
Explorable Discrete Mathematics: a Python-based
undergraduate-level teaching approach

Marcelo de Gomensoro Malheiros1, Claus Haetinger2

1Center for Computational Sciences (C3) – Federal University of Rio Grande (FURG)

2Institute of Physics and Mathematics (IFM) – Federal University of Pelotas (UFPEL)

mgm@furg.br, claus.haetinger@gmail.com

Abstract. Discrete Mathematics is a foundational yet demanding introductory
subject for Computer Science curricula, where undergraduate students often
have difficulties grasping its concepts and applications. In this work, we de-
scribe our teaching approach, using a programming language in tandem with
math notation, inviting students to explore and learn its main concepts. Our
goal is to build intuition through experimentation: first, evaluating expressions
and running code snippets, then linking the programming constructs to math-
ematical notation, and finally, formalizing the underlying theory. For this, we
detail our methodology and course design covering four major topics: set the-
ory, counting, combinatorics, and propositional logic, presented as a continuous
progression. Compared to the traditional teaching of Discrete Mathematics, we
have quantitatively measured an increase in grades and a reduction of students
dropping out of classes while perceiving an overall smooth learning curve.

1. Introduction

Discrete Mathematics (DM) is a fundamental theoretical topic for Computer Science (CS)
and is usually taught in the first semester of CS undergraduate programs.

Traditional topics like Set Theory or Propositional Logic are presented early
in CS curricula so that higher-level concepts can be built upon later. However, just
like Calculus, it demands an abstraction capacity students may not yet be prepared for
[Mirolo et al. 2022]. This means that students often have difficulties grasping new con-
cepts, abstractions, and formal notation while failing to see a direct link to applications.
Moreover, Discrete Mathematics is traditionally taught within a standard class setting,
with pen, paper, and lots of drill exercises.

In this work, we describe our experience of teaching Discrete Mathematics with a
distinct approach, matured along several editions, where by using an accessible program-
ming environment and gradually increasing language syntax we invite students to play
and explore basic DM concepts1. We aim to build an intuition of how DM “objects” in-
teract, first exercising the mechanics, then linking the programming constructs to formal
notation, and finally formalizing those concepts.

We have observed several advantages of this approach. First, we tap into the con-
current teaching of Algorithms (using Python in a parallel class), reinforcing the concepts

1We made available our course plan and several developed materials, many of them in Jupyter notebook
format, at https://github.com/mgmalheiros/discrete-math/

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2494DOI: 10.5753/sbie.2024.242630

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2494DOI: 10.5753/sbie.2024.242630

https://github.com/mgmalheiros/discrete-math/

shown there, but from a slightly different angle of problem-solving. This provides another
opportunity where first-semester students can play with programming, which is a key mo-
tivation. Also, by using a REPL2 environment, we provide instant feedback for student
exploration. Finally, by carefully planning the topic progression and slowly adding new
programming language syntax, we have observed a smoother learning curve when com-
pared to the standard way of teaching Discrete Mathematics.

Here we lay down our overall course design, and cover in detail four topics: Set
Theory, Counting Principles, Combinatorics, and Propositional Logic. We believe that
this course proposal points to important directions for undergraduate programs, having a
more integrated and gradual introduction to Computer Science theory in the first years.

2. Related work

The disciplines involving Mathematics in Higher Education require a significant amount
of abstractions, as well as knowledge of notations that allow the student to communi-
cate through math language. Such obstacles are projected over the semesters, hindering
their success in subsequent disciplines, and causing retention and evasion in undergradu-
ate programs. Moreover, loss of motivation and difficulty in understanding directly affect
student engagement [Pfitscher et al. 2023]. A study by [Giannakos et al. 2017] identified
gaps in knowledge from basic education, with insufficient hierarchy of concepts, diffi-
culties in understanding and solving problems, and lack of attention and motivation as
important causes for low performance in courses in Computer Science courses.

In [Benton et al. 2018] an alternative teaching methodology was recommend, us-
ing programming to produce pedagogical environments favorable to the development of
learning. The authors highlight the use of intuitive environments and simple program-
ming languages to build relationships between mathematical concepts and the real world.
In [Zampirolli et al. 2020], programming is used as a tool to support personalized learn-
ing, adapted to the objectives and pace of students.

The idea of using Python as a tool for teaching mathematics is not new. In
[Lockwood 2021] the role of computational activity in the development of mathemat-
ical thinking is investigated, specifically examining the generalizing activity of under-
graduate students when solving combinatorial problems using Python. The authors
argue programming provided new opportunities and facilitated learning. The teach-
ing of fundamental calculus concepts through the use of programming is analyzed
in [Kado 2022], which measured significant gains for high-school students who per-
formed coding activities in contrast with a math-only control group. And for teach-
ing Statistics with Python, in particular, there are plenty of initiatives and open books
[Duchesnay et al. 2021, Suzuki and Suzuki 2021, Kenett et al. 2022], to cite a few.

A comprehensive survey of works on teaching discrete structures is presented in
[Power et al. 2011]. Many of the challenges of teaching Discrete Mathematics are ad-
dressed there, like presenting its contents at once and early in the undergraduate course
or splitting its topics into smaller sizes, shown later together with applied computing sub-
jects. Concerning programming, the majority of works suggested that the implementation

2Read, Eval, and Print Loop, named after the steps of an interactive prompt for an interpreted program-
ming language.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2495

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2495

of DM topics through coding is helpful, but it implied having programming proficiency
first. Other works draw parallels to particular languages and DM topics, like functions and
functional languages, albeit at the time of the survey Python was yet a niche language.

More recently, [Liu and Castellana 2021] presented an approach for teaching Dis-
crete Mathematics, adding a language extension to Python which provided additional
tools, with a specific focus on predicate logic. According to the authors, it allowed stu-
dents to understand the concepts precisely, write them rigorously in specifications, and
use them directly in executions. Also, in [Vasconcelos and Guerra 2023] a new approach
is proposed for covering Computing Theory topics through the use of Python libraries in
a Jupyter Notebook environment. The topic of Turing Machines is detailed in the work,
drawing state machines directly derived from the formal definitions.

Differently from early works, in this paper, we focus on a course design that ex-
plicitly matches the gradually learned programming skills to similar math notation, build-
ing a coherent and explorable progression from Discrete Mathematics topics.

3. Course design
In this section we give an overview of our course organization, highlighting our three
major strategies: concurrently teaching Discrete Mathematics and Algorithms (in another
course), careful choice of the programming language and the supporting software tools,
and smooth topic progression following a natural order with increasing complexity.

3.1. Concurrent teaching with Algorithms
In the particular setting of our Discrete Mathematics undergraduate course, only a few
traditional Computer Science topics are covered. The introduction to algorithms and pro-
gramming with Python is done in another course, which occurs simultaneously in the
same first semester. Also, students will continue to use Python in the following semesters.

We have designed our approach to Discrete Mathematics to closely follow the
progression of programming concepts in the Algorithms course, such that as soon as they
were practiced by the same group of students (undertaking both courses), we could use
them as a tool to practice and explore DM concepts. The concise sequence of associated
subjects in the two courses is listed in Table 1.

Table 1. Our subject association between Algorithms and Discrete Mathematics.

Algorithms Discrete Mathematics

types and expressions set pertinence and equality
variables and output set cardinality, inclusion, and operations
input and conditional structure universe, complement, and set properties
loop structure counting principles
sequences and iteration over sequences combinatorics
function definition propositional logic

This is the most important strategy used in our course, as we could at the same time
rely on new programming constructs to build more complex examples and also provide
students with increasingly powerful tools for exploring and solving the problems posed
in each DM subject.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2496

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2496

3.2. Choice of programming language and tools
Of course, the choice of Python as the underlying programming language is also crucial
for our teaching goals.

Python is a modern and mature programming language that has a strong empha-
sis on both readability and coherence. In fact, of the major programming languages in
use today [Ramalho 2022], Python is one with minimum boilerplate code (not needing
initialization constructs or explicit class declaration for simple programs, for instance).
This alone makes Python very friendly to newcomers in programming. Moreover, the ac-
tual design of programming constructs from Python heavily borrows from Mathematics
notation, which was an explicit goal of its creator Guido van Rossum, a mathematician.

For example, Python allows Boolean expressions with multiple comparisons in
a manner that is consistent with general use in Mathematics, like in a < b < c, testing
whether a is less than b and b is less than c. Another distinct design choice as a program-
ming language is the use of arbitrary-precision arithmetic for all integer operations. Due
to Python’s extensive Mathematics library (math) and Linear Algebra third-party libraries
(like NumPy), Python became very popular as a scientific scripting language.

Moreover, due to the recent popularity of Python in many programming fields
[Nagpal and Gabrani 2019], it has been established as one of the leading programming
languages, which is important as the concepts and practices done in the DM course
straightforwardly add up to the programming and problem-solving skills for students.

Another important choice was the programming tools used. For the first half of the
course, we used only Google Colaboratory3, as a simple, distraction-free notebook envi-
ronment with zero setup time. The main gain of Colaboratory (also used at the beginning
of the Algorithms course) is to provide a Read-Eval-Print-Loop (REPL) interface focused
on the interactive execution of small snippets of code. Instead of a full-fledged IDE like
Visual Studio Code, which could be overwhelming in terms of both user interface and
amount of functionalities for novice students, Colaboratory is very spartan. Additionally,
the REPL provides the means to evaluate simple expressions, which is the ideal mode
for experimenting with set relations. By not being file-oriented (as traditional IDEs), but
cell-evaluation oriented, a fast exploratory experience is possible.

In the notebook approach (which can be locally executed using Jupyter4) a single
document can contain all the experimentation done in a class, in chronological order,
without scattering all that was produced by students over several independent .py files.
Additionally, the integrated support of Markdown provides the opportunity to write longer
texts mixed with code, including a much-needed LATEX support for math notation.

As the semester progresses, and again timed together with the Algorithms course,
we switch to the local Thonny5 IDE, now providing both an interactive prompt and a
file-oriented program execution model. This is particularly helpful as the student code
gets complex, we can debug and single-step programs. This helps in comprehending the
actual working of more complex programming language constructs, like sequences or
functions. Thonny, being a novice-oriented IDE, is a perfect choice for that, having an

3https://colab.research.google.com/
4https://jupyter.org/
5https://thonny.org/

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2497

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2497

https://colab.research.google.com/
https://jupyter.org/
https://thonny.org/

uncluttered interface and many helpful features for beginners. For example, it includes a
Variables panel that tracks the values of the current program variables as it is executed.
Another useful feature is a stacked window visualization for function calls, mimicking
the underlying stack frame for nested calls, which helps students understand both the call
mechanics and the scope of parameters and local variables.

3.3. Topic progression

A third important point for our course design is how each of the main topics (Set The-
ory, Counting Principles, Combinatorics, and Propositional Logic) are tied together when
presented in this specific order.

We have very carefully laid out strategies for a smooth transition between these
topics, building new concepts with the explicit usage of previously learned mathematical
concepts and programming structures. We will detail the particular linkage between topics
as we describe their organization in Section 4. For each topic, we introduced each subject
following the following approach:

1. Build intuition through manipulation and experimentation of Python code, with
simple exercises;

2. Connect Python with math notation, with drill exercises;
3. Define each concept formally; and
4. Exercise the whole with more traditional textbook problems, still using Python to

help solve them.

For example, to start building intuition about set inclusion relations, we first pre-
sented students with several variable definitions as in Listing 1. As we have previously
established the concept of element pertinence to sets, we can show new relations, ex-
pressed by the overloaded operators < and <= for sets. Then we let students experiment
which combinations with variables a, A, and, B are valid, and for the valid ones, which
yield truth values, and why.

Listing 1. Python example

a = 1
A = {1, 2, 3}
B = {1, 3}

In this particular case, we used
the similarity with numeric comparison
to establish what kind of relation the
inclusion operators ensues. Then the
mathematical notation of ⊂ and ⊆ were
shown. After a few drill exercises, we then propose new problems in mathematical nota-
tion, still to be solved through experimentation using programming.

Only then the formal definition of set inclusion is presented, followed by the ter-
minology of subsets, proper subsets, supersets, and proper supersets. Further exercises
follow, trying to address edge cases like “what happens for A ⊂ A” or the relations with
the empty set (∅). Finally, we conclude with textbook exercises, again to be solved with
the help of programming but formalized into written form with adequate math notation.

4. Topics covered
Particular care was made when designing the progression of topics, both regarding the
use of gradually available programming language structures and the provision of strong
conceptual links between subjects.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2498

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2498

A brief rationale of our proposed order is given. Namely, Set Theory, Counting
Principles, Combinatorics, and Propositional Logic. We also detail the matching between
mathematical notation and Python syntax, noting some specific discrepancies.

4.1. Set Theory

When introducing Set Theory we first go back to the basics of Number Theory, reviewing
with students how they learned about N, the natural numbers. We then go directly to
the Colaboratory environment and use it as a simple calculator, suggesting a few trivial
addition and multiplication operations, noting that if the operands are natural, the results
are always within N. We also remember students of the peculiar cases of both zero and
one, being the neutral elements for addition and multiplication, respectively. Then we
give a brief overview of the historical time frame for the concept of natural numbers,
and how they cover only a very limited set of human activities, therefore introducing the
subtraction operator.

The strategy, encompassing the full course, is to informally present most topics
from Discrete Mathematics as algebras, in the sense of being a “small contained world
with elements and operations to be played with”. As we add the new operation of subtrac-
tion, the “world” changes and we have newer elements, thus arriving at the Z, the set of
integers. We then continue revising the effects of the inclusion of the division operators
and then proceed to the creation of Q, the set of rational numbers.

Python is particularly useful as we have the dedicated ** operator for exponenti-
ation so that we can delve into positive, negative, and fractional exponents, giving rise to
irrational numbers. After a brief explanation, we arrive at the real numbers, R. From this
starting point, we progress into the following list of subjects, in this specific order:

1. Simple non-empty sets and pertinence, initially using just natural numbers as el-
ements and using Python expressions like 1 in {1, 2} as a direct equivalent to
1 ∈ {1, 2}. Only the evaluation of Python expressions is needed at this time,
which can be done in Colaboratory with a single expression per cell. By now sets
are defined only by extension, that is, by enumerating all of its elements.

2. Set equality and inequality, using the Python operators == and != as direct equiv-
alents to the = and ̸= math counterparts.

3. Inclusion relations, using <, <=, >, and >= as the direct equivalents to ⊂, ⊆, ⊃ and
⊇. Now Python variables (and therefore assignments) are needed to create a few
sets with names like A or B, enabling the testing of many relations between pairs
of these sets. Now more complex output using print can be useful too, producing
one or more output lines per Colaboratory cell.

4. Empty set ∅, which unfortunately has to be created as set(), as Python reserves
the {} construct for an empty dictionary. We reduced the notation inconsistency
by creating a single variable to hold an empty set, appropriately called empty

to highlight it as a special set, stimulating students to understand the peculiar
relations involving it.

5. Cardinality can then be introduced, juxtaposing the |A| math notation to the
len(A) Python syntax.

6. Operations like union, intersection, and difference can now be presented, formal-
izing the concept of disjoint sets. Moreover, a direct visualization within Colab-

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2499

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2499

oratory for Venn diagrams can be made using the matplotlib-venn6 package.
There is a direct mapping from overloaded Python operators over sets (|, &, and
-) to the math counterparts (∩, ∪, and −). We avoid discussing symmetric dif-
ference as Python does not have a specialized operator for it; later on, it can be
explicitly built as a Python function.

7. Universe and complement can be exercised by using a finite universe set and the
difference operator to construct the complement set Ā of a given set A. Now
is a proper time to present set properties like commutativity, associativity, and
distributivity, for example. These properties can be directly evaluated and inferred
by students using conditional Python conditional if and else statements.

8. Important properties like De Morgan’s Laws or the Principle of Inclusion and
Exclusion (|A∩B| = |A|+ |B| − |A∪B|) can be derived empirically by experi-
mentation from several pairs of sets, which provides an interesting class dynamic.

9. Sets of sets is the final subject explored, which suffers a bit from the Python con-
straint where sets can only contain immutable values. This is a bit problematic as
normal Python sets are mutable (yet, we avoid showing the explicit set methods
for adding or removing elements). Therefore we need to explicitly convert a nor-
mal set A to its immutable counterpart with frozenset(A), which is then able to
be added to another set. Still, experimentation over sets of sets is very important,
to develop an intuition of why {2} ∈ {1, {2}} is true while 2 ∈ {1, {2}} isn’t.

4.2. Counting Principles

We then proceed to the principles of counting, with an early and informal presentation
of the multiplicative counting principle (also called the product rule). For that, we con-
nect with Set Theory by introducing the Cartesian product of two sets. In this topic, the
sequence of subjects is presented in the following order:

1. The multiplicative counting principle is visualized by using the product function
from the itertools package. As the returned value is a Python generator, the
simplest approach is to explicitly convert it into a set, as shown in Listing 2, which
creates the expected Cartesian product: C = {(2, 3), (2, 4), (1, 3), (1, 4)}.

Listing 2. Python example

import itertools as it

A = {1, 2}
B = {3, 4}
C = set(it.product(A, B))

2. Ordered pairs are then introduced as a special case of tuples. As in Python, the
matching syntax of (1, 2, 3) is used, and only pertinence, cardinality, and equal-
ity are discussed for tuples. We avoid showing tuple comparison as the relational
operators have very distinct meanings in Python: whereas they denote inclusion
for sets, when applied for tuples they provide lexicographic order, which we be-
lieve could cause student confusion.

6https://github.com/konstantint/matplotlib-venn

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2500

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2500

https://github.com/konstantint/matplotlib-venn

3. Provided students already understand the concept of loops in programming (even
when they have just seen while at this point), now it is a good moment to in-
troduce the more complex way of specifying sets, by comprehension. That is,
now we can define a new set like B = {2 * e for e in A}. This provides
a fit introduction to for as the mechanism to iterate over elements of a given
set. Likewise, the equivalence of loops defined by for i in range(1, 4) and
for i in {1, 2, 3} can be practiced.

4. The multiplicative counting principle can again be addressed, now using nested
loops. Because of the complex syntax, at the teacher’s discretion, a more in-
volved comprehension can be shown to also produce a Cartesian product, as in
C = {(a, b) for a in A for b in B}.

5. The remaining subjects are the other fundamental principles: additive, subtractive,
and again the principle of inclusion and exclusion. All of them can be exercised by
explicitly generating all the possible decisions, which results in sets of tuples, and
using set operations to provide the answer set, which can then be directly counted
using len().

4.3. Combinatorics

The topic of Combinatorics can be directly jumpstarted from the knowledge built previ-
ously using sets and counting principles.

The traditional subjects of arrangements with repetition, permutations, arrange-
ments without repetition, and combinations can all be produced by specialized func-
tions from the itertools module. Respectively, it.product(), it.permutations(),
it.permutations(r), and it.combinations(r), where the r parameter provides the
length of the sequences produced.

With the help of the programming concepts of sequences and indexing, now we
can test particular elements inside a given tuple, being able to filter out individual possi-
bilities in which we are not interested. This opens up many exploration possibilities, like
detecting and dropping all tuples from a Cartesian product that have duplicated elements,
thus producing permutations and arrangements without repetition.

We can also show the similarity and differences between set, tuple, and list in
Python, which provides tools to students to make comparisons where the order is not im-
portant (when converting tuples to sets), and thus making it possible to explicitly construct
combinations.

Finally, Python also provides the factorial function in the math module, which
can be used to explicitly construct the binomial coefficient

(
n
k

)
, to numerically calculate

all possibilities.

4.4. Propositional Logic

Historically we have perceived that many Discrete Mathematics textbooks, like
[Rosen 2007], start with propositional logic. The rationale is to lay its foundations so
that formalisms and theorem proving can be established earlier on. In our experience, this
topic is better suited to be addressed later in the course, so we introduce propositional
logic only after covering Set Theory, Counting Principles, and Combinatorics.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2501

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2501

We even do not go straight up into Propositional Logic, but start with Boolean
Algebra. Again, we intend to recover the concept of algebra as a playground for specific
types of objects and their operations. So the introduction to this topic is done only by
establishing the Python True and False constants, together with the operators not, and,
and or.

A few hours are devoted to evaluating Boolean expressions in Colaboratory, man-
ually creating truth tables on paper, and also showing applications like digital circuits.
Students showed to be particularly interested in logic gate simulators, which can also run
in a web browser and provide quick feedback for simple circuits7 Our goal is to moti-
vate students and develop intuition over the versatility of such a small set of values and
operations.

As before, the bridge to previous topics must be explicitly made, for example,
using a Cartesian product to provide all possible variable values for the evaluation of a
Boolean expression.

As we address the specific notation for Propositional Logic, the already known
operators are presented: negation ¬, conjunction ∧, and disjunction ∨.

For the remaining operators, namely implication →, equivalence ↔, and ex-
clusive disjunction ⊗, we need another programming language construct: function
definitions using the def keyword. Therefore we build along students the functions
implication(p, q), equivalence(p, q), and xor(p, q). For the name of the last
one, we opted to make a direct reference to logic circuits.

More importantly, now we can express a complex logic proposition as a single
function in Python, having as parameters all the needed terms, like p, q, and r. This
makes it possible to interactively test for a given set of Boolean values the result of a
proposition. And we can again use Python to automate some tasks, like building the truth
table for a given proposition when in functional form.

Likewise, we can use automation to store into a Python list all the results when
testing a single proposition, combining them into a single value with the all function,
which is an adequate test for tautologies. In other words, checking whether that proposi-
tion is True under all circumstances.

For example, the expression all([True, False, False, True]) evaluates to
False, meaning it is not a tautology. Again, we can test for contradictions by collecting
all results and applying the function any, verifying whether it is False in all cases. For
example, any([False, False, False, False]) will return False, attesting that the
proposition is indeed a contradiction.

As the topic progresses, the same strategy of generating all possible results and
comparing them can be used to attest logical equivalence and logical implication between
propositions. For example, the code shown in Listing 3 verifies the first De Morgan’s law,
¬(p ∧ q) ⇐⇒ (¬p ∨ ¬q), expectedly outputting True.

7For example, https://logic.ly/demo/.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2502

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2502

https://logic.ly/demo/

Listing 3. Python example

import itertools as it

def equivalent(p, q):
return p == q

def left(p, q):
return not (p and q)

def right(p, q):
return (not p) or (not q)

results = []
for p, q in it.product({False, True}, repeat=2):

r = equivalent(left(p, q), right(p, q))
results.append(r)

print(all(results))

5. Evaluation

We have applied our methodology in two settings: normal in-person classes and remote
teaching during the COVID-19 pandemic. As these settings are very distinct in terms of
social interaction, we will address them separately.

During the COVID-19 pandemic, we had 11 distinct classes of Discrete Mathe-
matics, all through remote teaching. Those classes involved three programs, Computer
Engineering, Information Systems, and Automation Engineering, all provided for novice
students in their first year. We had 356 students registered in total, with six teachers
responsible for those 11 classes. With the flexibilization of teaching methods (either syn-
chronous or asynchronous lessons) and not requiring explicit participation, we have an-
alyzed only the final grade results for those classes. The covered topics were the same,
although teachers had freedom to organize their teaching plans and evaluation procedures.

The overall result during the pandemic is a 40.4% approval rate, with a large
standard deviation of 20.7 over the individual class approval rates. Within those 11 remote
classes, two used the approach described in this paper, both given by a single teacher, with
approval rates of 44.0% (in 2020, for 25 students) and 21.3% (in 2021, for 47 students).
Albeit the approval rate of the first class is similar to the overall mean, we believe that the
method was far from being used successfully, as the class interaction was not done at the
same time and within a laboratory setting, depending on each student motivation to play
and explore by themselves in their homes. By not requiring explicit participation we do
not have class drop-out statistics, however for those two years the overall course abandon
was unusually high, with 54 other students canceling their classes in the first few weeks.

For the in-person classes, we have analyzed the results of six classes post-
pandemic (in 2022) and 12 classes pre-pandemic (from 2017 to 2019), for the same
programs (Computer Engineering, Information Systems, and Automation Engineering).
Here we have information on whether students failed based on non-attendance or by final
grade, therefore we can assess the individual class drop-out numbers. The drop-out gives
a more precise measure of the effects of simply quitting classes, whereas the reproval
rates apply only to those students normally attending classes and failing the exams.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2503

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2503

The overall result during in-person attendance is of 38.8% approval rate, with a
standard deviation of 17.7 over the individual class approval rates. Within those classes,
three used the approach described in this paper, given by two teachers, with approval rates
of 55.4% (in 2022, for 74 students). The other 15 classes, with more traditional teaching
methods, the approval average is 37.1% (covering 728 students).

However, if we do not count the students who dropped out of classes during those
periods, we can measure a more precise reproval rate. That is, of those students who
followed the classes until the end, how many indeed were not able to successfully pass
the exams? For the three in-person classes following our approach, we got an average
reproval rate of only 6.8% (3 students out of 44 that concluded). For all other classes with
more traditional methods, we have an average reproval rate of 28.6% (108 students out of
378 that concluded).

We have measured only a slight decrease in the actual drop-out rates for the three
classes (40.5%) against the other 15 classes (48.1%). We suppose that the similar numbers
are caused by a broader phenomenon of high abandon during the first year, as there is a
strong correlation to similar drop-out for introductory courses. More precisely, the drop-
out rates calculated over the same period (2017, 2018, 2019, and 2022) are Algorithms
(46.9%), Calculus (42.8%), and Linear Algebra and Analytic Geometry (46.1%).

Therefore, we believe a small decrease in drop-out rates and a significant increase
in approval rates can be attributed to a more interesting and significant student experience
using the proposed teaching methodology for Discrete Mathematics.

6. Conclusions
This work aims to use the Python language as a useful tool for Computer Science students
when learning Discrete Mathematics concepts. Here we describe in detail our course
design, focused on exploration and interactivity by using an actual programming language
during classes. We have also analyzed quantitative evidence, which points to significant
gains in approval rates and a slight reduction in drop-out rates.

One of our contributions is the use of progressively complex programming lan-
guage constructs, employed to help the development of Discrete Mathematics topics as
their abstraction increases. We also restate the importance of organizing the major topics
in a fluid and linear sequence, where each new concept is built on top of previous subjects,
formalizing and introducing new notations along the way.

Here we covered a large part of our Discrete Mathematics program, but we have
not found a simple way to use Python with predicate logic and demonstration techniques.
We evaluated a few Python-based theorem provers but found their syntax too distant from
the math notation, which would bring more difficulties for students in already complex
topics. Thus we opted for a traditional presentation with paper-based exercises.

In future work, we plan to perform a more extensive qualitative evaluation of
the learning gains of this approach, measuring engagement, long-term memory, compre-
hension, and practical usage of the mathematical concepts. We also plan to incorporate
automated grading tools for self-study, which can provide additional feedback for stu-
dents. Another possibility is the algorithmic generation of drill exercises, which could
also provide the respective solutions for a grading tool.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2504

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2504

References
Benton, L., Saunders, P., Kalas, I., Hoyles, C., and Noss, R. (2018). Designing for learn-

ing mathematics through programming: A case study of pupils engaging with place
value. International journal of child-computer interaction, 16:68–76.

Duchesnay, E., Lofstedt, T., and Younes, F. (2021). Statistics and Machine Learning in
Python. Université Paris-Saclay, France.

Giannakos, M. N., Pappas, I. O., Jaccheri, L., and Sampson, D. G. (2017). Understand-
ing student retention in computer science education: The role of environment, gains,
barriers and usefulness. Education and Information Technologies, 22:2365–2382.

Kado, K. (2022). A teaching and learning the fundamental of calculus through python-
based coding. International Journal of Didactical Studies, 3(1):15006.

Kenett, R. S., Zacks, S., and Gedeck, P. (2022). Modern statistics: a computer-based
approach with python. Springer.

Liu, Y. A. and Castellana, M. (2021). Discrete math with programming: A principled
approach. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, page 1156–1162, New York, NY, USA. ACM.

Lockwood, E. (2021). Investigating undergraduate students’ generalizing activity in a
computational setting. In Proceedings of the 42nd Meeting of the North American
Chapter of the International Group for the Psychology of Mathematics Education.

Mirolo, C., Izu, C., Lonati, V., and Scapin, E. (2022). Abstraction in computer science
education: An overview. Informatics in Education, 20(4):615–639.

Nagpal, A. and Gabrani, G. (2019). Python for data analytics, scientific and technical
applications. In 2019 Amity international conference on artificial intelligence (AICAI),
pages 140–145. IEEE.

Pfitscher, R. J., Camargo, L. C., Moreira, B. G., Wang, C., Zedral, R., and Garcia, T. R.
(2023). Análise de sentimentos em turmas de programação com vistas ao apoio à
permanência estudantil. In Anais do XXXIV Simpósio Brasileiro de Informática na
Educação, pages 1329–1340. SBC.

Power, J. F., Whelan, T., and Bergin, S. (2011). Teaching discrete structures: a systematic
review of the literature. In Proceedings of the 42nd ACM technical symposium on
Computer science education, pages 275–280.

Ramalho, L. (2022). Fluent python. O’Reilly Media, Inc.

Rosen, K. H. (2007). Discrete mathematics and its applications. McGraw Hill.

Suzuki, J. and Suzuki, J. (2021). Statistical Learning with Math and Python. Springer.

Vasconcelos, D. R. and Guerra, P. T. (2023). Ensinando teoria da computação com jupyter
notebook. In Anais do XXXI Workshop sobre Educação em Computação, pages 9–19.
SBC.

Zampirolli, F. d. A., Pisani, P. H., Josko, J. M., Kobayashi, G., Fraga, F., Goya, D., and
Savegnago, H. R. (2020). Parameterized and automated assessment on an introduc-
tory programming course. In Anais do XXXI Simpósio Brasileiro de Informática na
Educação, pages 1573–1582. SBC.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2505

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2505

