
Featuring Layers of Abstraction as a Modeling Resource in an
Educational Game-Based Learning Platform *

Braz Araujo da Silva Junior1, Júlia Veiga da Silva,
Simone André da Costa Cavalheiro1, Luciana Foss1

1Programa de Pós-Graduação em Computação - Universidade Federal de Pelotas
CEP 96.010-610 - Pelotas - RS - Brazil

{badsjunior,jvsilva,simone.costa,lfoss}@inf.ufpel.edu.br

Abstract. This paper presents a feature supporting the modeling, management
and visualization of layers of abstraction in an educational game engine. Com-
puter science education has conquered significant recognition supported by the
concept of Computational Thinking, an essential skill set in a world where com-
puting is pervasive. One of its pillars, abstraction, has many facets on its own,
and some of them still struggle to find support of educational tools. Attempt-
ing to fill this gap, this work proposes a resource that allows grouping elements
while modeling games. Abstract hierarchical graph grammars are used as theo-
retical foundation and practical examples of how it fosters abstraction are given.
The processes found to be possible to grasp with it are generalization, refining,
modularization, nesting and navigation through layers of abstraction.

1. Introduction
In recent years, Computer Science Education (CSE) has witnessed a paradigm shift
that has placed Computational Thinking (CT) at the center of modern pedagogical
practices. As technology continues to permeate every aspect of our lives, the ability
to approach and solve problems through the lens of computing has become an indis-
pensable skill for everyone, not just computer scientists and Information Technology (IT)
professionals [Wing 2006]. By offering a structured and systematic approach to problem-
solving based on computing fundamentals, CT empowers learners to analyze complex
challenges, devise efficient solutions, and make informed decisions that have real-world
implications [Avila and da Costa Cavalheiro 2022, Vieira and Zaina 2021].

Despite CT having many definitions slightly varying which abilities it
encompasses [Tang et al. 2020], it generally refers to a cognitive process of
problem solving using a series of skills and concepts of Computer Science
(CS) [Tikva and Tambouris 2021]. It provides a foundational framework for understand-
ing the fundamental principles that underlie CS and harnesses the power of abstraction
as a key mental tool. Abstraction, one of the core pillars of CT [Wing 2008], allows
learners to create simplified representations of complex systems, enabling them to fo-
cus on essential details while suppressing unnecessary intricacies. This cognitive process
facilitates the construction of models that capture the essence of a problem, facilitating
effective problem-solving across a broad range of domains [Mirolo et al. 2022]. As such,

*This work was carried out with the support of CAPES - Brazil - Financing Code 001, the SACCI
Network, SMED/Pelotas, PREC and PRPPG / UFPel.



abstraction serves as a bridge between the real world and the digital realm, empowering
students to reason about problems and devise solutions in ways that leverage the strengths
of computational systems.

The importance of abstraction in CT cannot be overstated, as mentioned
in a Systematic Literature Review (SLR) on abstraction, “it has been the most
significant component of CT in empirical studies measuring learners’ CT develop-
ment” [Ezeamuzie et al. 2022]. However, it is safe to assume that developing this skill
requires deliberate and strategic efforts in educational settings. As students grapple with
increasingly intricate problems, they must be equipped with proper tools and resources to
cultivate their ability to construct and navigate multiple layers of abstraction.

In this paper, we shed light on the critical skill of abstraction in CT and present an
effort to respond the pressing need for specialized tools and resources to foster its devel-
opment [Mirolo et al. 2022]. We present a feature that enables and emphasizes modeling
layers of abstraction in an educational game-based learning platform targeting Kinder-
garten to 12th grade (K-12) education, but suitable for all ages. Throughout the paper
we explore the following research questions:

1. What features or structures could support the modeling and management of layers
of abstraction in GrameStation?

2. How could these features foster CT? That is, how could these features induce
or influence learners to solve problems using strategies and abilities aligned with
CT?

The rest of this paper is organized as follows. Section 2 discusses related work,
giving an overview of how layers of abstraction have been approached in the literature.
Section 3 describes the strategy, approach, theoretical foundation and tools we used. Sec-
tion 4 presents the feature and examples using it. Section 5 concludes the paper with
suggestions for future research.

2. Related Work
A recent overview [Mirolo et al. 2022] and a SLR [Ezeamuzie et al. 2022] on abstrac-
tion in CSE showed that the term “abstraction” has multiple characterizations and is tied
to various topics in CS, as: problem formulation; extracting similarities; ignoring non-
essential features; decomposition; computational abstractions; programming languages
and paradigms; generalisation and parametrization; procedural and data abstraction; in-
formation hiding; and abstraction layers.

The overview also mentions that abstraction is rarely explicitly approached, as
expected from a very broad term. Instead, it is expected to emerge from various tasks,
mainly revolving around modeling and programming, which is how it has been mainly ap-
proached [Kakavas and Ugolini 2019, Mirolo et al. 2022]. Frameworks explicitly target-
ing abstraction have been presented in the literature [Armoni 2013, Qian and Choi 2022].
But they are theoretical guidances for educators to create tools/conduct activities in a way
abstraction is favoured, rather than practical tools to be used by the learners.

On top of that, here we are focusing a specific aspect of abstraction: layers of
abstraction, which refers to the hierarchical organization of complex systems or prob-
lems into multiple levels of representation, with each level hiding unnecessary details



and exposing only the essential elements needed for a particular purpose. This approach
helps manage the inherent complexity of systems and enables problem solvers to reason
at various levels of granularity.

To the best of our knowledge, tools directed towards working with layers of ab-
straction in K-12 education are scarce. Arguably, visual programming languages and
other CSE modeling/programming environments are able to handle some form of lay-
ered abstraction, but as a minor or implicit feature that does not receive much atten-
tion. Beyond programming, activities introducing notions of layers of abstraction ap-
proach it by showing multiple forms of representation of the same problem. For in-
stance, in a chemistry class on the natural carbon cycle, students are shown a real-world
macroscopic phenomenon; the scientific notation of the chemical reactions happening
there; a computer-generated simulation of the phenomenon; and the simulation’s source
code. [Gautam et al. 2020].

3. Methods
Given the lack of tools offering a explicit and central way to work with layers of abstrac-
tion, our goal was to properly fill this gap: something very visual, where the abstraction
and its layers would be an obvious focus. At the same time, we wanted to avoid isolating
the activity from the rest of CT, in an effort to show how this specific skill can contribute
to general problem solving in practice (not just in a “controlled environment” designed
just to teach that). This lead us to the decision of integrating an abstraction-focused
feature into an existing platform that already explores CT. GrameStation, an educational
game modeling/specification engine based on Graph Grammars (GG) fits well this role,
since: its development is already in the context of education (primarily designed for K-12
education, suitable for all ages); game-based learning provides engagement and room for
complex projects where abstraction could really shine; graphs – used everywhere in the
platform – are a visual data structure; and the platform was developed to foster CT.

Figure 1. Graph Grammar of a Pac-Man game.



The whole engine is based on GG, a formal language of specification and verifi-
cation of systems, which we will briefly introduce the core notions1. Basically a Graph
Transformation System (GTS) equipped with a initial state and a typing mechanism, a GG
describes a system as (see Figure 1): 1- a type graph that represents its universe (the types
of things that can be found within it); 2- an initial graph that represents its first state; and
3- a set of graph rewriting rules that represents how states can change. Those rules map
graphs element-wise to define which elements will be preserved, created or deleted by the
rule application. They are represented by two graphs: Left-Hand Side (LHS), indicating
a condition; and Right-Hand Side (RHS), indicating a consequence.

In order to bring layers of abstraction to this GG environment, we developed
the concept of “wrappers”, that behaves similarly to a subgraph. The underlying the-
oretical framework used comes from the abstract Hierarchical Graph Grammars
(HGG) [Busatto et al. 2005], which provides an hierarchical organization on top of a
base graph by using two additional graphs. One graph defines the relationship between
packages, which are elements that will organize the elements of the base graph. And the
other graph indicates in which package each base element is contained. For instance, Fig-
ure 2 shows a hierarchical graph: the base graph on the left defines a snake, a bear and
a bird in a grassy land adjacent to a beach and a mountain; the hierarchy graph on the
middle defines a package of animals and another of lands; and the coupling graph on the
right defines the containment relations between base elements and hierarchy packages.

Figure 2. Example of hierarchical graph as three graphs (top) and their simplified
representation (bottom) as one, either collapsed (left) or expanded (right).

Throughout the paper we will discuss some desired topics on object orien-
tation. While we acknowledge the existence of Object-Oriented Graph Gram-
mars [Ferreira 2005, Ferreira et al. 2007], we didn’t want to bound all activities to ob-
ject orientation nor rework the whole engine, adapting it to a different theory. The HGG

1All GG notions presented in this paper refer to the specific approach used as theoretical foundation to
the engine and the proposed feature. That is, some statements may not hold true for other approaches to
GG. For interested readers, we refer to [Silva Junior et al. 2021] to learn more about the platform and to
[Ehrig et al. 1991] for the mentioned GG approach.



approach was chosen because it allowed us to add the grouping information without com-
promising all definitions from the theoretical framework GrameStation already relied on.
However, it felt overwhelming to always show the user two additional graphs just for that.
Therefore, we hid them, embedding the information provided by the HGG into the visual-
ization of the base graph. We implemented the “packages” from the theory as “wrappers”
(see Figure 2), that are shown as regular vertices while collapsed (left) and regions behind
their content while expanded (right).

4. Wrappers
In this section we will discuss how exactly wrappers may be used to foster abstraction
skills, modeling using different layers of abstraction and how they facilitate the visual-
ization of all that. As an explanatory support, we will use an educational game to offer
practical examples. The game was chosen due to the convenience of being designed as
a GG, we refer to [Silva Junior et al. 2017] for readers wanting further details, here we
will summarize the essentials. It is a turn-based strategy game were animals are trying to
revitalize a recently deforested jungle. The players may apply simple rules representing
the growth cycle of plants and their dispersion being carried by the animals. There are
multiple goal states randomly drawn and assigned to each player at the start of each game.
The player that manages to make the jungle look like their goal first wins the game.

4.1. Generalizing
The game features four animals: a bird, a snake, a bear and a wolf. They do not have
different behaviors in the game, which means they are functionally the same kind of thing.
That is why they are modeled as a single type, animal. The different visual representation
and names of the instances are just conventions to make the game more visually diverse,
they are not a real distinction for the GG.

If they were modeled as different things, each of their own type, we would quickly
realize some inconvenience trying to model common behavior between them. For in-
stance, the rule that moves an animal from a square to another would have to be designed
four times, each using one of the animals. That is the reason why modeling different types
for things that do not behave differently is considered bad design, but that is a common
mistake our intuition leads us to do while modeling. Additionally, this inconvenience is
inescapable if we are after things that are supposed to behave differently but also to have
some common behavior.

To deal with that problem, we shall generalize the elements. Wrappers can be
used to do that in a very intuitive way (see Figure 3): an Animal would be a wrapper
containing either a Bird, a Bear, a Snake or a Wolf (1). Then, instead of four rules (2),
we would need to have only one, using the Animal wrapper (3). The important thing to
note here is that we are still able to make specific rules for each type of animal, which
wouldn’t be achievable if they were all the same type.

For instance, let’s say the bird should be able to Fly (see Figure 4-1), which would
be a special move allowing it to go from a square to another regardless of the connections
between them (the original movement rule requires connected squares). If the animals
were all of the same type, we would have no way to refer specifically to the Bird, then
either all would be able to fly, or none would. With the wrappers, we can let only the Bird
fly, and all animals (including the Bird) move.



Figure 3. Generalization from Bird/Bear/Snake/Wolf to Animal.

So, here we properly differentiated and generalized the original four animals of
the game, allowing them to show both, general behavior to share amongst all of them, and
specific behavior to further characterize each.

4.2. Refining

The other way round, breaking an abstract concept into more concrete ones, is also pos-
sible and useful. We will harness the opportunity to illustrate how relations (edges) can
also be approached in different layers of abstraction.

We created a specialized behavior for the Bird, but not a corresponding specialized
relation. A Bear may not be able to reach all squares a Bird can, but if they are at the same
square, they stand the same kind of relation to that square (IsAt). Differentiating them
could further enrich (and increase complexity of) the game. For instance, the original
rule to Gather fruits from trees could be made more strict, allowing only animals that are
above the ground to reach and gather the fruits.

This effect is reached in Figure 4 (see 2 and 3), turning the IsAt (white) edge into
a wrapper containing edges as OnTheGround (green) and AboveTheGround (blue). Then
Fly and Gather could use the specific edge AboveTheGround relation; while Move use
the generic wrapper IsAt (see Figure 3-3). This way Move could still be applied on both,
those OnTheGround and those AboveTheGround, as nothing had changed, since it would
require just the wrapper to match.

So, here we properly broke down a generic relation into two specifics, allowing it
to have some of its behaviors specialized, while preserving the rest as no changes were
made. This is one of the most useful features of working with layers of abstractions, we
can make changes in one without compromising the others.



Figure 4. Refining of the edge IsAt in the Fly rule.

4.3. Object Orientation

Those generalizations and refinements may superficially simulate some characteristics of
Object Orientation Programming (OOP). There isn’t a real inheritance or polymor-
phism, since an element must always be mapped to another of the exact same type (not to
any descendant type/child class as in OOP). However, if we see a wrapper and its content
as a form of “composite” type, they are able to produce similar behavior in GGs. That
takes advantage of the fact that matches require some elements, but have no saying on the
context of them2. That is, a general rule can require a wrapper regardless of its content.

Simulating that in GGs require some attention to avoid faulty behaviors like delet-
ing the content of the wrapper, but not the wrapper, or the other way round. This would be
analogous to stripping a child class off its superclass properties or somehow instantiating
an abstract superclass.

4.4. Modularizing

Another use for wrappers is as containers, which can be used to modularize the project,
either just for organization and better visualization or being functional elements them-
selves. For instance, we could organize the squares together with their seeds, plants and
trees into places (see Figure 6-1 and 2). That would allow not just a better visualization,
especially in big projects, but using the place as an element itself, regardless of its content.

For instance, we could add the sun to the game, illuminating one place at time, and
adding this as a requirement for the rule to make plants Grow into trees. The difference
of using places instead of squares for this is that we could allow some places to have
different content, or even change their content mid game, while keeping the sun mechanic
intact.

2That may vary for each Graph Grammar approach. In the one we have been using, the algebraic
approach using Double-Pushout for rule applications, it is not entirely truth. There is a context-based
restriction of not being able to delete elements that would leave dangling edges (without a source or target).



Wrappers can also be nested as long as they don’t form a cycle. That is, there
is no limit of how many layers of abstraction you could create with them. Nesting is
generally only justified if the system gets too big or complex, which is not the case of our
little game, here we forced nesting just to exemplify.

Figure 5. Type graph using wrappers for each element.

As Figure 5 depicts, if we considered each different representation of the original
game as a type and then generalized them (as we did for the animals), we would have a
wrapper for each element. On top of that, we could consider the “Place” suggestion we
mentioned, which would be a wrapper containing multiple wrappers (see also Figure 6-1).

4.5. Navigating
The greatest advantage of wrappers is the clear visualization they offer to the modeler
over the designed abstractions and its levels. In the platform, the default is a free view,
where you can collapse or expand any wrapper at will, regardless of their layer. But we
decided to empower and highlight the use of layers with the layered view, allowing the
user to navigate through them seeing only the respective representations on each level
(expanded wrappers are hidden, showing their content only).

That can be seen in Figure 6), where: (1) shows the free view with all wrappers
expanded; and the rest show layered views, (2) with the highest layer of abstraction; (3)
with the middle layer; (4) with the lowest; and (5) shows how the rule Fly (Figure 4-3) is
much cleaner under the layered view. Noteworthy, this Fly rule seen through the highest
layer looks exactly like Move (Figure 3-3), since one is a specialization of the other.

To deliver this control over the layers in a fun and engaging way, we used the
“Abstractometer”, that shows how many layers of abstraction are present in your project
and can be used to navigate through them by clicking in the respective section. Figure 7
shows the usual interface of the game builder module of GrameStation, used to design the
games as GG, featuring: (1) a component area to switch between rules, type and initial
graphs; (2) a main display that shows relevant info as name, icon and ID of the object
currently selected, and action buttons to add, edit or erase elements; (3) the work area,
where the graphs/rules are displayed; and the new addition, the abstractometer.



Figure 6. Free and layered views of a graph and rule.

Figure 7. Interface of GrameStation with the Abstractometer.



5. Conclusion

In this paper we designed wrappers and proposed various ways in which their features
could support the modeling and management of layers of abstraction in GrameStation.
Given the current gaps [Mirolo et al. 2022], making available the tools to work with layers
of abstraction in a more explicit manner is a valuable contribution to the CT community.
And as GrameStation is a general purpose platform that allows the creation of any game
that can be modeled as a GG, researchers and educators can build activities on various
application domains counting with the layers of abstraction support.

Theoretically, everything achievable with the wrappers is also achievable some-
how using basic GG resources. For instance, instead of the wrapper, we could model
Animal as a type of vertex and Bird/Bear/Snake/Wolf as types of edges, or other vertices
connected to Animal. But wrappers help to ensure consistency and provide a intuitive,
organized and explicit way to model those abstractions.

What is appealing about wrappers is that they are not just an additional resource
that would be approached only when layers of abstraction is the subject or learning objec-
tive of the activity. They actually solve an inconvenience that is quite often found when
modeling GG: common behaviors among different types. Because GG requires strictly
same-type matches3, when a novice models a GG, they are likely to go through the fol-
lowing path: making different types; wanting them all to do the same thing; then realizing
that would require several similar rules, one for each type. That we see as a natural way
to induce the learner to understand the reason and importance of generalization.

Furthermore, as information in a graph is represented by shapes in a space, we nat-
urally try to manage their positions to fit the screen. As a graph grows, fitting all elements
in the screen becomes harder and harder, eventually impossible without overlaps. Wrap-
pers allow us to compact (hide) multiple elements into a single container, simplifying the
view of the whole. That we see as a visual way to induce the learner to understand the
reason and importance of abstraction of data and modularization.

We discussed the capabilities of wrappers to foster abstraction layers and related
skills (generalization, refinement, modularization, visualization and navigation). How-
ever, we recall it is a tool within a game engine, not a fully fetched activity on its own.
It enables the creation of a wide range of activities around those topics: from putting the
students to model entirely new games relying on the support of wrappers to organize and
modularize it; to making them play strategically pre-made games where navigating be-
tween layers of abstraction is crucial. Creating such activities and making them available
is part of our future work, but also possible for anyone that downloads the platform4.

Once these activities are at hand, the primary focus will be on empirically vali-
dating this proposal. We plan to conduct experiments in different educational settings to
determine its effectiveness of fostering the ability: to model considering different layers
of abstraction; refine; generalize; and modularize. We are also considering expanding a
series of pedagogical agents [Veletsianos and Russell 2014] that have been proposed for
the platform [da Silva et al. 2021], with one to guide users on how to properly use layers
of abstraction, while keeping this interaction more humane, personalized and engaging.

3This can vary depending on the GG approached, but holds true for the one used in the platform.
4https://wp.ufpel.edu.br/pensamentocomputacional/gramestation-pt/



References
Armoni, M. (2013). On teaching abstraction in cs to novices. Journal of Computers in

Mathematics and Science Teaching, 32(3):265–284.

Avila, C. M. O. and da Costa Cavalheiro, S. A. (2022). Practical guide for designing
activities that integrate curricular content, computational thinking and constructionist
theory. In Proceedings of the XXXIII Simpósio Brasileiro de Informática na Educação,
pages 208–219. SBC.

Busatto, G., Kreowski, H.-J., and Kuske, S. (2005). Abstract hierarchical graph transfor-
mation. Mathematical Structures in Computer Science, 15(4):773–819.

da Silva, J. V., da Silva Junior, B. A., Foss, L., and da Costa Cavalheiro, S. A. (2021).
Gramers: Agentes pedagógicos para uma plataforma de jogos baseada em gramática
de grafos. In Proceedings of the VI Workshop-Escola de Informática Teórica, pages
80–87. SBC.

Ehrig, H., Korff, M., and Löwe, M. (1991). Tutorial introduction to the algebraic ap-
proach of graph grammars based on double and single pushouts. In Graph Grammars
and Their Application to Computer Science: 4th International Workshop Bremen, Ger-
many, March 5–9, 1990 Proceedings 4, pages 24–37. Springer.

Ezeamuzie, N. O., Leung, J. S., and Ting, F. S. (2022). Unleashing the potential of
abstraction from cloud of computational thinking: A systematic review of literature.
Journal of Educational Computing Research, 60(4):877–905.

Ferreira, A. P. L. (2005). Object-oriented graph grammars. PhD thesis, Universidade
Federal do Rio Grande do Sul.

Ferreira, A. P. L., Foss, L., and Ribeiro, L. (2007). Formal verification of object-oriented
graph grammars specifications. Electronic Notes in Theoretical Computer Science,
175(4):101–114.

Gautam, A., Bortz, W., and Tatar, D. (2020). Abstraction through multiple representations
in an integrated computational thinking environment. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, pages 393–399.

Kakavas, P. and Ugolini, F. C. (2019). Computational thinking in primary education: A
systematic literature review. Research on Education and Media, 11(2):64–94.

Mirolo, C., Izu, C., Lonati, V., and Scapin, E. (2022). Abstraction in computer science
education: An overview. Informatics in Education, 20(4):615–639.

Qian, Y. and Choi, I. (2022). Tracing the essence: ways to develop abstraction in compu-
tational thinking. Educational technology research and development, pages 1–24.

Silva Junior, B. A., Cavalheiro, S. A. C., and Foss, L. (2021). GrameStation: Specifying
games with graphs. In Proceedings of the XXXII Simpósio Brasileiro de Informática
na Educação, pages 499–511, Porto Alegre, RS, Brasil. SBC.

Silva Junior, B. A., Cavalheiro, S. A. d. C., and Foss, L. (2017). A última árvore: ex-
ercitando o pensamento computacional por meio de um jogo educacional baseado em
gramática de grafos. In Simpósio Brasileiro de Informática na Educação-SBIE, vol-
ume 28, pages 735–744. Porto Alegre: SBC.



Tang, X., Yin, Y., Lin, Q., Hadad, R., and Zhai, X. (2020). Assessing computational think-
ing: A systematic review of empirical studies. Computers & Education, 148:103798.

Tikva, C. and Tambouris, E. (2021). Mapping computational thinking through program-
ming in k-12 education: A conceptual model based on a systematic literature review.
Computers & Education, 162:104083.

Veletsianos, G. and Russell, G. S. (2014). Pedagogical agents. Handbook of research on
educational communications and technology, pages 759–769.

Vieira, J. M. F. and Zaina, L. A. (2021). Learning trajectories visualizations of students
data on the computational thinking context. In Proceedings of the XXXII Simpósio
Brasileiro de Informática na Educação, pages 705–717. SBC.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3):33–35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 366(1881):3717–3725.


