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Abstract. Reading fluency assessment plays a central role in early education
systems worldwide. Countries such as the United States and Brazil adminis-
ter large-scale oral reading assessments to monitor educational outcomes and
guide intervention. However, most of the automatic assessments are often coarse
in granularity. As a result, they are poorly equipped to handle children who do
not yet decode words fluently and instead rely on spelling out individual letters
or syllables. We show that finite-state transducers can be used to detect spelling
to improve oral reading assessments. We demonstrate the effectiveness of our
method on a corpus of annotated child speech, showing that it provides insight
into early decoding strategies.

1. Introduction

Reading fluency assessment plays a central role in K-12 education systems worldwide,
with countries such as the United States and Brazil administering large-scale oral reading
assessments to monitor educational outcomes and guide intervention [Silva et al. 2022].
These assessments are vital for understanding broad trends and identifying schools or
regions needing support. However, a significant challenge arises when evaluating children
who do not yet decode words fluently.

Decoding, the ability to map printed letters to their corresponding sounds, is the
foundational skill upon which fluent reading is built [Gough and Tunmer 1986]. Founda-
tional to this process are letter-sound knowledge and phonemic awareness, i.e., the under-
standing of the relationship between printed letters and their sounds. Research indicates
that early proficiency in these skills is a strong predictor of later reading success and over-
all academic achievement, whereas children who rely on non-fluent decoding strategies
are at greater risk for long-term reading difficulties [Hulme and Snowling 2013]. These
challenges can subsequently lead to reduced reading volume, limited vocabulary growth,
and decreased motivation [Stanovich 1986].

Detecting when a child spells out letters accurately is crucial for early diagno-
sis. Such behavior indicates that the child has acquired some letter-sound knowledge but
struggles to blend those units into fluid word recognition. While deficits in letter-sound
knowledge are causally linked to reading problems, they are also remediable with appro-
priate instruction [Hulme and Snowling 2013]. Assessments capable of capturing letter-
by-letter or syllable-level decoding provide a window into a child’s developing skills, al-
lowing for specific interventions that strengthen foundational competencies and promote
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fluent reading. In contrast, coarse-grained scoring that simply marks any spelled or syl-
labified word as incorrect misses this valuable diagnostic information and delays targeted
support.

Prior work in [Rocha et al. 2024] specifies three fluency profiles: fluent, pre-
reader and beginner. A child’s profile is determined based on the number of words read,
and the fraction of those that were read correctly. The pre-reader profile is further divided
into levels based on the number of words a child has syllabified correctly, and another
based on the number of words a child did spelled correctly. However, most research to
date has employed a binary “correct/incorrect” reading, and hence cannot assess in which
specific sub-level a pre-reader child is in.

In the Brazilian Portuguese setting, this problem is further complicated by re-
gional variation in how letters are named. In particular, in the Northeast of Brazil, people
often use an alternative naming convention for several letters, known informally as the
northeastern alphabet [Luiz Gonzaga and Z¢é Dantas 1987]. Unlike regional accents that
modify the pronunciation of phonemes, this variation involves entirely different phonemic
realizations for letter names.

The objective of this study is to improve the detection of oral spelling in aloud
reading audios from first years students. To that, we show Weighted Finite-State Trans-
ducers (see Section 2) can be effectively used to detect spelling in audios of Brazilian Por-
tuguese children. To the best of our knowledge, this is the first study to apply Weighted
Finite-State Transducers (WFSTs) to this problem for non-fluent Brazilian Portuguese
speakers, demonstrating how this technology can be integrated into large-scale fluency
assessments to provide the granular feedback needed for second-year elementary school
students.

2. Background
In this work we rely on two main ideas: WFSTs and Wav2Vec2.

A WEFST is an automaton that reads an input sequence, generates a corresponding
output sequence, and accumulates an associated numerical weight. Formally, a WFST
consists of a finite set of states and labeled transitions between them [Mohri et al. 2008].
Each transition specifies (i) an input symbol to be consumed, (i) an output symbol to be
produced, and (iii) a weight, which may represent a probability, a penalty or any other cost
metric. As the transducer traverses a path of transitions, it produces an output sequence
and sums the weights along that path, thereby yielding a total cost for the mapping from
input to output.

Because they define a set of valid transductions (mappings from input to output
sequences), FSTs are often referred to as grammars [Mohri et al. 2008]. In this sense, the
FST acts as a formal grammar that defines the rules of a language, where the “language”
is the set of all possible input-output string pairs with their associated weights.

In the context of reading assessment, WFSTs provide an intuitive way to model
different reading patterns. Each reading strategy can be represented as a distinct path
through the transducer. By designing appropriate transitions and weights, we can cap-
ture the characteristic patterns of each reading mode. Additionally, WFSTs can natu-
rally handle common phenomena in children’s reading such as hesitations, repetitions,
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and self-corrections [Kouzelis et al. 2023][Neubig et al. 2012][Guo et al. 2025] through
the strategic use of self-loops and e-transitions (e-transitions allow the WEFST to move
between states without consuming any input symbol, effectively modeling silent pauses
or corrections while still accumulating the appropriate weight). See Figure 1 for an ex-
ample of one of our WFSTs.

gota:gota

<eps>:<eps>

Figure 1. Word goia kernel in grammar GO. In a given transition (e.g. g2:92),
the first part corresponds to the symbol consumed from the input sequence (the
audio), and the second to the symbol outputted by the WFST.

Wav2Vec2 is a self-supervised speech representation model that learns latent
speech features from raw audio without requiring aligned transcriptions during pretraining
[Baevski et al. 2020]. It consists of a convolutional encoder followed by a Transformer
network trained to solve a contrastive prediction task. After this initial self-supervised
pretraining phase, Wav2Vec2 can be fine-tuned for specific tasks with relatively small
amounts of labeled data. For speech recognition tasks, the model is typically fine-tuned
using a Connectionist Temporal Classification (CTC) approach [Graves et al. 2006],
which aligns the model’s predictions with text transcriptions without requiring precise
frame-level alignments. The output of Wav2Vec?2 for a given input audio is a sequence
of frame-level probability distributions P over the vocabulary tokens (which, in our fine-
tuned model, are phonemes). Here we refer to this output as the emission matrix of our
acoustic model.

XSLR [Conneau et al. 2020] is a multilingual extension of Wav2Vec2 trained
to learn cross-lingual speech representations from untranscribed audio in multiple lan-
guages. The model captures language-independent acoustic features that can be fine-
tuned for downstream speech recognition tasks in individual languages, often yielding
strong performance with limited labeled data. In our work, XSLR serves as the acoustic
model that produces frame-level phoneme probabilities, which are then integrated with
our WFST-based decoding framework to detect and classify different reading modalities,
including spelling and syllabification patterns in children’s oral reading.

3. Related Work

Most existing automatic reading-fluency systems focus on “correct versus incorrect”
word-level errors or on high-fluency readers, without modeling the letter-by-letter spelling
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strategies that pre-readers use. In addition, work in Brazilian Portuguese has not ac-
counted for the northeastern alphabet. In what follows, we first summarize WEST-
based approaches to miscue detection in children’s reading and then review recent self-
supervised acoustic models for child speech, highlighting how our method fills these gaps
by detecting spelling patterns in low-fluency readers.

In [Nicolao et al. 2018], the authors proposed a system for assessing chil-
dren’s reading skills by detecting fluency and pronunciation errors. They used a
lightly supervised approach to acoustic modeling based on WFST to model spe-
cific errors such as repetitions, substitutions, and deletions observed in recordings.
[Montoya Gomez et al. 2025] described a model to detect miscues in children’s oral read-
ing using an ASR system with phonemic targets, combined with a WFST to model the
pronunciation lexicon. Their proposed WFST construction handles multiple pronunci-
ations for a given word. This system was evaluated on a corpus of Dutch-speaking
primary school children and outperformed previous results on the same evaluation set.
[Yilmaz et al. 2014] extended a two-layered speech recognition architecture (FLaVoR)
for automatic reading assessment by incorporating a phone confusion model. This model
allows for flexible decoding by considering typical phone substitutions, deletions, and in-
sertions, aiming to improve reading miscue detection, and showed improved performance
on the CHOREC database. However, most of the research has been on detecting miscues
in a coarse manner, and do not attempt to investigate how well a child has read within that
low-fluency class. In this work, we close this gap, first focusing on spelling assessment.
In the Brazilian Portuguese setting, to our knowledge, our work is the first to take the
northeastern spelling into account.

The authors of [Jain et al. 2023] explored various pretraining and finetuning con-
figurations of Wav2Vec2 for self-supervised learning to improve child ASR, finding
that finetuning with even small amounts of child speech data significantly boosts per-
formance on child speech compared to models finetuned only on large adult datasets.
[Block Medin et al. 2024] compared Wav2Vec2, HuBERT, and WavLM for phoneme
recognition in French children’s speech, noting that HuBERT and WavLM performed
better than Wav2Vec2. [Gao et al. 2024] investigated pretrained models, including
Wav2Vec2, for Dutch child speech recognition and reading miscue detection. They
found Wav2Vec2 showed the highest recall for miscue detection, although another
model, Whisper, had better precision. Similarly, in the context of Brazilian Portuguese,
[Ferreira et al. 2022] compared a supervised TDNN model trained on child speech with
a self-supervised Wav2Vec2 model trained on adult speech for assessing children’s read-
ing fluency. They found that while the standard Wav2Vec2 model performed poorly, a
version augmented with a task-specific language model (Wav2Vec2-lm) achieved a Word
Error Rate approximately half that of the TDNN model. Their results showed that for
the constrained task of reading a known text, a powerful language model could help a
model trained on adult speech outperform a specialized model trained on child speech. In
this work, we show that a XSLR model finetuned on child speech can be used in another
context, that of spelling detection and assessment.

4. Materials and Method

This section details the three core components of our methodology. First, we fine-tuned
a pre-trained XLSR Wav2Vec2 model on 26 hours of children reading pseudo-words.
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Second, we developed a spelling dataset from 2000 annotated recordings of second-
graders, capturing four distinct reading modalities and accounting for pronunciation vari-
ants. Third, we constructed and compared three Weighted Finite-State Transducers (WF-
STs) designed to classify these reading modalities by mapping them to unique paths,
incorporating features like self-correction loops and an “unk” token for unknown sounds.

4.1. Wav2Vec2 finetuning

We fine-tuned a pre-trained XLLSR model using a manually annotated corpus of children
reading a list of pseudo-words (nonexistent words that nonetheless conform to Brazilian
Portuguese phonotactics). Our fine-tuning dataset comprises roughly 26 hours of audio,
partitioned into 20.8 hours for training and two 2.6 hour subsets for validation and evalu-
ation.

Training proceeded for 100 epochs. On the evaluation portion of the pseudo-word
dataset, the model achieved a phone error rate (PER) of 0.10. To assess generalization,
we then tested the fine-tuned model on a separate 14 hour corpus of children reading
actual Portuguese words (completely disjoint from the 26 hour pseudo-word set). In this
out-of-domain test, the model yielded a PER of 0.24.

4.2. Dataset construction

Correct Spelled Spelled + Syllabic Syllabic
gota [3¢] [o] [te] [a] [3¢] [2] [9o] [te] [a] [ta] [90] [ta]
pilotu  [pe] [i] [elr] [o] [te] [o] [pe] [i] [pi] [elr] [0] [19] [te] [o] [to]  [pi] [1o] [to]

Table 1. Expected IPA transcriptions of the words Gota, and Piloto under different
reading modalities: correct, spelled, spelled with syllabification, and syllabic.

Our spelling dataset consists of audio recordings of children reading a list of 60
words in order. Audio recordings were collected from a large-scale Brazilian fluency
assessment conducted in 18 Brazilian states, with the aim of assessing second-year public
elementary school students. Two linguists manually labeled the reading modality for all
2000 recordings, and those reading modalities were used to construct paths in our FSTs,
which include paths for different reading modalities: correct reading, syllabic reading,
spelled plus syllabic reading, and spelled reading. Additionally, for each of the 60 words,
we transcribed the expected pronunciation for each modality. For instance, for the words
gota (droplet), and piloto (pilot) the annotated transcriptions can be found in Table 1.

While we included only canonical forms for each modality, children’s actual pro-
ductions often deviated from these templates. In particular, they frequently produced
hybrid forms that mixed different reading strategies. For example, instead of the full
spelled plus syllabic reading [3¢] [0] [go] [te] [a] [ta], a child might produce [go] [te] [a]
[ta]. These mixed forms were not explicitly modeled in this work.

4.3. FSTs construction

In our FSTs, each reading modality corresponds to a distinct path through the transducer,
with sound parts representing state transitions. The collection of reading modalities of
each word give rise to a “kernel” in the FST (see Figure 1). There are no interactions
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Phone Alternative phone Northeastern variation

€ e
o) o}
emi emr me
ent ent ne
3e ge
elr le
3ota 3i
£X1 Xe
€s1 si
ef1 fe

Table 2. Phone mapping employed in this work. For each word in out dataset
in which one of the phones in the Phone column occur, we create a variant of
that word, with the phone replaced by the phones in that row. Enclosing brackets
were omitted.

between the word kernels, so the overall transducer is linear and sparse. During word
reading classification, we prioritize the highest level decoding class.

Our FSTs include several key features: (i) backward transitions to accommodate
self-corrections, which are common in our child reading data; (ii) an e-transition for skip-
ping an word; (iii) support for multiple valid pronunciations of letters, words and sylla-
bles; (iv) an emission matrix modified to explicitly model unknown sounds, as described
in the following.

Since our acoustic model was not originally trained to recognize unknown sounds,
we implemented the following heuristic to provide this capability. Let P be the emission
matrix of our acoustic model, where each column P(-,t) represents a probability distri-
bution over vocabulary tokens at time . We define:

Pmax(t) = max P(i, t).

To detect unknown sounds, we modify the emission matrix by inserting probabil-
ity mass into an “unk” token. When P(e,t) < 0.8 (indicating that the model recognized
some sound), we set the probability of the unknown token as:

P(e,t) if pmax(t) > P(e,t),
0.8 - Pmax(t) otherwise.

P(unk,t) = {

We then set P(e,t) = 0.001. These values 0.8, 0.8, and 0.001 were determined
through hyperparameter tuning conducted on a validation subset of the data. We per-
formed a grid search over a range of candidate values for each parameter and selected the
configuration that maximized F1-score for the spelling class.

Although our main goal is to detect spelled out readings, we still need to encode
the other modalities paths in each WFST. Limiting the decoder to spelling arcs would
force every input through the spelling route, which could inflate recall at the cost of
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precision by mislabeling fluent speech as spelled segments. Including alternative read-
ing routes allows the transducer to match smooth or partially correct utterances to their
intended trajectories, reserving the spelling channel only for true spelled out patterns.
This balanced design upholds precision by keeping non-spelling vocalizations from being
wrongly classified as spellings.

4.4. Classification

To classify the reading modality £ € V for each word 7, we first define E;; as the set of
allowed pronunciations of word i for reading modality k, where |E;;| > 1 accounts for
multiple possible correct pronunciations, and V' is an index set over the reading modal-
ities. Let x; be the output sequence from the FST for word 7. We define an indicator
function:

1, de € Ej suchthat e is a substring of x;, k #n,
Qr(r;)) =1, Jeec E;suchthate =z;, k=mn,
0, otherwise,

where 7 denotes the spelling modality, which requires an exact match rather than a sub-
string match. The final classification is determined by scanning the modalities in decreas-
ing order of reading fluency and selecting the first modality that satisfies our criteria:

ki = min{k : Qp(x;) = 1}.

keV

This approach prioritizes more fluent reading modalities when multiple classifi-
cations are possible. If Qy(x;) = 0 for all reading modalities k, we classify that word
reading as “Wrong”.

The output from our WFSTs looks like: [ go_0, ta_0, kaneta_I, pilotu_2, dadu_3,
ka 4, bi_5, de_6, (...) |. We parse the output by the number suffix, and each z; is sent to
the classifier. For the provided example, xy = [ o, ta |, zo = [ pilotu |. We then scan the
allowed pronunciations F;; of words ¢ = 0 (gota) and ¢ = 2 (piloto) (see Table 1), and
classify them as Syllabic and Correct, respectively.

4.5. FST Variants for Experimental Comparison

To evaluate which modeling choices contribute most to spelling classification, we con-
structed three increasingly sophisticated transducers: GO, G1, and G2.

GO 1s a minimal, linear and sparse FST that includes only the canonical reading
paths for each modality (see Figure 1). Specifically, each word kernel contains a single
IPA sequence per modality, with no alternate pronunciations. There is no explicit “unk”
token. Backward self-corrections are allowed only at the full-word level (no intra-word
loops), and there are no word-skip ¢ transitions.

G1 builds on GO by adding support for multiple pronunciations of letters via the
mappings described in Section 4.1. In this variant (see Figure 2), each kernel includes all
valid alternative phone arcs, which helps tolerate child-specific phonetic variations. We
also introduce e-transitions for skipping entire words. G1 still does not model an explicit
unknown sound (“unk”) token in the emission matrix.
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<eps>:<eps>

gota:gota

<eps>:<eps>

Figure 2. Word gota kernel in grammar G1.

G2 retains all features of G1 and further extends the transducer to handle unknown
sounds and intra-word corrections more robustly (see Figure 3). First, we insert probabil-
ity mass into an explicit “unk” token within the emission matrix (Section 4.3). Second,
self-correction loops are introduced to both spelled and spelled plus syllabic arcs, allow-
ing the FST to accommodate mid-word corrections during spelling. These enhancements
address the common phenomenon of children producing completely unexpected sounds
(e.g., hesitations or sniffs) and self-correcting within words.

<eps>:<eps>

gota:gota

ta:ta

9992 GNK:UNK

UNK:UN ° : 29 (4 99:99 »( 5
= ‘ &) )

UNK:UNK

UNK:UNK UNK:UNK

UNK:UNK
UNK:UNK  UNK:UNK ta:ta

te:te /( 6 \ a:a

UNK:UNK

<eps>:<eps>

Figure 3. Word gota kernel in grammar G2.

5. Experiments and Results

We evaluated GO, G1, and G2 on our test set of 2000 child readings on a set consisting
of 2,000 child speech recordings. The evaluation results, summarized in Table 3, reveal a
clear trade-off: as the grammars become more complex from GO to G2, recall consistently
increases at the expense of precision. The introduction of phone variants in G1 yields a
significant recall improvement (from 0.7786 to 0.8701) while only moderately decreasing
precision, resulting in the highest F1-score of 0.7129. The further addition of unk-loops
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Grammar Accuracy Precision Recall F1-Score

GO 0.5971 0.6523  0.7786  0.7099
Gl 0.6358 0.6037  0.8701  0.7129
G2 0.6320 0.5598  0.9060  0.6920

Table 3. Overall performance metrics (accuracy, precision, recall, and F1-score)
for each grammar variant on the spelling classification task.

in G2 pushes recall to its peak at 0.9060 by capturing more varied utterances, but this
flexibility causes a steeper drop in precision to 0.5598. While overall accuracy remains
comparable between G1 and G2, the more balanced G1 grammar achieves the best F1-
score, highlighting the precision-recall trade-off inherent in our more complex models.

To quantify these shifts, we present in Table 4 the raw counts of true positives,
false positives, and false negatives for each grammar’s Spelling detections. The reduction
in false negatives from 271 in GO to 115 in G2 directly drives the observed recall improve-
ment (0.7786 to 0.9060), meaning that G2 detects 156 more actual spelled readings than
the baseline. Conversely, the number of false positives increases from 508 for GO to 872
for G2, accounting for the decline in precision (0.6523 to 0.5598). In other words, G2
incorrectly labels 364 additional non-spelling excerpts as spelled compared to GO, which
highlights a bias toward over-classification of the Spelling class.

Grammar True Positives False Positives False Negatives

GO 953 508 271
Gl 1065 699 159
G2 1109 872 115

Table 4. Confusion matrix breakdown for the Spelling class, showing how many
spelled readings were correctly identified, how many non-spelling readings were
mislabeled as spelling, and how many spelled readings were missed.

The primary factor underlying these performance shifts appears to be the inclu-
sion of the unk-loops in G2’s spelled-reading path (depicted in Figure 3). These loops
are intended to absorb acoustic uncertainty but they also inadvertently admit a broader
range of non-spelling phonatory events (e.g., disfluent speech or background noise). As
a result, non-spelling utterances with elongated phonation or atypical prosody can satisfy
the relaxed constraints of G2’s grammar, yielding more false positives. In contrast, G1,
which only incorporates phone variants, strikes a more balanced trade-off: it substantially
reduces false negatives (from 271 to 159) without inflating false positives to the same
extent as G2 does.

In summary, introducing phone variants (G1) yields a substantial recall improve-
ment over the baseline (G0) with only a moderate precision penalty, while the further
addition of unk-loops arcs in G2 pushes recall even higher at the cost of accepting more
non-spelling vocalizations as spelled. Given the relative importance of recall in our in-
tended diagnostic context, G2’s configuration is deemed preferable.
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6. Conclusion

This study demonstrated that Weighted Finite-State Transducers provide an effective
framework for detecting oral spelling strategies in young readers. Our best-performing
model achieved high recall by accommodating regional pronunciation variants and de-
coding uncertainties, offering valuable diagnostic insights beyond traditional assessment
metrics. In the following subsections, we discuss the pedagogical implications of these
results, address the limitations of our current approach, and outline promising directions
for future work.

6.1. Discussion

Our results confirm that a WEST-based approach can successfully model and detect spe-
cific oral spelling strategies employed by young readers of Brazilian Portuguese. By
integrating phoneme variants (including regional “northeastern alphabet” letter-naming
conventions), and explicit unk-loops to absorb unexpected sounds, our most advanced
grammar (G2) achieves a recall of 0.9060 for the Spelling class. Given the context of
educational screening (identifying students in risk of poor learning outcomes), where it
is generally considered more important to prioritize sensitivity (recall) over specificity
(precision) in order to reduce the risk of overlooking children who might need support
[Glover and Albers 2007], we opted to favor recall (recognizing that this choice could
come at the expense of some precision). Pedagogically, our approach provides actionable
diagnostic information beyond the traditional binary “correct/incorrect” word-level scor-
ing. Such detailed diagnostic distinctions enable educators to tailor interventions to each
student’s specific decoding profile.

Beyond the specific metrics, our work emphasizes that automatic oral reading as-
sessments must move beyond coarse-grained “fluent vs. non-fluent” labels. By capturing
the continuum of decoding strategies WFST-based systems can better reflect the pedagog-
ical reality of early readers in Brazil.

6.2. Limitations and future work

Despite the promising results, several limitations of our study warrant discussion and
motivate avenues for future research.

Our emphasis on recall inevitably permits a higher rate of false positives, where
wrong or partially correct spelled readings may be misclassified as spell-outs. While
acceptable in a screening context, this trade-off could lead to unnecessary follow-up as-
sessments if used without subsequent precision-focused validation.

We did not perform fine-grained phoneme-level error annotation on the actual
recordings, making it difficult to determine precisely which phoneme variants or unknown
sounds caused misclassifications. Although our phone-variant mapping mitigates some
variability, there remain cases where a child’s nonstandard phonetic realization falls out-
side our predefined mapping or where the acoustic model’s emission matrix fails to assign
sufficient probability mass to the correct phoneme. A detailed phoneme-level labeling
effort would help to systematically identify the most problematic phones for spelling de-
tection and refine both the mapping table and the FST transitions.

While our primary focus was on spelling detection, children produce a variety
of miscues during oral reading. Existing literature [Avila et al. 2009] [Luna et al. 2025]
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identifies phenomena such as “prolonged syllabification,” “phoneme blending errors,”
and “word-skipping hesitations,” each of which may require distinct modeling strategies
within the WFST framework. For example, a child might begin to spell “piloto” as “[pe]
[i]” then switch to a correct phonemic rendering for the remainder of the word. Modeling
such hybrid miscues in a fine-grained way would improve diagnostic specificity but also
complicate the transducer design.

Although our classification metrics indicate that G2 yields high recall for spelling
detection, the ultimate goal is to inform pedagogical practice. In practice, WFST-based
decoding feedback could be embedded into existing large-scale fluency assessments or
classroom diagnostic tools, automatically generating reports that highlight whether a child
predominantly spells, syllabifies, or blends phonemes. Such information can orient teach-
ers toward targeted strategies (for example, focusing on phoneme blending when spelling
predominates, or reinforcing letter—sound correspondences when syllabification errors are
frequent). We have not yet measured whether and how providing this feedback leads to
improved instructional decisions or better student outcomes. Future experiments should
integrate our system into classroom workflows, collect teacher feedback on the usability
of these reports, and evaluate whether interventions informed by fine-grained decoding
profiles accelerate reading acquisition compared to standard fluency assessments.

Finally, it is important to note that our experiments were conducted using a single
WEST architecture, selected after preliminary tests indicated superior performance rela-
tive to other simple configurations. We did not exhaustively explore alternate transducer
topologies and it remains an open question whether these could yield further gains in pre-
cision or recall. Future research should systematically investigate a broader range of FST
architectures to determine which designs most effectively balance robustness to acoustic
variability with the pedagogical need for high recall in early decoding detection.
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