
Exploring Automata Theory with an Educational Activity
Using Graph Grammar for K-12 Education

Júlia Veiga da Silva1, Braz Araujo da Silva Junior1,
Simoné André da Costa Cavalheiro1, Luciana Foss1

1Technology Development Center – Federal University of Pelotas (UFPel)
CEP 96.010-610 – Pelotas – RS – Brazil

{jvsilva,badsjunior,simone.costa,lfoss}@inf.ufpel.edu.br

Abstract. This paper proposes an educational activity for K-12 Education,
aligned with the Brazilian National Common Curricular Base, which explores
Automata Theory using Graph Grammar. Although several areas of comput-
ing are increasingly integrated into the educational context, the theoretical area
is still neglected. Due to the scarcity of direct approaches in K-12 Education,
this project seeks to bridge this gap. The proposed activity not only develops
a specific National Common Curricular Base skill but also indirectly enhances
Computational Thinking skills.

1. Introduction

Driven by the impact of Computer Science (CS) on daily life, initiatives, and efforts have
emerged to make education in this area available to everyone. Influenced by Wing’s im-
portant work on Computational Thinking (CT) [Wing 2006], the perception of CS educa-
tion has come to understand computing not only as coding or programming but as the abil-
ity to solve problems. Today’s students live in a world heavily influenced by computing,
and many will work in fields that involve or are influenced by it. Therefore, waiting until
students are in college to introduce computing-related concepts is no longer sufficient.
They should begin working with algorithmic problem-solving and computational meth-
ods and tools in K-12 [Barr and Stephenson 2011]. Recent works show the application of
different practices allied to CT in K-12, such as unplugged computing [Chen et al. 2023],
robotics [Cayetano-Jiménez et al. 2024, Ching and Hsu 2023], and even artificial intelli-
gence [Lee and Kwon 2024, Yim and Su 2024, Sanusi et al. 2023].

In 2022, the Brazilian National Education Council approved the Computing Stan-
dards in K-12 education, complementing the National Common Curricular Base (BNCC)1

[Brazil 2022]. CT is one of the three main axes outlined in this appendix. Despite the
recent growth of CT in Brazil [Farias et al. 2023], challenges such as professional devel-
opment, availability of teaching materials, and the application of effective methodologies
must be addressed. Additionally, there is a need to create activities that promote the
development of the objects of knowledge outlined by the BNCC for each level of K-
12. Clarifying, objects of knowledge are the subjects covered throughout each curricular
component, representing the means for developing skills.

1Document that defines the essential knowledge, skills, and competencies that all K-12 students in Brazil
must develop throughout their schooling.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

329DOI: 10.5753/sbie.2024.242502

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

329DOI: 10.5753/sbie.2024.242502



Although computing education has been reignited with the advent of CT and has
expanded into K-12, Theoretical Computer Science (TCS) receives relatively less atten-
tion in this context. A systematic literature review on TCS in K-12 revealed that topics
such as regular expressions, formal languages, and automata theory are much less popular
[Silva Junior et al. 2021]. The works covered several approaches, including digital tools,
traditional classes, and practical activities unrelated to computers, emphasizing problem-
solving as a central element of their educational proposals. However, TCS is underrepre-
sented compared to more popular approaches.

Aiming to make resources available in this overlooked area, this paper presents
an educational activity based on automata theory, a sub-topic within TCS, to develop a
skill outlined in the BNCC computing appendix for K-12. The activity was developed
using GrameStation, a game engine based on Graph Grammar (GG), a formal and visual
language for describing systems and verifying properties. The rest of this paper is orga-
nized as follows: Section 2 presents some related work and differentiates our proposal
from existing ones; Section 3 delves into the theoretical background, exploring concepts
concerning automata theory and GG, besides presenting the game engine GrameStation;
Section 4 introduces our approach, detailing the activity into the GrameStation; Section
5 presents a discussion about the proposal; and Section 6 concludes the paper, presenting
final remarks and outlining potential paths for future research.

2. Related Work

Although not as popular as visual programming languages, some works propose intro-
ducing automata in education. For example, an automata puzzle game was proposed
to introduce automata theory using gamification to primary and lower secondary school
students (9-12 years old) from 36 elementary schools in Japan [Isayama et al. 2016]. In
their research, the authors focused only on the concept of Deterministic Finite Automaton
(DFA). The game has several stages, divided into labeling questions, where students must
define the transitions of a given DFA to recognize the provided inputs, and recognition
questions, where students must identify whether or not a given DFA recognizes a given
input.

A total of 90 children played the game; fifteen were 4th graders, forty-one were
5th graders, and thirty-four were 6th graders. Their actions were recorded in logs, that
consisted of information regarding when and which buttons were selected, and the values
set for those buttons at those times. An analysis of the logs shows that by combining the
labeling and recognition data, approximately 60% of children had correct answer rates of
70% or more of the questions. Thus, many of them understood automata concepts well
enough to complete the game stages. However, the analysis also shows that while some
children in the study (not many) could understand the concepts presented, most of them
did not fully understand it, as 80% or more were unable to discover the characteristics of
the automata in the recognition questions.

In the Brazilian context, activities that work on automata theory in K-12 were
not found, so we will present some examples of activities that work on the topic with
undergraduate students. Some works address the scope of this work [Carvalho et al. 2021,
Tomizawa and Junior 2021, Vieira and Sarinho 2019, Silva et al. 2010, Leite et al. 2014],
and below we detail those that address in more depth the concepts considered in this work.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

330

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

330



“Máquina de Senhas”, Portuguese for “Password Machine” [Vieira and Sarinho 2019],
is a game based on the readaptation of gameplay aspects from the Mastermind game. It
follows this format: an example of an automaton is presented to the player, and a sequence
of symbols accepted by the automaton is generated. This sequence is invisible to the
player. The player must then uncover the hidden sequence from the given automaton.
After each move, the player receives information about their current attempt, including
whether symbols are in common between the played sequence and the hidden sequence,
whether any symbols are in the correct position, and whether the automaton accepts the
suggested sequence. The game presents an increasing level of difficulty in the stages
regarding the complexity of the challenges, increasing the number of characters in the
sequence to be discovered, and the number of symbols in the automaton’s alphabet.

Another game, named “Automata Defense 2.0” [Silva et al. 2010], is an educa-
tional game designed as a pedagogical complement to the Formal Languages and Au-
tomata course. Version 1.0 of the game focuses only on the concept of DFA, while ver-
sion 2.0 expands the content to also include topics on Nondeterministic Finite Automata
(NFA) and Deterministic Pushdown Automata (PDA). The game consists of a tower de-
fense strategy game, challenging players to design automata to succeed. The game fea-
tures diverse types of creatures, and players must eliminate monsters to avoid losing the
score. To do so, they can create towers with automata to attack creatures that have words
recognized by the automata. The game also requires strategic reasoning from players, as
each added state or transition incurs a cost to be paid with virtual money. The research
involved a usability test and a preliminary evaluation of its pedagogical effectiveness. A
total of 26 students completed all stages of the research. The pre- and post-session tests
covered the topics of DFA, NFA, and general theoretical questions. The game was consid-
ered useful as a pedagogical complement but areas for improvement in the interface were
identified, such as providing rules within the game and greater differentiation between
characters in the activity.

Finally, the game “Chomsky’s Mountain” [Leite et al. 2014] is based on Chom-
sky’s Hierarchy, which classifies formal languages into four levels. The game consists of
different environments or stages, each representing a level of the hierarchy. The player
faces problems related to the languages of each level and must build formal models, such
as automata, regular expressions, or grammars, to represent or recognize these languages.
As the player solves the problems, new stages are unlocked, becoming progressively more
challenging. The goal is to reach the top of the mountain, which represents solving all
the problems at all levels of the hierarchy. The study involved administering an electronic
questionnaire to students after interacting with the game. The test included 39 volunteer
students, of whom 19 were enrolled in the Theory of Computation course and 10 had
already completed the course. The results showed that most students positively evaluated
their experience with the game (41% rated it a 10, 26% rated it a 9, and 18% rated it an 8),
considering it helpful for learning the subject. They also reported that the game helped
them better understand concepts and solve problems related to the Theory of Compu-
tation. Regarding difficulties, 38% of students faced some kind of difficulty during the
game, mainly related to first-time access and interpreting some questions. However, most
students said they would prefer to solve Theory of Computation problems through the
game, highlighting the importance of the immediate feedback provided by the game.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

331

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

331



Compared to related work, the activity presented in this paper stands out for its
integration of automata with a formal language, requiring students to manipulate a GG
explicitly. This activity not only develops a BNCC skill but also indirectly contributes
to the development of CT skills. The definition and execution of an automaton through
a GG fosters various CT skills [Silva Junior et al. 2019], including abstraction, where
students must understand an automaton that synthesizes a robot’s behavior and manipulate
a GG that does not define an algorithm as a sequence of steps, but rather as a set of
actions (without a predefined order) that can be performed based on the current context
of the system (the automaton’s state and the current cell of the tape); data representation,
where students must interpret the transition function, tape, and robot through vertices and
edges (graphs); data collection, where students must define the sequence of information
(tape creation) necessary for the robot to fulfill its task; analysis, where students must
evaluate the input tape and identify the robot’s final state; simulation, where students must
execute grammar rules that emulate the robot’s behavior in different situations; and pattern
recognition, where students must define the match for applying GG rules by searching for
the left-hand side of the rule to be applied in the graph representing the system’s state.

3. Theoretical Background
This section presents the theoretical context in which our study is situated. It discusses
the definitions of automata theory (emphasizing DFA) and GG, besides presenting the
tool used to create the activity.

3.1. Automata Theory
An automaton is an abstract model of a system that can follow a specific set of instructions
to perform a particular task. It can be thought of as a machine with a finite set of states that
can read input symbols, transition between states based on the symbols read, and, in some
cases, produce an output. Automata are categorized into different types, such as finite
automata or pushdown automata. However, this work focuses on DFA, a subcategory of
finite automata. Formally, a DFA is defined as follows [Mogensen 2024].

A DFA is a tuple M = (Q, Σ, δ, q0, F ), where: Q is a finite set of states; Σ is
a finite set of input symbols, called the input alphabet; δ : Q × Σ → Q is the transition
function, which maps a state and an input symbol to a new state, but not necessarily
defined for every possible combination of state and input symbol; q0 ∈ Q is the initial
state; F ⊆ Q is the set of accepting (or final) states.

Thus, the automaton reads symbols from an input alphabet and transitions between
states based on these symbols and its transition function, δ. The transition function, δ,
maps a current state and an input symbol to a new state. This transition process occurs
sequentially for each symbol in the input, starting with the initial state, q0. After reading
the entire input string, if the DFA is accepting state (belonging to set F ), then the input
string is accepted by the DFA, indicating that the input is part of the language recognized
by the DFA. Otherwise, if the DFA is non-accepting state or cannot finish reading the
input string, the input string is not recognized by the DFA.

3.2. Graph Grammar
A GG describes a system by modeling its states as graphs (composed of vertices and
edges), and events that can change its current state as a set of graph transformation rules

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

332

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

332



[Ehrig et al. 1997]. A GG must define how its state graph begins, which is called the
initial graph. Additionally, a GG can differentiate and restrict its elements by declaring
them in a type graph. For example, Figure 1 illustrates the type (left) and initial (right)
graphs of the Pac-Man game as a GG. The type graph defines the elements that compose
the game, while the initial graph shows a Pac-Man, a ghost, and fruits on a 3x4 grid
of places, and a counter (pink triangle) related to Pac-Man to count how many fruits
have been eaten. In particular, the Pac-Man game has four rules (Figure 2): PacMove,
GhostMove, PacEat, and GhostKill, each represented by a pair of graphs linked by a
graph homomorphism.

Figure 1. Type graph (left) and initial graph (right) of the Pac-Man game as Graph
Grammar

Figure 2. PacMove (top, left), GhostMove (top, right), PacEat (bottom, left), and
GhostKill (bottom, right)

The pair of graphs representing the rules are the Left-Hand Side (LHS), which
expresses a condition to apply the rule; and the Right-Hand Side (RHS) which expresses
the consequence of applying the rule. In PacMove (Figure 2), for example, LHS defines
the condition of having a Pac-Man in a place that has a way to another, and RHS de-
fines the consequence of removing the Pac-Man from the initial place and placing it in
another. This representation also implies mappings element by element between graphs
(morphisms), so for each element in one graph, it must be said which element (if any) in
the other graph corresponds to it. If an element is successfully mapped, it means the rule
preserves it, such as the Pac-Man from PacMove (Pac-Man is preserved and its mapping
to the place is deleted and created). If an element is left unmapped and is in the LHS, then
the rule deletes it, such as the Pac-Man from GhostKill. If it is not mapped and is in the
RHS the rule creates it. Finally, to apply a rule (that is, change the current system state)
it is necessary to find a match by mapping LHS elements in their corresponding elements
in the state graph.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

333

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

333



3.3. GrameStation

GrameStation [Junior et al. 2021] is a GG-based tool used for creating and running games
modeled according to this formal language. Since games are represented as GG, it also
promotes the development of skills related to CT. These skills are developed both by
the person who creates a game (specifies a GG) and by the person who runs a game
(simulates a GG) [da Silva et al. 2021]. GrameStation is organized into three modules:
Grame Explorer, Grame Builder, and Grame Player (Figure 3). These modules allow
users to find, create, and run games, respectively.

In the tool the type graph corresponds to a declaration area, the initial graph refers
to the game organization when it starts, and the rules represent the possible actions to
be carried out by the player. Finally, to play a game (using the Grame Player module),
the user can select, map, and apply the specified rules during the execution. When a
rule is selected, the LHS and RHS graphs are shown, and the user should find a match
by clicking on LHS elements and then their corresponding elements in the state graph –
GrameStation signals when a match is correct or incorrect.

Figure 3. Explorer (top, left), Builder (top, right), and Player (bottom) modules of
GrameStation

4. Our Approach
In this section, we present the proposed activity. In subsection 4.1 we describe the
methodological steps involved in the conception of the proposal, and in subsection 4.2
we detail the proposed tasks.

4.1. Methodology

The study of finite automata involves several concepts such as states, transitions, and input
tape. Since the target audience for this proposal is primary school students, a gradual
introduction of these concepts is more appropriate. According to Resnick (2017), it is

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

334

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

334



important for an activity to be initially designed with simple objectives and tools (low
floor) while also allowing for expansion to include more complex concepts (high ceiling).
In this context, the methodological steps followed in this proposal were:

1. Choice of theme: we selected a theme that would engage the target audience.
Our goal is to develop a skill that is part of the BNCC CT axis and is intended for
9th-grade elementary school students. Therefore, the educational activity “The
Intergalactic Mission” is a space-themed game designed to teach automata theory
to this audience (K-12 students). The game is set in a future where humanity has
colonized various planets. The player takes on the role of the Explorer Robot,
tasked with helping to colonize a newly discovered planet.

2. Definition of concepts covered in the activity: identifying the key concepts to
be introduced. The activity is based on the BNCC skill EF09C003, defined as the
ability to use automata to describe behaviors abstractly, automating them through
an event-based programming language. In this context, the activity will be de-
signed in stages, each addressing different automaton models. The first stage will
cover concepts related to DFA, including states, (undefined) transitions, initial and
final states, acceptance and rejection, input tape, and recognized language. Sub-
sequent stages will address the concepts of NFA and PDA. For each stage, the
following steps will be followed:

(a) Initial task design: this task will cover the fundamental concepts neces-
sary for understanding the model under consideration.

(b) Design of a task that encompasses all concepts: designing a comprehen-
sive task that integrates the key concepts of the model under consideration.

(c) Implementation of the tasks proposed in the previous items: putting
the previously designed tasks into practice, using GrameStation.

(d) Design of intermediate levels: developing intermediate tasks to bridge
basic and advanced concepts.

(e) Design of more advanced levels: creating advanced tasks to challenge
and deepen understanding.

(f) Pilot case study: application of the implemented tasks to a group of 9th-
grade students to identify potential issues and challenges, as well as to
assess understanding of the introduced concepts.

(g) Redesign and implementation of all tasks: Based on the results obtained
in the pilot case study, adjustments for all tasks will be analyzed. Subse-
quently, the implementation of all tasks will proceed.

(h) Case study: a case study will be conducted with a 9th-grade elementary
school class to evaluate the effectiveness of the entire stage related to the
model under consideration.

In this work, we only focus on the first stage related to DFA. A description of steps
(a), (b), and (c) are presented in subsection 4.2, while steps (d) and (e) are described in
section 5. Steps (f) to (h) are future work.

4.2. Activity: Designed and Implemented Tasks

The first stage is structured in phases, each represented by a DFA corresponding to a
specific task the Explorer Robot must complete. The initial phase focuses on exploring
the planet’s terrain, utilizing sensors to identify safe zones and key natural resources such

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

335

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

335



as water and minerals. This paper will delve into this introductory phase, examining the
first automaton of the initial phase.

The first phase is an introduction, starting with a simple automaton of a small
number of states. The DFA is composed of the following states: Resting–Earth; Travel-
ing–Destination; Resting–Destination; Exploring–Mine; and Traveling–Earth. The initial
state of the DFA is Resting–Earth, where the robot starts the activity on its home planet,
ready to begin the task. The Traveling–Destination state indicates that the robot is en
route to the destination planet for exploration. Upon arrival, the robot enters the Rest-
ing–Destination state, preparing to start exploring the new planet, specifically a mine in
this case. After exploration, the robot transitions to the Traveling-Earth state, meaning
its return journey to the home planet. Transitions between the robot’s states are triggered
by commands To Leave, To Land, and To Explore (“Partir”, “Aterrissar”, and “Explo-
rar” in Portuguese, respectively). The objective is to guide the robot through the DFA
correctly, enabling it to complete the given task.

In the first task, the student receives a completed tape and must, using the appro-
priate rules, identify the state at which the robot should stop when executing the sequence
of commands on the tape. The student then processes and checks the tape to verify if it is
correct. If the robot reaches the state specified by the student, the student can advance in
the game; otherwise, cannot. The tape never contains an invalid command sequence. In
the second task, the student receives the complete automaton, including the final state(s),
and a blank tape to construct the sequence of commands that will lead the robot from the
initial state to one of the final state(s). In this scenario, the player may create an invalid
sequence, resulting in an undefined transition and a “loss” of the phase. Alternatively, if
the robot does not reach a final state by the end of the tape, it also results in a “defeat”.
The student only passes the level if they complete reading the entire tape and end in a
final state.

Figure 4 illustrates the type graph of the activity. There are five possible states for
the robot, with labeled transitions between these states. The yellow bell vertex demarcates
the initial state, the robot is the main character, the spherical vertex with transparency
indicates a non-final state, and the flag vertex represents the final state. There is also a
vertex corresponding to the tape cells, which can contain command symbols or “whites”,
along with a red pointer indicating the current position of the tape cell. Additionally, there
is a vertex indicating an error, which will be explained further in the rules.

Figure 5 depicts the initial graph, showing all states as non-final and with the
robot in the first state (Resting–Earth). The tape’s current symbol icon indicates that the
tape is read from left to right. The stop state vertex (flag vertex) is also included so that,
according to specific rules, the student can determine in which state the task will end.
Figure 6 provides examples of rules that allow the player to designate the stop state in one
of the states. These rules declare that if a state is non-stop (connected to the transparent
vertex), it can be made stop. The edge connecting the state to the non-final vertex is then
removed, and a new edge is created connecting the state to the final state flag. Since there
are five states at this stage, five rules of this type are necessary.

In the first task, the student receives the completed tape and must, in addition to
marking the final state, move the robot through the automaton. To achieve this, transi-

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

336

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

336



Figure 4. Activity type graph in GrameStation

Figure 5. Activity initial graph in GrameStation

Figure 6. Examples of “FinalState” rules

tion rules are defined. Examples of these rules can be seen in Figure 7. If the transition
between automaton states matches the current symbol on the tape, the transition can be
executed. Since there are seven transitions in the automaton presented, seven transition

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

337

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

337



rules are needed. Figure 7 illustrates the transition from the Resting–Earth state to the
Traveling–Destination state (left) and from the Traveling–Destination state to the Rest-
ing–Destination state (right).

Figure 7. Examples of “MoveRobot” rules

In the second task, the student is aware of the final state of the automaton and
must construct the sequence of commands on the tape to guide the robot to this state. In
this case, the initial graph contains the flag vertex related to one or more states and the
tape has only “white” vertices. Therefore, the player must replace the “white” symbols on
the tape with the corresponding action labels. Figure 8 illustrates example rules for this
task. Since there are three types of labels (To Leave, To Land, and To Explore; “Partir”,
“Aterrissar”, and “Explorar” in Portuguese), three rules are required. Figure 8 shows
two of these rules. Once the final state is marked and the tape is filled, the player can
proceed to guide the robot through the automaton with the transition rules.

Figure 8. Examples of “WriteOnTape” rules

Additionally, rules are implemented to handle mistakes made by the player. In the
first task, for example, the error is to finish reading the tape in a state that is not final. That
is when the pointer is marking the last cell of the tape, but the state the robot is in has no
relation to the flag vertex (Figure 9 on the left). In the second task, for example, selecting
a state where the transition does not match the current label on the tape is an error. In this
case, the robot is disconnected from the current state, and an error vertex is displayed on
the screen. Figure 9 (right) illustrates example rules for this scenario. For instance, in the
Error2 rule, the robot is in the Resting–Earth state, but the current symbol on the tape is
To Explore (“Explorar”). Since the only valid transition from the Resting–Earth state is
To Leave (“Partir”), this rule results in an invalid command. In the second task, besides
invalid transitions, it may also happen that the robot does not reach the final state, which
also represents “defeat” in the phase.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

338

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

338



Figure 9. Examples of “Error” rules

5. Discussion

Table 1 presents a brief description of the proposed approaches, listing the covered con-
cepts and highlighting key points to be considered. The tasks already implemented in
GrameStation correspond to approaches 1 and 5. Approaches 6 and 7 will support the
advanced levels.

Within the proposed approaches, alongside computational concepts, they also fos-
ter CT skills. In addition to the relationships already established by Silva Junior et al.
(2019) using GG, it is important to note that the manipulation and specification of au-
tomata also enhance these skills. The use of automata to represent the robot’s behavior
during mission exercises abstraction, specifically through states representing its current
condition and transitions representing actions that can modify this condition. When spec-
ifying automata, students define algorithms using an event-driven language to solve prob-
lems. When defining the tape for the robot to execute a specific mission, they are outlining
the sequence of actions (algorithm) for the robot to accomplish the mission. Furthermore,
to identify the language recognized by an automaton, it is necessary to discern the pat-
terns across various input tapes and generalize the formation rules for all accepted words.
Debugging skills can also be developed when students are tasked with defining an input
tape that guides the robot to complete a mission. This allows students to simulate the tape
processing to verify if the mission was accomplished.

6. Conclusion

This paper presents a proposal for an activity that utilizes automata theory in K-12, specif-
ically using the formal language GG. The activity is designed to be engaging and educa-
tional, aiming to help students grasp the abstract concepts of automata theory through
practical application in an interactive manner. By completing the activity’s phases, stu-
dents not only learn about automata but also develop CT skills, such as abstraction, data
representation, data collection, analysis, simulation, and pattern recognition.

In future work, we intend to expand the activity by including additional phases,
gradually increasing its complexity, besides exploring other types of automata, such as
non-deterministic ones. Furthermore, we aim to test the activity with the target audience:
primary school children.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

339

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

339



Approach Description Comments Automata Concepts
1 Students receive a complete

tape and need to identify the
robot’s stopping state before
simulating the automaton. Af-
terward, they must process the
sequence of labels/commands
on the tape to check if they iden-
tified the state correctly.

The tape never contains
an invalid sequence of
commands.

States and transitions.

2 Students are repeatedly given
the same tape and must specify
an initial state for the automa-
ton. At each iteration, they sim-
ulate the automaton to observe
the state in which the task ends.

Since the tape is the
same, the task may or
may not be completed,
depending on the input.
The result may vary
based on the chosen
initial state.

Initial state and transi-
tions.

3 Students must determine which
state the automaton will reach
after processing a sequence of
symbols and indicate whether
the task will be completed (i.e.,
reaches the final state) or not.

There are two cases: (i)
the word is read and the
automaton stops at a fi-
nal state, and (ii) the word
is read and the automa-
ton does not stop at a final
state.

Acceptance or rejection
of a word.

4 Given a sequence of instruc-
tions, the student must indicate
whether the robot can complete
the task (i.e., whether it is possi-
ble to read the entire tape).

Because the transition
function is partial, it may
not be possible to com-
plete all instructions on
the tape due to undefined
transitions.

Undefined transitions.

5 Students are given a complete
automaton, including the final
state(s), and a blank tape to
construct the sequence of com-
mands that will lead the robot
from the initial state to one of
the final states.

It is possible to create
an invalid command se-
quence, resulting in an
undefined transition.

Initial and final states,
transitions, acceptance or
rejection of a word, and
indefinite transitions.

6 Students must determine the re-
quired instructions to complete
the task by testing different tape
options. Ultimately, they must
identify in a general manner
what is necessary to achieve
task completion.

Students may identify
only a subset of the
language.

Recognized language.

7 Given a language, the students
must construct an automaton
that accepts that language.

The provided language
will be regular, ensuring
it is always possible to
create an automaton that
recognizes it.

Automaton specification.

Table 1. Design of tasks at different levels

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

340

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

340



References

Barr, V. and Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is
Involved and What is the Role of the Computer Science Education Community? ACM
Inroads, 2(1):48–54.

Brazil (2022). Normas sobre Computação na Educação Básica. http://portal.mec
.gov.br/index.php?option=com docman&view=download&alias=
182481-texto-referencia-normas-sobre-computacao-na-ed
ucacao-basica&category slug=abril-2021-pdf&Itemid=30192.
Online. Accessed on March 2024.

Carvalho, F., Junior, M. C., and Costa, Y. (2021). Jogos Educativos no Ensino de
Autômato Finito Determinı́stico: Um Estudo de Caso com o Jogo A Factory Disas-
ter. In Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital,
pages 472–478, Porto Alegre, RS, Brasil. SBC.

Cayetano-Jiménez, I. U., Martinez-Rı́os, E. A., Bustamante-Bello, R., Ramı́rez-Mendoza,
R., and Ramı́rez-Montoya, M. S. (2024). Experimenting with Soft Robotics in Edu-
cation: A Systematic Literature Review from 2006 to 2022. IEEE Transactions on
Learning Technologies, pages 1–18.

Chen, P., Yang, D., Metwally, A. H. S., Lavonen, J., and Wang, X. (2023). Fostering Com-
putational Thinking Through Unplugged Activities: A Systematic Literature Review
and Meta-Analysis. International Journal of STEM Education, 10(1):47.

Ching, Y.-H. and Hsu, Y.-C. (2023). Educational Robotics for Developing Computational
Thinking in Young Learners: A Systematic Review. TechTrends, pages 1–12.

da Silva, J. V., Junior, B. S., Foss, L., and Cavalheiro, S. (2021). Adaptação do pro-
cesso engaged para o desenvolvimento de conteúdos curriculares em uma plataforma
de jogos baseada em Gramática de Grafos. In Anais do XXXII Simpósio Brasileiro de
Informática na Educação, pages 316–327, Porto Alegre, RS, Brasil. SBC.

Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., and Corradini,
A. (1997). Algebraic Approaches to Graph Transformation. Part II: Single Pushout
Approach and Comparison with Double Pushout Approach. In Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 1: Foundations. World
Scientific Publishing Co., Inc.

Farias, E., Lopes, P., Carvalho, W., and Porfı́rio, E. (2023). Análise da Adoção de Pensa-
mento Computacional no Contexto Escolar Brasileiro: Um Mapeamento Sistemático
da Literatura. In Anais do XXXIV Simpósio Brasileiro de Informática na Educação,
pages 1625–1636, Porto Alegre, RS, Brasil. SBC.

Isayama, D., Ishiyama, M., Relator, R., and Yamazaki, K. (2016). Computer Science
Education for Primary and Lower Secondary School Students: Teaching the Concept
of Automata. ACM Trans. Comput. Educ., 17(1).

Junior, B. S., Cavalheiro, S., and Foss, L. (2021). Gramestation: Specifying games with
graphs. In Anais do XXXII Simpósio Brasileiro de Informática na Educação, pages
499–511, Porto Alegre, RS, Brasil. SBC.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

341

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

341



Lee, S. J. and Kwon, K. (2024). A Systematic Review of ai Education in k-12 class-
rooms from 2018 to 2023: Topics, Strategies, and Learning Outcomes. Computers and
Education: Artificial Intelligence, 6:100211.

Leite, L., Sibaldo, M. A., de Carvalho, T., and de Souza, R. (2014). Montanha de Chom-
sky: Jogo Tutor para Auxı́lio no Ensino de Teoria da Computação. In Anais do XXII
Workshop sobre Educação em Computação, pages 110–119, Porto Alegre, RS, Brasil.
SBC.

Mogensen, T. Æ. (2024). Introduction to Compiler Design. Springer Nature.

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity Through Projects,
Passion, Peers, and Play. MIT Press.

Sanusi, I. T., Oyelere, S. S., Vartiainen, H., Suhonen, J., and Tukiainen, M. (2023). A
Systematic Review of Teaching and Learning Machine Learning in K-12 Education.
Education and Information Technologies, 28(5):5967–5997.

Silva, R. C., Binsfeld, R. L., Carelli, I. M., and Watanabe, R. (2010). Automata De-
fense 2.0: Reedição de um Jogo Educacional para Apoio em Linguagens Formais e
Autômatos. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educaçao-SBIE), volume 1.

Silva Junior, B., Cavalheiro, S., and Foss, L. (2019). Revisitando um Jogo Educacional
para Desenvolver o Pensamento Computacional com Gramática de Grafos. In Brazil-
ian Symposium on Computers in Education (Simpósio Brasileiro de Informática na
Educação-SBIE), volume 30, page 863.

Silva Junior, B., Cavalheiro, S., and Foss, L. (2021). Theoretical Computer Science in Ba-
sic Education: A Systematic Review. In Anais do VI Workshop-Escola de Informática
Teórica, pages 133–140, Porto Alegre, RS, Brasil. SBC.

Silva Júnior, B. A. d. (2020). Ggasct: bringing formal methods to the computational
thinking. Master’s thesis, Universidade Federal de Pelotas.

Tomizawa, M. and Junior, M. C. (2021). Automata Toy Factory: Um Jogo Educativo
para Ensino de Autômato com Pilha. In Anais Estendidos do XX Simpósio Brasileiro
de Jogos e Entretenimento Digital, pages 389–397, Porto Alegre, RS, Brasil. SBC.

Vieira, M. and Sarinho, V. (2019). Máquina de Senhas: Um Jogo Digital para o Apren-
dizado da Teoria dos Autômatos. In Anais da XIX Escola Regional de Computação
Bahia, Alagoas e Sergipe, pages 54–59, Porto Alegre, RS, Brasil. SBC.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3):33–35.

Yim, I. H. Y. and Su, J. (2024). Artificial Intelligence (AI) Learning Tools in k-12 Edu-
cation: A Scoping Review. Journal of Computers in Education, pages 1–39.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

342

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

342


