
identified several techniques and proposed one to assist in automatically constructing CMs
from unstructured texts. These processes usually involve semantic markings, followed by
complex processing to identify and extract the elements present in the text. However,
all these studies realized that the vast variability and ambiguity inherent in natural lan-
guage make it particularly challenging to accurately extract the meaningful relationships
between concepts that form the basis of a CM.

In light of these challenges, this study explores a new approach to automate the
creation of CMs from textual data, leveraging the features of fine-tuned LLMs. Speci-
fically, we intend to leverage these models to extract structured propositions from uns-
tructured text, thus providing the necessary fundamental elements for constructing a CM.
This strategy will reverse the transformation of CMs into first-order logical propositions,
concepts explored in our previous research [Perin et al. 2015].

We used precision and recall metrics, comparing the results with models created
by specialists and results reported in [Aguiar et al. 2016]. From the results presented in
section 4, our approach has demonstrated a significant improvement over the previously
established methods by utilizing a fine-tuned LLM. Regarding concept identification, our
approach outperformed by approximately 23.5% in precision and held comparable recall
values. Even more notably, in proposition identification, we saw an increase of 121% in
precision and a 33.2% improvement in recall compared to the previous methods. These
numbers highlight a substantial increase in the effectiveness of our methodology, show-
casing the transformative potential of applying LLMs in the realm of automatic CM ge-
neration. Ultimately, this work significantly contributes to the automatic CM generation
field, highlighting the potential of recent advances in AI to boost this field.

This work will be developed as follows: Section 2 will review the background
concepts and related work in the field; Section 3 will detail our proposed methodology and
its implementation; Section 4 will discuss the results and their implications respectively;
and, finally, Section 5 will conclude the article and propose directions for future research.

2. Related Works and Background
The automatic construction of CMs from unstructured texts has been a research topic
of great interest for many years. Based on a comprehensive literature review conducted
between 1994 and 2016, various technological approaches for automatic CM construction
were identified and categorized [Aguiar et al. 2016]. Four notable works stood out among
these approaches, each offering unique methods for generating CMs [Wang et al. 2008,
Žubrinić et al. 2015, Zouaq and Nkambou 2009, de la Villa et al. 2012]. The underlying
methodology used across these approaches typically involved morphological and syntac-
tic analysis, semantic mapping, statistical analysis, and linguistic techniques. However,
they highlighted several challenges: sentence fragmentation, long or missing concept la-
bels, and dependence on other data sources like ontologies, knowledge bases, or thesauri.

In parallel, data mining methods have been used effectively to unearth use-
ful information in large datasets across various fields [Booth 2007, Li et al. 2004,
Cowan 2002, Hirschman et al. 2002]. Despite its later adoption in education, educati-
onal data mining has shown great promise in designing smarter learning technologies



[Romero and Ventura 2007, Baker 2014]. In this context, CMs have been leveraged
to represent knowledge structures, with several research efforts being directed towards
generating these maps [Acharya and Sinha 2017, Tseng et al. 2007, Bai and Chen 2008,
Chen and Sue 2013, Oppl and Stary 2011, Acharya and Sinha 2017].

Despite the various algorithms and promising results achieved by these studies,
they often relied on explicit final datasets. They also rarely delved into the challen-
ges of handling multi-semantic data like raw textual data, which takes time to acquire.
In contrast, many studies have focused on text analysis and automatic CM generation
[Lai et al. 2017, Wang and Hu 2016, Qasim et al. 2013, Nugumanova et al. 2015]. These
studies have demonstrated the ability to save time by effectively dealing with unstructured
texts, thus expediting the process of CM generation [Shao et al. 2020].

This article presents a new approach for automatic CM construction using fine-
tuned LLMs to face some of the limitations identified in our previous works on NLP and
the specific challenges of this domain, taking advantage of the opportunities offered by
the recent advances in AI technologies, especially concerning NLP[Perin et al. 2014].

2.1. Fine-Tuning of Large Language Models (LLMs)
Large Language Models(LLMs) are AI models trained on massive amounts of data to
understand and generate human-like text. They can perform tasks like language transla-
tion, question answering, and summarization. However, while these pre-trained LLMs
are powerful, they may need to be optimized for specific applications or domains. In such
instances, fine-tuning is employed to enhance the LLM’s performance.

Figura 1. Fine-tuning of a pre-existing LLM for specific purposes

As illustrated in Fig.1, fine-tuning involves retraining a pre-existing model on new,
task-specific data, enhancing its capability to handle specialized tasks or domains. This
process includes loading the pre-trained model, adjusting its upper layers for the new task,
and freezing the lower layers to maintain the general features already learned.

Upon training the new layers, the whole model undergoes fine-tuning using task-
specific data. This process customizes the model to the new task, improving its perfor-
mance and accuracy, thereby allowing it to serve domain-specific applications effectively.



The following section will detail the proposed architecture for leveraging fine-
tuned LLMs in automatically generating CMs from unstructured text.

3. Methodology and Implementation
LLMs demonstrate remarkable capabilities in processing and interpreting complex lan-
guage structures, recognizing sentence structures, identifying named entities, syntactic
structures, and much more. Our methodology leverages these capabilities to understand
unstructured text, identify pertinent propositions, and produce structured data that subse-
quently form the basis of a CM. This section elucidates how these fine-tuned LLMs can
replace complex processing algorithms and streamline the transformation from unstruc-
tured texts to structured ones.

3.1. Conceptual Architecture: A Comparative Overview
A proposition comprises a tuple (concept-relation-concept), where the relational term (of-
ten a verb) outlines the semantic link between two concepts. Some studies use the propo-
sitions in CMs as a knowledge base in intelligent systems [Perin and Cury 2016].

As mentioned, the automatic generation of CMs from unstructured texts requires
a sophisticated network of specific algorithms to detect and treat textual elements. The
central principle that drives these algorithms is identifying and extracting these tuples, or
propositions, forming the fundamental structures for constructing the corresponding CM.
Therefore, an overview of automatic CM generators will invariably reveal components
analogous to those depicted in Fig.2(a).

Figura 2. (a) Classical Architecture of CM Generators [Aguiar et al. 2016].
(b) Proposed Architecture.

In Fig.2(a), procedures inscribed in the arrows represent specialized algorithms
designed for the text’s treatment, annotation, identification, and interpretation, to reach the
ultimate goal of extracting the propositions that will constitute the generated CM. In addi-
tion to being computationally complex, these algorithms depend on auxiliary databases:
in that case, the authors use WordNet1 and DBpedia2, which, together with SPARQL3,
support the process of ’labeling’ and ’semantic analysis.’

1WordNet is an extensive lexical database of English. Nouns, verbs, adjectives, and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept.

2DBpedia is a project that aims to extract structured content from the information created as part of the
Wikipedia project.

3SPARQL is a query language and protocol for semantic web data sources used to retrieve information
from databases stored in Resource Description Framework (RDF) format.



In classical architecture, every specialized algorithm has a specific role in proces-
sing text. However, as a set, they work towards one goal: converting raw input text into a
set of extracted propositions.

Considering that LLMs are inherently equipped with the necessary ’capabilities’
for this task, the proposed architecture—depicted in Fig.2(b)—replaces these complex
algorithms with a fine-tuned LLM. This template’s goal is straightforward: direct raw
text input into a list of propositions. This means that the complexities associated with
managing complex structures and variations in syntax and semantics in unstructured text
are handled by the lower layers of LLM. The upper layers, in turn, are tuned to extract
propositions specifically (see Fig.1).

3.2. Implementation
To implement the proposed architecture, we followed a four-step process whose interrela-
tionships can be seen in Fig.3. Each process plays a crucial role in the overall architectural
picture. In the following subsections, we present some important details of each process,
its sub-processes, inputs, and artifacts:

Figura 3. Conceptual Architecture Overview

3.2.1. Process 1: Initial LLM Selection

LLM selection is critical as it sets the stage for the rest of the implementation process. In
our proposed architecture, this first process revolves around analyzing and choosing the
LLM as the foundation for the subsequent fine-tuning stage (Process 3). This process was
subdivided into three distinct sub-processes:

• Selection of Candidate LLMs: entailed reviewing a comprehensive secondary
study[Yang et al. 2023] and extensive web-based searches to identify existing
LLMs readily accessible online. As an artifact of this sub-process, we generate a
tabulated inventory called the LLM Candidate Pool (n=52).

• Criteria Definition and Weights: we define the crucial criteria list to select the
most appropriate LLM for our project. Each criterion was assigned a weight ran-
ging between 0 and 5, denoting its significance to our objectives. Consequently,



this sub-process yielded an artifact called the Criteria Set, which comprises a
weighted set of criteria for the next sub-process (LLM evaluation).

• Criteria Application (LLM Evaluation: was conducted in two steps. Step 1: the
most important criteria (4 or 5 in the Criteria Set) were used to filter the Candidate
LLM Pool, reducing it from 52 to 9. Step 2: These latter were evaluated with the
remaining criteria through a scoring system, producing a final ranking.

Following this analysis, we settled on GPT-4 as the LLM of choice for our project
[Ecoffet 2023]. This decision has been mainly influenced by its superior understanding
and generation of coherent text, capacity to identify named entities, and capability to
interpret complex sentences and syntax: crucial attributes for automatic proposition ex-
traction from unstructured text. Also, its popularity, extensive documentation, and access
to pre-trained models and fine-tuning tutorials further facilitated our implementation. Fi-
nally, the vast training dataset and high grammatical and factual accuracy made it the most
suitable LLM for our project’s requirements.

3.2.2. Process 2: Training Data Preparation

This process involves creating a dataset with examples of expected inputs and outputs.
This dataset lays the groundwork for the subsequent fine-tuning process, as the model
learns to perform the specific task by observing the patterns in this dataset. We divide this
process into two sub-processes, namely:

• Text Selection: we chose a range of texts to form the basis for the dataset cons-
truction. Despite GPT-4’s capability of handling inputs up to 25,000 words, our
team selected 11 texts with a limit of 4,000 words each. This decision was based
on the size of our research team and the subsequent sub-process, which demands
substantial cognitive effort from the research team. Also, higher-capacity models,
such as GPT-4, are trained on large volumes of data with multiple layers, requiring
fewer examples in fine-tuning, facilitating the dataset construction process.

• Reading and Conversion into Structured Propositions: our researchers meti-
culously read the selected texts, identify the inherent propositions, and transform
these into a structured format akin to the approach adopted in our prior research
[Perin 2014]. Consequently, from the 11 chosen texts, 387 propositions were dis-
cerned. So, each text was individually associated with its corresponding set of
propositions, forming the Training Dataset.

3.2.3. Process 3: Fine-tuning Process

This process focuses on customizing the LLM to accomplish a specific task, made pos-
sible by leveraging the dataset created in the previous process as a guide for further re-
finement of the LLM. The training process involves feeding this dataset into the model,
allowing the machine learning engine to identify and adapt to the patterns and structures
characteristic of our task. The result is a new variant of the LLM, fine-tuned and uniquely
suited for the task: extracting propositions from unstructured texts. This process is cri-
tical, as it tailors the broad capabilities of the general LLM to our specific requirement,
enhancing its performance and efficiency in generating structured data for CM generation.



3.2.4. Process 4: CM Builder

This process utilizes the Fine-Tuned Model as an initial component, responsible for per-
forming the entire NLP task: primarily extracting a list of propositions from the input
unstructured text. This list represents the key concepts and their relationships, essentially
the ’knowledge’ contained within the text. They form the backbone of our CM, informing
the identification and extraction of elements to be visualized as nodes (concepts) and links
(relations) within the generated map.

Following the extraction process, an initial automatic layout is created. Levera-
ging techniques referenced in previous studies [de Castro et al. 2015], this layout forms a
visually coherent and meaningful representation of the information contained within the
text, thus producing the main artifact: an automatically generated CM.

4. Results and Implications
This section will present the preliminary results of implementing the proposed metho-
dology, reconstructing the experiments described in [Aguiar and Cury 2017]. We draw
a comparative analysis between the CMs produced by humans, the results reported by
the authors, and those obtained through our approach, to highlight our methodology’s
effectiveness and potential within the same experimentation framework. Afterward, we
critically reflect on the comparison procedure and the data obtained, both in the authors’
experiments and ours, providing valuable information on the practical implications, care
related to the experiment setup, and the treatment of the data obtained.

4.1. Experiment Settings
[Aguiar and Cury 2017] engaged five graduate students for their experimental process.
After receiving requisite training on CM generation from text sources, these students
were tasked with independently creating CMs based on a pre-selected text provided by
the authors. These CMs were later juxtaposed with the outcomes yielded by the automatic
generation tool proposed by the authors, using precision and recall metrics, scrutinizing
individual participant results against those rendered by the automatic generator.

Figura 4. Comparison of Experiment Settings

In our experimental design, we implemented a slight modification. Given that
our primary objective was to compare the outcomes of automatic generators against col-



lective human effort rather than individual human performance, we amalgamated the
CMs produced by the five participants. Leveraging the merging algorithm proposed by
[Vassoler et al. 2014], we generated a collective CM encompassing all propositions iden-
tified by the five participants. This merged map then served as the basis for comparison
against the results presented in [Aguiar and Cury 2017] and those yielded by our appro-
ach. Fig. 4 provides a detailed depiction of our experimental setup, elucidating the com-
parison parameters and the metrics employed.

4.2. Results

This experiment was conducted using the introductory section of the well-regarded article
by [Novak and Cañas 2008] as a data source. This seminal work in Concept Mapping
presented a suitable, content-rich, and complex text source for our experiment. We used
the ideas and propositions presented in the introductory section to test the effectiveness of
our approach in recognizing and extracting key concepts and generating a corresponding
concept map. This allowed us to test our approach against the other mentioned CMs
rigorously.

It starts by detailing the size of the CMs obtained in the procedures outlined in the
previous subsection. The main object of this study, the MC generated by our approach, is
shown in Fig. 5.

Figura 5. Generated CM from Our Approach

To encapsulate the scale of CMs produced, we provide a summary in Tab. 1,
through which it is possible to observe that: the MC obtained from the fusion of the
five CMs generated by human participants comprises 63 concepts and 137 propositions;
CM produced by the methodology proposed by [Aguiar and Cury 2017] encapsulates 80
concepts and 123 propositions; in contrast, the CM processed by our approach contains
51 concepts and 43 propositions.

Concerning identifying concepts and propositions, as summarized in Table 2. Re-
garding the identification of concepts, our approach demonstrated a considerable impro-
vement in precision by around 23.5% (0.603 versus 0.488) and a similar recall within
2.65% (0.619 versus 0.603). This result indicates that our method was more accurate



Tabela 1. Generated CMs Summary

Generated CMs Summary
Merged [Aguiar et al., 2017] approach Our approach

Number of Concepts 63 80 51
Number of Propositions 137 123 43

Tabela 2. Precision and Recall Results

Concepts on
[Aguiar et al., 2017] approach

Concepts on
Our approach

Concepts on precision 0,488 0,603
Merged recall 0,603 0,619

Propositions on
[Aguiar et al., 2017] approach

Propositions on
Our approach

Propositions on precision 0,358 0,791
Merged recall 0,307 0,409

in identifying true positives and minimizing false positives, thus demonstrating a higher
quality of results.

As for the identification of propositions, our approach surpassed the previous
method in precision by a substantial margin of approximately 121% (0.791 versus 0.358)
and displayed superior recall by around 33.2% (0.409 versus 0.307). This result suggests
that our approach is better in identifying true propositions from the given texts and mi-
nimizing the omission of valid propositions, thus ensuring more comprehensive coverage
of the information contained in the input text.

These superior precision and recall results reflect the efficacy of our approach.
The improved precision denotes a higher rate of relevant concepts and propositions iden-
tified and a lower rate of false positives. The enhanced recall illustrates that our method
successfully identifies a more significant proportion of true positives. Consequently, these
findings suggest that our model offers a more accurate and exhaustive method for extrac-
ting concepts and propositions from the text.

4.3. Caveats and Considerations

Our methodology employed both quantitative and qualitative analytical techniques to fa-
cilitate a comprehensive understanding of the results. In this process, we acknowledged
equivalent propositions as valid. For instance, the propositions includes(concept maps,
concepts) and has(concept maps, concepts) were treated as equivalent in our computati-
ons. This is an important aspect to consider when interpreting our results, as it significan-
tly evaluates accuracy and recall.

Additionally, we evaluated the equivalence of more straightforward propositions
with their more complex counterparts. As an illustrative example, the proposition defi-
nedAs(concept, perceived regularity in events) was deemed equivalent to the combined
propositions definedAs(concept, regularity) and perceivedAt(regularity, event), as both
structures essentially communicate the same core idea. It is important to note that the
results reported in this study were obtained under controlled conditions and with limited



sample size. As such, they may need to fully reflect the performance of the approach in
broader, real-world contexts. In future research, we aim to expand the scope of our expe-
riments to encompass diverse scenarios and population characteristics. This will provide
us with a more nuanced understanding of the effectiveness of our approach and enable us
to fine-tune it further based on these additional insights.

5. Conclusions and Future Works
This paper presents a novel approach to automatically extracting propositions from uns-
tructured texts and generating concept maps from these propositions. Leveraging the
capabilities of large language models (LLMs) like GPT-4, we devised an architecture that
replaces a complex stack of traditional natural language processing (NLP) algorithms with
a fine-tuned LLM. This architecture simplifies the process and demonstrates remarkable
promise in proposition extraction and concept map generation.

Through a series of controlled experiments, we demonstrated our approach’s su-
perior precision and recall compared to previous methods. These results highlight the
potential benefits of using LLMs for NLP tasks, particularly in education and learning
tools.

However, it is important to acknowledge the limitations of our research. The re-
sults were obtained under controlled conditions with a limited sample size, which may
not fully reflect real-world scenarios. Additionally, despite employing a careful analy-
sis process that considers the equivalence of simple and complex propositions, natural
language’s inherent variability and subtlety can pose challenges.

Looking ahead, our future work will focus on scaling up our approach and testing
it in diverse scenarios and with broader population characteristics. This will provide us
with a more nuanced understanding of its strengths and potential areas for improvement.
Furthermore, we intend to explore ways of integrating the proposed architecture with
other educational tools and systems to enhance learning experiences. The current work is
only the first step on a promising journey toward harnessing the full potential of LLMs in
the educational domain.
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