
Exploring a Hybrid Methodology: Experience Report in
Introductory Programming for Computer Science and

Information Systems Courses
Marluce Rodrigues Pereira1, Paula C. F. Cardoso2

Juliana Galvani Greghi1, Joaquim Quinteiro Uchôa1, Renato Ramos da Silva1

1Department of Applied Computing/Institute of Exact and Technological Sciences
Federal University of Lavras, Lavras, Brazil

2Faculty of Computing/Institute of Exact and Natural Sciences
Federal University of Pará (UFPA) – Belém, PA – Brazil

{marluce,juliana,joukim,renato.ramos}@ufla.br, pcardoso@ufpa.br

Abstract. The process of learning algorithms and programming is often a chal-
lenge for many students in courses for undergraduate in Computer Science
and Information Systems. Aiming to increase learning rates, traditional teach-
ing is giving way to new methodologies, known as active methodologies, such
as problem-based learning, flipped classroom, and gamification. This paper
presents an experience with a methodology that integrates all these active
methodologies for teaching introductory programming to freshman students in
Computer Science and Information Systems. The results indicate an improve-
ment in learning, as evidenced by a higher number of students passing compared
to those taught with traditional methods.

1. Introduction
In the context and structure of a computing curriculum, particularly in STEM degrees
(Science, Technology, Engineering, and Mathematics), it is necessary to include an in-
troductory programming course. This course, tailored for novice students, encompasses
problem-solving skills, fundamental programming concepts, the syntax and semantics of
a programming language, and its practical application in developing solutions. Despite
the progress in teaching methods and educational tools for introductory programming,
dropout and failure rates persistently plague such courses. There remains a lack of con-
sensus regarding the primary challenges, as well as a clear and exhaustive categorization
of these obstacles (Medeiros, Ramalho, & Falcão, 2018)

According to Barcelos, Tarouco, and Bercht (2009), students often struggle with
organizing their reasoning, developing problem-solving strategies, maintaining attention,
concentrating, and stimulating mental calculation processes. Consequently, the skills as-
sociated with logical reasoning—such as experimenting, observing, hypothesizing, and
deducing—play a crucial role in learning in this area of knowledge and can significantly
impact the effectiveness of their learning process.

Morais, Neto, and Osório (2020) carried out a systematic review of the literature
and presented the difficulties highlighted by works from several countries. The authors
pointed out that there is a deficiency in students’ competence, mainly in problem-solving,
logical reasoning, and basic mathematics. Students often understand solutions presented

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

72DOI: 10.5753/sbie.2024.241851

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

72DOI: 10.5753/sbie.2024.241851



by the teacher but struggle to reproduce them independently. There is a need for flexible
study time to solve exercises, consolidate knowledge, and maintain motivation to seek
solutions. Additionally, large classes prevent more individualized monitoring and the
implementation of more interesting tasks. It was also noted that potential causes for
students’ difficulties may arise from the nature of programming, the students’ background
and history, attitudes towards studying, and the pedagogical strategies commonly used
in algorithms and programming disciplines. These difficulties can cause failures in the
disciplines of algorithms and programming until dropouts from the course.

Santos, Gorgônio, Lucena, and Gorgônio (2015) discuss that students’ lack of
interest in the content can be more pronounced when they are repeating a course and
reviewing concepts covered in a previous semester. To address this, including comple-
mentary practical activities at the end of some classes—such as using visual and plat-
form programming resources like Arduino—can be crucial for enhancing the teaching
and learning process by boosting student motivation.

In this context, the traditional approach to teaching algorithms contrasts with ac-
tive learning methods. Traditional approaches to teaching algorithms often rely on lec-
tures, textbook readings, and assessment through written exams, which can lead to pas-
sive learning where students receive information without actively engaging with it. Active
Learning (AL), in this turn, is an educational approach in which students are engaged in a
controlled environment, with previous preparation, can actively think and reflect through-
out this process. Three common approaches of AL are problem-based learning (PBL),
flipped classroom (FC), and gamification (GAM) (Pirker, Riffnaller-Schiefer, & Gütl,
2014). These approaches help to develop critical thinking and problem-solving skills,
making the learning experience more dynamic and effective. By actively involving stu-
dents in their education, these methods aim to increase motivation, enhance comprehen-
sion, and reduce dropout rates, addressing many of the challenges identified in traditional
algorithm instruction (Grotta & Prado, 2018; de Moraes, da Costa, & Scholz, 2022; de
Oliveira, da Silva, & Rodrigues, 2022).

Thus, the objective of this paper is to describe an experience report of a hybrid
teaching methodology that combines several active learning strategies in the introduc-
tory algorithms course for undergraduate programs in Computer Science and Information
Systems. Our approach combines PBL, FC, and gamification for the introductory pro-
gramming course using the C++ language. This article is organized as follows: Section
2 has a theoretical background of teaching methodology. Section 3 explains the method-
ology proposed. Section 4 presents the initial results. Finally, Section 5 presents final
remarks and establishes future work.

2. Theoretical background
2.1. Traditional teaching and blended learning
High rates of dropout, failure, and withdrawal have been affecting computer programming
education in undergraduate courses in Computer Science and Information Systems, both
in Brazil and abroad (Zanetti & Oliveira, 2015; de Moraes et al., 2022). There are several
factors that make learning computer programming a challenge, and traditional teaching
approaches have not been able to address this effectively. Traditional computer program-
ming education typically follows a structured and linear format, which includes the fol-
lowing main characteristics: predominantly lecture-based classes led by the instructor;

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

73

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

73



laboratory sessions to provide students with programming practice opportunities; use of
a standard textbook that students are expected to follow; and assessment through written
exams (Grotta & Prado, 2018).

However, especially during social isolation due to the COVID-19 pandemic, ed-
ucational institutions had to explore other teaching approaches and resources, and all
activities had to be carried out remotely, as noted in the works (Silveira, Bertolini, Par-
reira, da Cunha, & Bigolin, 2021; Dias, 2022). The authors pointed out that scenario
brought many practical and technical challenges to be implemented inclusively. From an
educational perspective, there was a need for the rapid production of teaching materials
and monitoring tools for educational activities, incorporating Information and Communi-
cation Technology (ICT). Remote and blended learning have become more common, with
greater use of online tools, learning platforms and digital resources. Furthermore, there
was a greater emphasis on the flexibility and accessibility of teaching, as well as adapting
methodologies to better meet the needs of students in a virtual environment.

Based on the lessons learned during the pandemic, remote and blended learning
have become more common, with greater use of online tools, learning platforms, and
digital resources (de Oliveira et al., 2022). Furthermore, there is a greater emphasis on the
flexibility and accessibility of teaching, as well as adapting methodologies to better meet
the needs of students in a virtual environment. Preuss and de Lima (2023) describe a list of
tools that can help to overcome the adversities faced in introductory programming courses
in the context of remote learning. This increases the debate in the field of education about
the opportunities and challenges of AL in introductory programming courses. Unlike
the traditional approach, AL aims for the effective participation of students and their
engagement through various student-centered methodologies, strategies, approaches, and
pedagogical techniques.

2.2. Problem-based learning
Problem-Based Learning (PBL) is an instructional methodology centered around stu-
dents, where they collaborate in small groups to tackle real-life problems, thereby in-
troducing new learning material. The learning process is predominantly self-directed:
through problem-solving, answering questions, by discussion and analysis, students un-
cover theory via independent reading and study. Evaluation includes self, peer, and
teacher assessment, fostering student accountability (Caceffo, Gama, & Azevedo, 2018;
Goletti, Mens, & Hermans, 2021).

Yew and Goh (2016) provide evidence that the superior performance of students
learning in PBL conditions, as opposed to lecture conditions, has been widely adopted in
diverse fields and educational contexts to promote critical thinking and problem-solving
in authentic learning situations.

2.3. Flipped classroom
In the flipped classroom model, the teacher aids students instead of merely delivering in-
formation, while students take responsibility for their own learning process and manage
their own pace of study. A significant portion of the student learning process is improved
by technologies, which is undertaken before classroom time. Consequently, the teacher
is now able to engage with students through various learning activities such as discus-
sions, problem-solving proposed by students, hands-on activities, and guidance (Akçayır

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

74

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

74



& Akçayır, 2018; Onyema et al., 2021). Akçayır and Akçayır (2018) also stated that,
generally, the flipped model in education yields positive academic outcomes. The major-
ity of reviewed studies reported that the flipped model promotes improvements in student
learning performance. However, there is insufficient evidence to warrant generalization.

For technology courses, the use of the flipped classroom model has been shown
to enhance students’ achievement, self-efficacy, and interaction. It promotes active par-
ticipation in the exchange of ideas and information, which can potentially increase their
interest and foster critical thinking and a deeper understanding of the learning materials.
(Al-Samarraie, Shamsuddin, & Alzahrani, 2020) .

2.4. Gamification
The literature summarizes “Gamification” as “the use of elements design characteristic
for games in non-game contexts”. Dicheva, Dichev, Agre, and Angelova (2015), in their
turn, claim the penetration of the gamification trend in educational settings seems to be
still climbing up to the top. But the majority of nowadays work describe only some game
mechanisms and dynamics and re-iterate their possible use in educational context, while
true empirical research on the effectiveness of incorporating game elements in learning
environments is still scarce.

3. Our approach
The main idea behind our approach was to combine all the positive aspects of AL into a
hybrid methodology for the Introduction to Algorithms course in Computer Science and
Information Systems, implemented over the two semesters of 2023 at the Federal Univer-
sity of Lavras. However, before delving into the methodology and materials developed
by the teachers, some important information about this course is necessary. At the Insti-
tution, the course comprises two hours of remote instruction and four hours of hands-on
classroom sessions, split into two sessions of equal duration. All practical classroom ses-
sions have happened on Tuesday and Thursday. This arrangement, agreed upon with all
course coordinators, where this course is mandatory, kept all classes on the same schedule
and avoid disruptions due to holidays. The semester lasts seventeen weeks.

By the end of the course, it is expected that the student will have acquired the fol-
lowing skills: representing various everyday problems through programming logic; mas-
tering fundamental concepts of programming logic and programming languages for the
construction of simple algorithms; recognizing and mastering the basic elements for al-
gorithm development (logical-mathematical operations and assignment; sequential, con-
ditional, and repetitive structures; modularization and recursion; arrays, strings, matrices,
and records); and properly handling text and binary files, pointers, and dynamic memory
allocation. The programming language used in the course is C++.

Until the second semester of 2022, this course used a traditional teaching method-
ology spanning 17 weeks, with 4 hours per week of theoretical classes in the classroom
and 2 hours of classes in the laboratory. During the COVID-19 pandemic, classes were
conducted online with materials available in a Learning Management System (LMS) and
exercises in an Online Judge Tool (OJT). An additional information, our Institution has
three types to classify a undergraduate student which fails: i) when the student does as-
similate and can not express it at exams; ii) by not attending a minimal classroom and iii)
giving up the classroom in the respective semester or the course.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

75

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

75



3.1. Materials
The course materials are collaboratively produced by the involved teachers. Two systems
are used: a LMS and an OJT developed by the institution where the course is taught. The
LMS is a customized version of Moodle (Modular Object Oriented Dynamic Learning En-
vironment). The teachers use the LMS to provide videos, slides derived from the course’s
basic and supplementary bibliography, lessons with evaluative questions on weekly con-
tent, forums for questions and announcements, and additional materials and tools. Fig-
ure 1 shows the main page of the LMS where students can interact1.

Figure 1. The virtual classroom in the LMS

The course has all classes recorded on video and made available on YouTube2.
There are videos where a teacher explains the concepts and others where exercises are
made to give an idea for the students how to solve similar problems. The slides are
simple, but some changes from the previous one have increased the readability. They are
also used in the recorded videos.

The lessons consist of a set of pages, each ending with questions that can be
multiple choice, true or false, matching, essay, numerical, or short answer, to assess the
studied content. Figure 2 shows an example of a question for the first week.

The Complementary materials and tools section contains information about IDEs,
links to the OJT and the YouTube channel, instructions on how to compile using the IDE

1The figures are in Portuguese because it is the language used in the course.
2Available at https://youtu.be/xbZL11yc8r8?si=Gt1kmGV-E3g 9Cmw

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

76

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

76



Figure 2. Example of Lesson

and command line, among other resources.

The OJT3 is an online system that supports the teaching and learning process of
programming, developed in the Department of Applied Computing at UFLA. It offers
automatic grading support for programs written in C, C++, and Python. The system
employs various types of program graders to evaluate the solutions submitted by students,
assigning a score from 0 to 100 and indicating how correct is the submitted program.

The Figure 3 presents a problem example for the student solve in OJT. The struc-
ture are similar of registered problems in the system. It includes a statement explaining
the problem, examples of input and output, and a section at the bottom where the student
can submit their source file. In the course in question, the primary grader is based on test
cases, which indicates how similar the outputs generated by a student’s submitted pro-
gram are to the expected outputs, based on a set of test cases previously registered by the
instructor (Figure 4). For this particular problem, it is necessary to register at least 12 test
cases in the system, each corresponding to a different month of the year.

In practice, OJT is important in the teaching and learning process as it allows
students a certain degree of autonomy. Through this system, students receive an initial
quantitative assessment of their program’s correctness, enabling them to make correc-
tions, adjust their solutions, and experiment with new evaluations. For example, if the
student did not enter all possible month names to be displayed in the standard output, the
result will be incorrect and the OJT will display the message explaining that ”the amount
of data written by the program is different from the amount of data expected” because the
correct month is missing.

3.2. Methodology

Considering the low performance of students in the course, the experience gained with
online classes, and various reports in the literature, a new methodology was developed.
This methodology includes 4 hours of in-person classes and 2 hours of non-in-person
(online) classes per week. The online hours are mandatory for all students, while the
practical sessions are divided into groups based on the course, with a maximum of 25
students per group, with most of them containing 20 students.

The non-face-to-face (NFF) part of the course takes place in the virtual classroom
of the LMS. Students are expected to develop the ability to organize and study indepen-
dently, bringing their questions to the practical classes. In this approach, students will be
the protagonists of their learning, while the teacher will act as a mediator.

The slides and video lessons were produced to cover the content of one week.

3https://dredd.dac.ufla.br

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

77

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

77



Figure 3. Question example in Online Judge Tool system

Yu and Gao (2022) show that videos with a duration of less than 10 minutes are more
frequently watched in a flipped classroom setting. Therefore, the produced video lessons
are kept short, not exceeding this limit to cover part of the content. There may be more
than one video lesson for each week. The lessons on the LMS consist of a set of pages
to assess the studied content. It is possible to configure navigation between the pages
depending on the student’s chosen response, allowing them to advance to the next page,
stay on the same page, or return to the previous page.

The onsite part of the course takes place in the computer laboratory, with one
student per machine. The goal during this time is for students to solidify their knowledge
and address any doubts. On Tuesdays, gamified activities are conducted using tools like
Kahoot (as also used in de Sousa, Maranhao, Borges, and Neto (2023)), Coding Dojo
(as used by Marinho, Moreira, Coutinho, Paillard, and de Lima (2016); Scherer and Mór
(2020); de Sousa et al. (2023), among others), peer review (Brown, Narasareddygari,
Singh, & Walia, 2019), and individual development exercises to reinforce the week’s
content practically. Students are given problems to solve and can consult the teacher,
course materials, and their peers. Each problem comes with a detailed description, input
examples, and output examples. Each exercise emphasizes the content studied that week
but may also incorporate content from previous weeks. For example, to solve a problem
involving repetition structures, the solution may require reading an input file and using

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

78

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

78



Figure 4. Test case examples for the question in the Figure 3

conditional structures.

In Thursday’s classes, the student will have to individually develop the solution to
a problem and send it to the OJT that performs the correction according to the test cases
registered in the system. In addition, teachers manually review the code submitted by
students and provide feedback to help them understand their mistakes.

The assessment of the course includes NFF activities (lessons), participation in
Tuesday’s activities, completion of Thursday’s activities, two practical tests, and practical
teamwork based on a topic chosen by the team. This team work must meet the specified
requirements to cover the entire course content.

To evaluate the students using the proposed methodology, a new distribution, from
previous semesters, of points was adopted in order to evaluate group (practical project),
collective (Coding Dojo, Kahoot, Peer Review) and individual participation (individual
test), as presented in Table 1. The table shows two sample semesters: the first using
traditional methodology and the last one employing the new approach. In this table, if
the semester has more than one activity with the same name, such as ’Exam,’ a number is
added at the end for better understanding (e.g., Exam 1 and Exam 2).

Semester 2022/1
(traditional methodology)

2023/2
(hybrid methodology)

Evaluation Criteria Activity List 1– 15%
Exam 1 – 25%
Activity List 2 – 15%
Exam 2 – 25%
Practical Project – 20%

Thursdays Activities (Weeks 3 to 7) – 11%
Exam 1 – 20%
NFF Activities (Weeks 1 to 7) – 8%
Thursdays Activities (Weeks 10 to 13) – 9%
Tuesdays Activities – 5%
Exam 2 – 20%
NFF Activities (Weeks 8 to 13) - 7%
Practical Project – 20%

Table 1. Evaluation criteria in traditional and active methodology

It is important to note that there were adjustments in 2022/2, and that 2023/2
shows slight improvements and differences when compared to 2023/1. These adjust-
ments were mostly due to the occurrence of holidays, reducing, for example, the value of
Thursday activities. However, the change in assessment philosophy is noticeable when
comparing these two semesters. The number of evaluative items increased and new ele-

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

79

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

79



ments began to be assessed. Instead of scoring traditional activity lists that were available
for one week, for example, now some evaluated activities highlights the flipped classroom
and the Tuesdays activities are performed in the classroom. With scores more effectively
distributed, it is now possible to assess different aspects of learning more comprehen-
sively, allowing for better engagement with students.

4. Results
Given that various studies have demonstrated the effectiveness of different learning
methodologies in introductory programming courses, the initial goal was to propose a hy-
brid methodology that integrates both remote and in-person classes, along with gamified
activities. Consequently, the results focus on comparing the number of student approvals
under the current hybrid methodology with those from the previous traditional teaching
approach.

One promising aspect was that the diverse forms of assessment encouraged stu-
dents to access materials in the LMS more frequently. Yet, students posted questions
in the discussion forums, answered questions about the subject, and arrived at practical
classes with a better understanding of the material and specific questions. However, some
students still did not develop this habit, often waiting to review or access content only dur-
ing the practical classes. This indicates that there are several aspects where the strategy
could be improved.

Figure 5. Results from traditional methodology and hybrid methodology

Figure 5 presents the results obtained in 2022 with the traditional teaching
methodology and in 2023 with the hybrid methodology. In Figure 5a, there were 106
students, from both undergraduate programs, enrolled on the course in the first semester

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

80

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

80



of 2022. Nearly half of the students failed in the course. In Figure 5b, there were 108 stu-
dents, from both undergraduate programs, enrolled on the course in the second semester
of 2022. Over half of the students failed, for any reason. In Figure 5c, it is shown that
126 students from both undergraduate programs were enrolled in the course during the
first semester of 2023. This was the first time using the proposed methodology, and the
number of failing students was significantly lower compared to previous semesters.

These results encourage us to keep the proposed methodology, with minor adjust-
ments. The results in the second semester of 2023, presented in Figure 5d, are related
to 101 students, from both undergraduate programs, enrolled on the course. There was
a decrease in the number of successful students if compared to the first semester of the
same year. However, the results were not worse than those obtained in 2022.

Although the number of failures have increased in the second semester of 2023,
we believe that the hybrid methodology has brought benefits when considering the total
number of students who passed. There are several possible reasons for this behavior,
further section has a deep discussion about.

5. Discussion
By the results, it’s clear that the approved number of students increases with our method-
ology. However, it needs to be seen with caution because this study needs more deep
analysis. An important aspect to be noticed is that these students are novice, in the first
semester of the undergraduate programs. Some of them are not assured to let the course
to the end. Another important aspect is to know if the student evaluation format works
as a bias, in favor of new methodology. Considering this as the first study is focused on
presenting our ideas and sharing our good perspective.

Despite being described in the course syllabus, we noticed that on Tuesdays, stu-
dents were particularly excited about gamified activities. The gamified activity, specif-
ically using the Kahoot software, sparked enthusiasm among the students and provided
tangible benefits to the learning process. The ability to provide immediate feedback and
identify the class’s difficulties during the game is a significant advantage, allowing for
timely interventions to clarify concepts before moving forward. This not only increases
student engagement but also fosters a deeper understanding of the content.

In most Coding Dojo classes, we use the kake format, where students work in
self-organized pairs (a pilot and a co-pilot), using only one computer and alternating peri-
odically (every 5 minutes). We observed that during the sessions, the co-pilot had to pay
attention to their partner’s coding to avoid being lost when their turn came. Students who
were more adept with the discipline’s concepts would explain the solution construction
to their partner. We can say that the Coding Dojo facilitated learning and collaboration
among the students.

The main activity behind flipped classroom was the activities at Thursdays. On
those days, a list of exercises was made available and each student was randomly selected
with one or two activities, most of them including implementation in the OJT. One nega-
tive result perceived by the teachers is that most students only solved the activities sorted
to them, even with sufficient time to try another problems. This brings us the reflection of
most students couldn’t take the responsibility by their own learning, an important premise
in AL. Yet, those lists were available to practice before the activity day. Unfortunately,

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

81

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

81



great part of the students didn’t use those resource to increase their learning.

These results have shown that the methodology is quite promising, but there are
several aspects to improve and various learning questions to investigate. In a context
where Information and Communication Technologies have a significant impact on educa-
tion, teachers need to continuously refine their strategies to better guide students in their
learning.

Final remarks
The aim of this paper was to report on a hybrid teaching methodology combined with
active methodologies in teaching computer programming introduction. This methodology
was applied over two periods, and although some initial positive results were observed,
it is acknowledged that further investigation is required. It is emphasized that this is not
a closed methodology, therefore adjustments can be made as needed, such as including
other gamified activities or changing the way students are rewarded.

As future work, we plan to collect data on students’ opinions regarding the teach-
ing methodology, gather statistics on material visualization, identify learning profiles, and
map periods of higher and lower student engagement throughout the learning process. As
a methodological challenge, the group of teachers is interested in implementing self-paced
learning, evaluating how to incorporate this approach into a relatively tied-up curricular
structure.

References
Akçayır, G., & Akçayır, M. (2018). The flipped classroom: A review of its advantages and

challenges. Computers & Education, 126, 334–345. doi: https://doi.org/10.1016/
j.compedu.2018.07.021

Al-Samarraie, H., Shamsuddin, A., & Alzahrani, A. I. (2020, 6). A flipped classroom
model in higher education: a review of the evidence across disciplines. Educational
Technology Research and Development, 68, 1017-1051. doi: 10.1007/s11423-019
-09718-8

Barcelos, R., Tarouco, L., & Bercht, M. (2009). O uso de mobile learning no ensino de
algoritmos. Revista Novas Tecnologias na Educação, 7(3), 327–337. doi: https://
doi.org/10.22456/1679-1916.13573

Brown, T., Narasareddygari, M. R., Singh, M., & Walia, G. (2019). Using peer code
review to support pedagogy in an introductory computer programming course.
In 2019 IEEE Frontiers in Education Conference (fie) (pp. 1–7). doi: 10.1109/
FIE43999.2019.9028509

Caceffo, R., Gama, G., & Azevedo, R. (2018). Exploring active learning approaches to
computer science classes. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (pp. 922–927). New York, NY, USA: Association
for Computing Machinery. doi: 10.1145/3159450.3159585

de Moraes, R. P., da Costa, V. F., & Scholz, R. E. (2022). Mapeamento sistemático
do ensino introdutório de programação nos ensinos técnico e superior no Brasil.
Revista Brasileira de Informática na Educação, 30, 628–647. doi: 10.5753/rbie
.2022.2611

de Oliveira, M. G., da Silva, M. F., & Rodrigues, C. B. (2022). Curso hı́brido baseado em
moocs de lovelace e oficinas presenciais para aprendizagem ativa e nobre de pensa-

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

82

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

82



mento computacional e programação. In Anais do XXVIII Workshop de Informática
na Escola (pp. 179–188). doi: https://doi.org/10.5753/wie.2022.225669

de Sousa, J. S., Maranhao, D., Borges, P. V., & Neto, C. d. S. S. (2023). Uma
análise da integração da metodologia ativa coding dojo a uma plataforma de
ensino-aprendizagem de algoritmos. In Anais do XXXIV Simpósio Brasileiro de
Informática na Educação (pp. 127–138). doi: https://doi.org/10.5753/sbie.2023
.234703

Dias, A. I. d. A. S. (2022). Pensamento computacional para gerar soluções inclusivas
no contexto universitário pós-crise da pandemia de covid-19. In Anais do I Work-
shop de Pensamento Computacional e Inclusão (pp. 63–72). doi: https://doi.org/
10.5753/wpci.2022.226879

Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education:
A systematic mapping study. Journal of educational technology & society, 18(3),
75–88.

Goletti, O., Mens, K., & Hermans, F. (2021). Tutors’ experiences in using explicit strate-
gies in a problem-based learning introductory programming course. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education v. 1 (pp. 157–163).

Grotta, A., & Prado, E. P. (2018). Um ensaio sobre a experiência educacional
na programação de computadores: a abordagem tradicional versus a aprendiza-
gem baseada em projetos. In Anais do XXVI Workshop sobre Educação em
Computação.

Marinho, C., Moreira, L., Coutinho, E., Paillard, G., & de Lima, E. T. (2016).
Experiências no uso da metodologia coding dojo nas disciplinas básicas de
programaçao de computadores em um curso interdisciplinar do ensino superior. In
Anais dos Workshops do Congresso Brasileiro de Informática na Educação (Vol. 5,
p. 1097).

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review
on teaching and learning introductory programming in higher education. IEEE
Transactions on Education, 62(2), 77–90. doi: 10.1109/TE.2018.2864133

Morais, C., Neto, F. M., & Osório, A. (2020). Difficulties and challenges in the learning
process of algorithms and programming in higher education: a systematic literature
review. Research, Society And Development, 9(10). doi: https://doi.org/10.33448/
rsd-v9i10.9287

Onyema, E. M., Choudhury, T., Sharma, A., Atonye, F. G., Phylistony, O. C., &
Edeh, E. C. (2021). Effect of flipped classroom approach on academic achieve-
ment of students in computer science. In Data driven approach towards disrup-
tive technologies: Proceedings of midas 2020 (pp. 521–533). Singapore. doi:
https://doi.org/10.1007/978-981-15-9873-9 41

Pirker, J., Riffnaller-Schiefer, M., & Gütl, C. (2014). Motivational active learning: engag-
ing university students in computer science education. In Proceedings of the 2014
Conference on Innovation & Technology in Computer ScienceEeducation (pp. 297–
302).

Preuss, J. O., & de Lima, C. C. (2023). Ferramentas online na aprendizagem de
programação de computadores no contexto do ensino remoto. Revista Brasileira de
Informática na Educação, 31(1), 790–813. doi: https://doi.org/10.5753/rbie.2023

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

83

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

83



.2867
Santos, A., Gorgônio, A., Lucena, A., & Gorgônio, F. (2015). A importância do

fator motivacional no processo ensino-aprendizagem de algoritmos e lógica de
programação para alunos repetentes. In Anais do XXIII Workshop sobre Educação
em Computação (pp. 168–177).

Scherer, A. P. Z., & Mór, F. N. (2020). Uso da técnica coding dojo em aulas de
programação de computadores. In Anais do XXVIII Workshop sobre Educação em
Computação (pp. 6–10).

Silveira, S. R., Bertolini, C., Parreira, F. J., da Cunha, G. B., & Bigolin, N. M. (2021,
maio). Impactos do ensino remoto na disciplina de paradigmas de programação
durante o isolamento social devido à pandemia de covid-19. Revista Gestão e De-
senvolvimento, 18(2), 200–213. doi: 10.25112/rgd.v18i2.2455

Yew, E. H., & Goh, K. (2016). Problem-based learning: An overview of its process and
impact on learning. Health professions education, 2(2), 75–79. doi: https://doi.org/
10.1016/j.hpe.2016.01.004

Yu, Z., & Gao, M. (2022). Effects of video length on a flipped english classroom. Sage
Open, 12(1), 21582440211068474. doi: 10.1177/21582440211068474

Zanetti, H., & Oliveira, C. (2015). Práticas de ensino de programação de computadores
com robótica pedagógica e aplicação de pensamento computacional. In Anais dos
workshops do Congresso Brasileiro de Informática naEducação (Vol. 4, p. 1236).
doi: https://doi.org/10.5753/cbie.wcbie.2015.1236

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

84

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

84


