
Automated Correction for Trace Tables in a CS1 Course

Fernando Teubl, Francisco Zampirolli

1Federal University of ABC (UFABC)
Av. dos Estados, 5001 – Santo André – 09210-580 – SP – Brazil

{fernando.teubl,fzampirolli}@ufabc.edu.br

Abstract. This work presents a remote, asynchronous, parametric, and auto-
matically corrected evaluation based on the Trace Table method for an intro-
ductory programming course. Moodle was used as the learning platform, VPL
as the evaluation module/interface, and MCTest as the test generator. The Trace
Table method allows for the analysis of students’ knowledge in pseudocode,
without relying on any specific programming language. The answers were for-
matted in a table, and the evaluations were automatically corrected during the
student’s problem-solving process. Two evaluations were applied throughout
the course: an intermediate and a final. The course had 309 students and the
results indicated a high acceptance rate, with over 80% approval of the method.

1. Introduction
In recent years, the number of courses offered in the remote modality has increased con-
siderably, especially during and after the COVID-19 pandemic [Combéfis 2022]. The
Information Processing (CS1) course at UFABC aims to teach programming to students
and is offered both in-person and remotely. The CS1 course is an introductory discipline
in the Bachelor of Computer Science and covers the following topics: (1) Conditional
Structures; (2) Repetition Structures; (3) Vectors and Matrices; and (4) Functions and
Modularization. The course is divided into two parts: Theory and Practice. The theory is
presented in pseudocode, while the practice adopts formal programming languages such
as Python or Java.

In [Zampirolli et al. 2021b], work was presented for the same programming course
that made the programming language used in the practical part more flexible, allowing the
student to choose the language that best suited their needs or interests in each activity or
evaluation. This course was offered in remote modality during the COVID-19 pandemic.
The practical evaluations consisted of the student creating an algorithm with the chosen
programming language in order to produce output according to a specific statement and
input parameters so that no two tests were identical. The method of parameterized ques-
tions was presented in [Zampirolli et al. 2019].

During the theoretical part of the same course, evaluations involved writing an
essay question and submitting it via Moodle. The questions were manually evaluated by
the teacher after the end of the test, a process that could be extremely time-consuming in
the case of large classes with hundreds of students.

This article proposes a mode of evaluation with automatic correction for the theo-
retical part of the CS1 course in remote modality. Considering that the goal of the theory
is to teach programming structures, the use of a specific language is not recommended,

and pseudocode is adopted instead. A Trace Table type question was used, which simu-
lates each execution line manually in a table. The Trace Table evaluation allows for the
assessment of the student’s understanding of programming structures and their behavior.

This paper presents Section 2 on automatic evaluation in the theoretical part of
the CS1 course. Section 3 presents our proposal. Section 4 presents the experiments
conducted, and Section 5 presents the results. Finally, Section 6 presents the conclusions.

2. Background
In practical components of computer science courses, such as introductory programming
classes like CS1, activities with automatic correction are commonly used [Combéfis 2022].
However, as discussed in [Paiva et al. 2022], automatic correction is more challenging to
implement in the theoretical component. These activities are part of the smart learning
content, electronically available [Brusilovsky et al. 2014].

To address this gap, [Zavala and Mendoza 2017] proposes that students should
learn to read and manipulate code before writing it. They suggest three phases of learning
to write programs: code comprehension, code manipulation, and code writing. How-
ever, most CS1 courses prioritize code writing and often neglect to assess students’ code
comprehension and manipulation skills. To remedy this, [Mendoza and Zavala 2018] im-
plemented a two-week intervention strategy focused on code comprehension, with read-
ing, tracing, and modifying existing programs, using Automatic Item Generation (AIG).
The intervention showed benefits, and the authors conclude that providing students with
opportunities to practice code comprehension and manipulation is crucial for students’
overall programming skill development. Our article focuses on the first phase of learning,
that is, on carrying out activities to develop the skills of understanding pseudocode, also
using AIG.

In line with improving code comprehension, another useful technique is Tracing
Tables, which are used to track variable changes during program execution. The paper
[Risha and Brusilovsky 2020] introduces a tool that automatically generates Trace Tables
from source code. The authors explore the potential of this tool by discussing future
opportunities for adapting, providing feedback, and learning specifications. They report
a pilot integration of the tool into an existing system, demonstrating its interoperability
with a real-world use case. The tool was used by 115 students, and over 500 Trace Tables
were completed. However, the authors did not report any feedback from the students, did
not use pseudocode, and also did not use the tool to evaluate the students, as done in our
proposal.

3. Method
The evaluations were conducted remotely and asynchronously, with questions generated
and submitted through three different tools: Moodle, Virtual Programming Lab (VPL)
[Rodrı́guez del Pino et al. 2010], and MCTest. MCTest was responsible for selecting, pa-
rameterizing, and distributing tests among students, ensuring that each student received a
unique set of algorithm statements and input parameters to reduce plagiarism. Responses
were submitted in a textual table format using VPL’s editor, which is integrated into Moo-
dle, and automatic correction provided each student with a grade and feedback for each
verification execution. To ensure consistent behavior, both systems - MCTest and VPL -
must contain a copy of the same code generator and grader, as they operate independently.

Fig. 1. Overview: Order of Steps and Automatic Files/Information in Blue.

The entire code for question parameterization and grading was developed in Python. An
overview of the entire process is presented in the next section, with specific details pro-
vided in the following sections.

3.1. Overview
Figure 1 summarizes the entire process. The first step is for the Professor to develop the
question on the MCTest platform. Then, the Professor uploads the Python files (Section
3.2) and the two files exported by MCTest (Section 3.3) to VPL. All the files exported
to VPL are available at http://professor.ufabc.edu.br/˜fernando.teubl/files/
sbie2023. Once these two steps are completed, the Professor requests the MCTest to
send the exam to the students, who access the VPL platform to take the exam and receive
feedback with their grade.

3.2. Creating a Parametric Question
The questions were created using MCTest. The creation of a parametric question consists
of providing a parameterized description and its respective answer, and then randomly
selecting the questions, as presented in [Zampirolli et al. 2019]. The aim of this article
is to create theoretical questions with automatic grading for an CS1 course. A Trace
Table question consists of simulating line-by-line execution of an algorithm, annotating
the values of the variables. Therefore, we opted to use Trace Table to focus solely on
understanding the structures of a programming language, without depending on a specific
language or programming environment.

Considering that the questions are parametric, there are several possible answers
to the same question, depending on the randomly generated parameters. Manual creation
of answer keys for each generated question is not feasible, so the answer key must also
be automatically generated for each question variation. An auxiliary Python class called
TraceTable was developed for generating answer keys and performing corrections of
the questions. This class features the following methods:

constructor(function) Receives a Python function function that represents the
algorithm, either as text or as an object.

source() Returns the function provided in the constructor as pseudocode. The student
will only have access to the algorithm in pseudocode, not to the original in Python.
The conversion is performed using several regular expression rules.

make(args) Creates a matrix that represents the Trace Table answer for the case where
the function receives the arguments args. The values of the Trace Table
are obtained with the help of the PyDev.Debugger library (pydevd), which uses
pydevd tracing to analyze the function’s code line by line, storing the values
in a table. The return is a matrix with the values of the Trace Table and the value
returned by the respective function.

http://professor.ufabc.edu.br/~fernando.teubl/files/sbie2023
http://professor.ufabc.edu.br/~fernando.teubl/files/sbie2023

show() Prints the Trace Table in text mode. It must be called after make method and is
used only for manual checking.

correct(answer) Returns the score of the Trace Table according to the answers pro-
vided by the student through the answer argument. In addition to the score, a
textual feedback indicating possible errors is returned. The score is calculated by
comparing the answer key with the student’s answer and assigning a score linearly
according to the matches.

The initial step in creating a question is to develop one or more algorithms in
Python to be used in Trace Table. For each student, one algorithm will be randomly
selected, and the more algorithms proposed by the teacher, the greater the diversity of
the tests. Ideally, all algorithms should have equivalent complexities. An example of an
algorithm is presented in Table 1.

Tab. 1. Comparison of Python code and pseudocode generated.
1 def Algorithm(v, m):
2 a = [0, 0, 0, 0, 0]
3 for i in range(0, len(m)):
4 for j in range(0, len(m[i])):
5 if a[v[i]] > m[i][j]:
6 a[v[i]] -= m[i][j]
7 else:
8 a[v[i]] += m[i][j]
9 return a

Function Algorithm(v, m)
| a ← [0, 0, 0, 0, 0]
| For i from 0 to m.length (not included), do:
| | For j from 0 to m[i].length (not included), do:
| | | If a[i] > m[v[i]][j], then:
| | | | a[i] ← a[i] - m[v[i]][j]
| | | Else:
| | | | a[i] ← a[i] + m[v[i]][j]
| Return a

In addition to randomly selecting the algorithm, a set of values is also randomly
chosen as input arguments so that each test has a unique output, even when the same
algorithm is repeated. It is important to note that the student does not receive the Python
code, as shown in the left column of Table 1, but rather a pseudocode generated by the
TraceTable class, as shown in the right column of Table 1.

After the random selection of the algorithm and input argument values, the ques-
tion is formatted in PDF and sent individually to each student automatically through
MCTest.

3.3. Integration with Moodle’s VPL
When creating an evaluation using the MCTest, the system generates some files that can
be exported to VPL, enabling integration between both systems. Below are the main files
generated for importing into the Moodle VPL:

linker.json Contains a list of questions and their respective variations in JSON for-
mat. Each variation contains several attributes, with the main ones being: (a) vari-
ant, which has a unique integer value that identifies the variation; (b) description,
which has the statement of the question in LATEX and the Python code, such as
presented in [Zampirolli et al. 2019]; and (c) cases, which has the inputs and their
respective outputs of the test cases used in the automatic correction procedure of
the VPL;

students variation.csv A table in CSV format containing the name of the stu-
dent and their assigned variation.

If the number of generated variations is equal to or greater than the number of
students, MCTest associates the questions so that no two students have the same variation.
In this article, the number of variations generated in each evaluation was the same as the
number of students, so there was only one test per student.

The VPL originally requires a list of input cases with their respective expected
outputs for correction. Although this information is provided by MCTest, the correction
process is inefficient for the Trace Table approach used in this article. Since the Trace
Table output is provided in a file in the txt format, it is necessary to interpret the response
file to evaluate it. Therefore, the original VPL codes were replaced by new codes specific
to this evaluation, which altered the default behavior of the VPL. The subsections below
describe the changes made.

3.3.1. Evaluation Codes
The default file vpl evaluate.sh was modified by the script below:
1 #!/bin/bash
2 . common_script.sh
3 get_source_files txt py
4 cat vpl_environment.sh > vpl_execution
5 python3 vpl_main.py > vpl_out
6 cat << EOS >> vpl_execution
7 cat vpl_out
8 EOS
9 chmod a+x vpl_execution

Line 2 includes the default VPL file common script.sh, which contains sev-
eral auxiliary functions. Line 3 defines to include the .txt files containing the student’s
response, noting that the evaluation is for Trace Table, not implementation. Line 4 cre-
ates the vpl execution script with the default VPL environment variables. This script
is originally responsible for running the evaluation but was modified to only print the
evaluation result. The evaluation is actually performed in advance on line 5 through the
vpl main.py script, as described in Section 3.3.2. The evaluation result is stored in
the vpl out file, so when the VPL calls the vpl execution script to perform the
evaluation, it has already been performed, and it only needs to print the contents of the
vpl out file, as shown in line 7. This anticipation of the evaluation was necessary so
that the correction process had full access to all files and environment variables. The
VPL removes some files and environment variables when vpl execution is executed
for correction protection and isolation. For example, the student’s program could access
and modify the grade variable. Since the student’s response is a text file, there is no risk
of the student injecting malicious code. Line 9 finalizes the script by adding execution
permission to vpl execution.

3.3.2. Correction Codes

As presented in the previous subsection, the default VPL correction code was modified,
so that all evaluation, score, and output text must be implemented. The vpl main.py
code was developed in Python and is responsible for all evaluation. The code is presented
below.
1 import vpl_utils, vpl_MCTest, random, json
2 import numpy as np
3

4 mc = vpl_MCTest.MCTest()
5 qs = mc.getQuestions()
6

7 with open("qs['file'].txt", mode ='r') as file:
8 TT = vpl_utils.TraceTable(qs['description'][0]['func'])
9 TT.make(json.loads(qs['cases'][0]['input'][0]))

10 score, feedback = TM.correct(file.read())
11

12 vpl_utils.terminate(score, {

13 'Question description' : qs['description'][0]['text'],
14 'pseudocode' : TT.source(),
15 'Score' : f"You got {int(100 * score)}%\n",
16 'Feedback' : feedback })

Line 4 uses an auxiliary class called MCTest, which is implemented in Python in
vpl mctest.py. This class provides information about the data generated by MCTest,
specifically, by reading the linker.json and students variations.csv files.
Both files have already been described at the beginning of Section 3.3.

Line 5 obtains the specific question for the current student. The student’s name is
provided in a VPL environment variable, which must correspond to their respective vari-
ation in students variations.csv. The specific student’s question information is
obtained from linker.json. There are two important parameters: description
and cases, which represent the algorithm (in Line 8) and the input arguments of the al-
gorithm (in Line 9), respectively, represented by a vector. Many keys in linker.json
are lists, and therefore, there are [0] in Lines 8, 9, and 13.

Line 7 reads the user’s response in the Q1.txt file of Trace Table. Line 8 in-
stantiates a TraceTable class (already described in Section 3.2) with the respective
algorithm drawn for the student. The TraceTable class is implemented in an auxiliary
library called vpl utils, which contains other useful functions as will be presented
later.

Lines 9 and 10 create the answer key and correct the question, respectively. As
a result, two variables are generated: (1) score with the student’s score; and (2)
feedback, with a textual return of the evaluation.

Finally, Line 12 (and later) ends the evaluation by generating the content that will
be displayed to the student after the evaluation in the VPL interface. The terminate
function, implemented in vpl utils.py, receives the score (variable score) and a
dictionary with the data that will be displayed to the student, with the key being the item
name and the value being the description. This information is processed in a format com-
patible with the expected interpretation by VPL. Note that the statement and pseudocode
are repeated (Line 13). Thus, if the student has not received the test by email, in PDF
format by the MCTest system, he or she can still take the test. The score in percentage
and the textual return of the evaluation are also presented (Lines 15 and 16).

4. Evaluation
Two exams were given to a class of 352 enrolled students, with 309 active students and
281 graduates. The students were divided into 12 classes, originally with 30 students each.
The first exam, held in the middle of the academic period, covered simple conditional and
repetition structures. The second exam, held at the end of the academic period, added
vector and matrix manipulation. The following subsections will describe each exam in
more detail.

4.1. First Exam
The first exam consisted of creating a Trace Table for an algorithm with simple conditional
and repetition structures. Integer-type input arguments were drawn, and the student had
to simulate step by step the code execution. Figure 2 shows an example of a question sent
to the student via email in PDF format. The structure of the Trace Table, as well as the
first two lines, were provided to the student.

Fig. 2. Example of question from the first exam, sent by email.

Figure 3 shows the VPL interface for the exam response. Note that the student
only has access to a text file (Q1.txt, which is a Trace Table). When evaluated, the correc-
tion system calculates the score based on the number of lines identical to the answer key.
In each exam, the student was presented with a Proposed Score and Comments section,
which contains the question description, the algorithm, the percentage of correct answers,
and textual feedback indicating if there are any invalid lines or other structural errors in
the response.

4.2. Second Exam
The second exam was similar to the first exam. Complex repetition structures and vector
and matrix variables were added. Figure 4 shows an example of the question. In this
exam, it was decided to send the algorithm in Python instead of pseudocode (see Figure
4). In the VPL interface, we have kept only the pseudocode.

5. Resultants
Out of 309 active students, 281 completed the course by taking all assessments, including
the substitute assessment and exam. 271 students completed the first assessment, and 263
completed the second assessment. The following subsection will present the quantita-
tive results of both assessments, while the subsequent subsection will present qualitative
results obtained through survey forms.
5.1. Quantitative Results
Table 2 presents the distribution of grades in the first and second evaluations, as well as
the final average grade. Firstly, it can be observed that the grade distribution is similar
between the first and second evaluations. This information suggests that the complexity
of the exams was proportional between the evaluations. This equivalence can also suggest
that the students had the same difficulty in completing the exams, not being affected by
any learning curve in the evaluation process, which suggests that the evaluation method
does not require prior skills.

Another important report is that about 71% of the students who completed the
course achieved the maximum grade, and about 80% achieved the maximum grade in

Fig. 3. Example of a correct response through the VPL Moodle.

Fig. 4. Example of question from the second exam, sent by email.

the course, grade A. Historically, the pass rate for this course has been below 70% on
average [Zampirolli et al. 2021a]. This fact suggests four hypotheses: (1) the Trace Table
evaluation style or the algorithm was easy; (2) there was a high rate of plagiarism; (3)
location and time in answering; and (4) failures in the automatic correction system by
providing important hints.

The first hypothesis is not likely, as the same question style has been used in pre-
vious offerings. The second hypothesis regarding plagiarism is also unlikely, considering

that each student has a unique set of questions and answers. The third hypothesis is quite
likely. The rules of the University for remote evaluation require it to be asynchronous and
last for 72 hours. This exaggerated time may have allowed the student to study and try
different answers until they achieved perfection.

The last hypothesis occurs due to the unlimited feedback of the evaluation. The
student could write one line at a time and evaluate it. When the score was increased,
it meant that the line was correct, and the student started the next line. This, in theory,
allows for trial and error resolution. After the first evaluation, the number of evaluations
performed by the students was evaluated, and about 8 students (3%) evaluated more than
100 times, more than 80 (30%) students evaluated more than 50 times, and 187 students
(69%) evaluated more than 30 times. This data suggests that unlimited evaluation can
facilitate the full resolution of the question, but not through trial and error.

An alternative to avoid this type of assistance would be to limit the number of
evaluation attempts to, for example, 20. This limitation was not imposed in the second
evaluation to avoid significant changes compared to the first evaluation in order not to
harm the student. However, future work can place an evaluation limiter or decrement
the grade according to the number of evaluations. The submission deadline can also be
reviewed, as 72 hours for taking a test allows the student to evaluate multiple times until
finding the correct answer.

Tab. 2. Student performance table.
Grade First Evaluation Second Evaluation Final Average
100% 226(83, 4%) 232(88, 2%) 202(71, 9%)

[90%, 100%[15(5, 5%) 18(6, 8%) 26(9, 3%)
[70%, 90%[8(3, 0%) 3(1, 1%) 16(5, 6%)
[50%, 70%[10(3, 7%) 2(0, 8%) 11(3, 9%)
[0%, 50%[12(4, 4%) 8(3, 1%) 26(9, 3%)

Total 271(100%) 263(100%) 281(100%)

5.2. Qualitative Results
Two forms were sent after the first and second evaluations, respectively. About 23% of the
students responded to the first evaluation. The form for the initial evaluation is presented
in Table 3 and uses a Likert scale ranging from 1 to 5 to indicate levels of agreement,
where 1 represents Totally Disagree, 2 represents Disagree, 3 represents Neutral, 4 rep-
resents Agree, and 5 represents Totally Agree. An explanatory video on how to use the
evaluation tool was provided prior to the first evaluation. The acceptance of the evalua-
tion method was 86%, and the vast majority (81%) said that plagiarism had been reduced.
Regarding the response process, 80% of the students liked the feedback provided during
the evaluations, and 74% of the students said that the text response in table format was
appropriate.

The second questionnaire had only 11 participants, around 4% of the students.
One explanation for the low participation in the second evaluation is that it was requested
after the end of the classes. Table 4 shows the students’ responses. Despite the low
participation of the students, the values were equivalent to those of the first evaluation,
with around 80% of acceptance.

In one of the questions, “Easy to understand the question”, although the approval
rate was 82%, only 27% answered “Totally agree”. This questionnaire had a profile of
36.4% of students with the maximum score, 45.5% with intermediate scores, and 18.2%
of failures. As the students with the maximum score were 71%, the sampling of the

Tab. 3. Questionnaire of 64 students (23%) about Evaluation 1.
Question 1 2 3 4 5
Moodle+VPL use in EVALUATIONS with automatic correction and im-
mediate feedback is very interesting

3(5%) 0(0%) 6(9%) 10(16%) 45(70%)

The VIDEO explaining the EVALUATION is very good, which improved
my understanding

0(0%) 0(0%) 0(0%) 10(16%) 54(84%)

The INDIVIDUAL EVALUATION with RANDOM VERSIONS helps to
reduce plagiarism, thus helping in learning

1(2%) 2(3%) 9(14%) 18(28%) 34(53%)

The automatic FEEDBACK of the evaluation helped me understand the
problems, although it did not point out exactly where the errors were

3(5%) 8(12%) 2(3%) 9(14%) 42(66%)

The RESPONSE FORMAT (table in text file) was adequate for the pro-
posed question

3(5%) 2(3%) 12(19%) 14(22%) 33(52%)

I liked the EVALUATION, I would like a similar one for EVALUATION 2 2(3%) 5(8%) 6(9%) 12(19%) 39(61%)

Tab. 4. Questionnaire of 11 students (4%) about Evaluation 2.
Question 1 2 3 4 5
Consistent with the subject 0(0%) 0(0%) 2(18%) 2(18%) 7(64%)
Efficient to Evaluate Knowledge 1(9%) 0(0%) 2(18%) 3(27%) 5(45%)
Easy to Understand the Question 0(0%) 2(18%) 0(0%) 6(55%) 3(27%)
Adequate Response Style 0(0%) 1(9%) 1(9%) 4(36%) 5(45%)
Appropriate Difficulty Level 0(0%) 0(0%) 3(27%) 4(36%) 4(36%)
Automatic Correction and Feedback helpful for Learning 0(0%) 0(0%) 2(18%) 4(36%) 5(45%)

responses is from students who had more difficulties and, consequently, there may be a
divergence in relation to the overall opinion.

5.3. Threats to validity
There are some threats to validity of our study. Despite the method being applied to many
students, it would be necessary to conduct new experiments with both test and control
groups to ensure improvements in the first group. Furthermore, the method was applied
in a remote context and should also be tested in in-person settings with limited time. It
would also be essential to verify whether the students can generate code to present the
results from the Trace Table.

6. Conclusion and Future Work
This work presented an innovative method for evaluating students’ knowledge in pseu-
docode through the Trace Table model, demonstrating the feasibility and acceptance of
an automatic, asynchronous evaluation in a CS1 course. The use of VPL and MCTest
enabled parametric and remotely administered evaluations that provided immediate feed-
back to students. Two assessments were applied with simple questions involving con-
ditional and repetition structures and vectors and matrices. The results indicated a high
approval rate, with over 80% of students achieving an A.

This model can be expanded to upper-level programming courses. The types of
questions and answers can be diversified to include code snippets and programming prob-
lems in addition to pseudocode. Although the method presented in this article was applied
to exams containing only one question, it has already been included in the MCTest ver-
sion, available on GitHub, and can be used in exams that contain Trace Table questions
in languages other than pseudocode (such as Python, Java, etc.) and with other types of
questions. This integration has not yet been validated in classes and will be carried out in
future work.

Additional studies should be conducted to investigate the impact of this assess-
ment method on student learning and outcomes. Furthermore, the method presented in
this article has great potential for use in Massive Open Online Courses (MOOCs) and
especially in traditional face-to-face courses with thousands of students.

References
[Brusilovsky et al. 2014] Brusilovsky, P., Edwards, S., Kumar, A., Malmi, L., Benotti, L.,

Buck, D., Ihantola, P., Prince, R., Sirkiä, T., Sosnovsky, S., Urquiza, J., Vihavainen, A.,
and Wollowski, M. (2014). Increasing adoption of smart learning content for computer
science education. In ITiCSE-WGR, pages 31–57.

[Combéfis 2022] Combéfis, S. (2022). Automated code assessment for education: review,
classification and perspectives on techniques and tools. Software, 1(1):3–30.

[Mendoza and Zavala 2018] Mendoza, B. and Zavala, L. (2018). An intervention strategy to
hone students’ code under-standing skills. Journal of Computing Sciences in Colleges,
33(3):105–114.

[Paiva et al. 2022] Paiva, J. C., Leal, J. P., and Figueira, A. (2022). Automated assessment
in computer science education: A state-of-the-art review. ACM Transactions on Com-
puting Education, 22(3):1–40.

[Risha and Brusilovsky 2020] Risha, Z. and Brusilovsky, P. (2020). Making it smart: Con-
verting static code into an interactive trace table. In Proc. of Sixth SPLICE Workshop.

[Rodrı́guez del Pino et al. 2010] Rodrı́guez del Pino, J. C., Rubio Royo, E., and
Hernández Figueroa, Z. J. (2010). VPL: laboratorio virtual de programación para
moodle. In Jornadas de Enseñanza Universitaria de la Informática, pages 429–435.

[Zampirolli et al. 2021a] Zampirolli, F. A., Borovina Josko, J. M., Venero, M. L.,
Kobayashi, G., Fraga, F. J., Goya, D., and Savegnago, H. R. (2021a). An experience
of automated assessment in a large-scale introduction programming course. Computer
Applications in Engineering Education, 29(5):1284–1299.

[Zampirolli et al. 2019] Zampirolli, F. A., Teubl, F., and Batista, V. (2019). Online gener-
ator and corrector of parametric questions in hard copy useful for the elaboration of
thousands of individualized exams. In CSEDU, pages 352–359.

[Zampirolli et al. 2021b] Zampirolli, F. A., Teubl, F., Kobayashi, G., Neves, R., Rozante,
L., and Batista, V. (2021b). Introductory computer science course by adopting many
programming languages. In SBIE, pages 1118–1127, Porto Alegre, RS, Brasil. SBC.

[Zavala and Mendoza 2017] Zavala, L. and Mendoza, B. (2017). Precursor skills to writing
code. Journal of Computing Science in Colleges, 32(3):149–156.

	Introduction
	Background
	Method
	Overview
	Creating a Parametric Question
	Integration with Moodle's VPL
	Evaluation Codes
	Correction Codes

	Evaluation
	First Exam
	Second Exam

	Resultants
	Quantitative Results
	Qualitative Results
	Threats to validity

	Conclusion and Future Work

