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Abstract. This study examines the role of generative Artificial Intelligence (Al)
in programming education through a systematic literature mapping of 52 stud-
ies across seven databases. Our analysis reveals three distinct functional roles
for Al: collaborative participant, support tool, and pedagogical mediator. We
compare Al-enhanced programming instruction with traditional teaching meth-
ods, finding shifts in pedagogical approaches, communication, and cognitive
engagement. The research identifies key challenges spanning technical, peda-
gogical, ethical, and assessment dimensions. We propose a functional classi-
fication framework for Al roles and offer recommendations for responsible Al
integration in programming education.

Resumo. Este trabalho examina, por meio de um mapeamento sistemdtico da
literatura, como a Inteligéncia Artificial (IA) generativa tem apoiado a apren-
dizagem de programagdo. A andlise de 52 estudos em sete bases de dados
revelou trés fungoes principais da IA: participante colaborativo, ferramenta
de suporte e mediador pedagogico. O estudo compara abordagens assistidas
por IA com métodos tradicionais, identificando transformacdes nos modelos
pedagogicos, comunicagdo e engajamento cognitivo. A pesquisa mapeia de-
safios técnicos, pedagogicos, éticos e avaliativos. Propde-se uma classificagdo
funcional para os papéis da IA e recomendacdes para integracdo responsdvel
no ensino de programagdao.

1. Introduction

Research on generative Artificial Intelligence use in computing education has intensi-
fied since 2023 [Becker et al. 2023]]. These solutions, based on Large Language Models
(LLMs), employ Natural Language Processing (NLP) techniques grounded in deep learn-
ing, enabling them to autonomously learn grammar, semantics, and pragmatics, as well
as to generate a wide variety of content [Zhou et al. 2025]].

In programming education, this technological convergence presents unique char-
acteristics. The increasing adoption of generative Al chatbots, such as ChatGPT, and
code assistants, such as GitHub Copilot, has been reshaping the landscape of program-
ming education [[Vadaparty et al. 2025]], transforming how people learn to program and
how educators teach introductory computer science courses [Puryear and Sprint 2022].
A transition has emerged from traditional, human-only programming practices to inter-
actions mediated by Al, in which humans and Al systems collaborate on programming
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tasks [Ma et al. 2023]]. This rapid technological incorporation calls for research into its
specific pedagogical impacts.

The literature has addressed this phenomenon using a range of terminology that re-
flects different perspectives on usage. For task-specific support, terms such as Al-assisted
programming [Barke et al. 2023]], Al-aided programming [Paludo and Montresor 2024/,
and Al-supported programming education [Yilmaz and Karaoglan Yilmaz 2023|] are
found. For sustained collaborative interactions, expressions such as Al pair pro-
gramming [Bird et al. 2022, [Chen 2024]], human—AlI pair programming [Ma et al. 2023,
Jiang et al. 2025]], Al-powered pair programmer [Al Madi 2023]], and Al programming
partner [Kuttal et al. 2021]] are commonly used. In both contexts, Al offers suggestions,
refines solutions, and, in some cases, adapts to the task’s context. Despite the differences,
these approaches converge in recognizing Al as a mediator in the learning process, with
the potential to transform pedagogical and cognitive practices.

Despite significant research growth, the literature reveals important gaps in the
investigation of the specific functions that Al assumes in programming education, as well
as in the structured comparison of its pedagogical impacts in relation to traditional ap-
proaches. Studies that systematically map these aspects and identify emerging challenges
are essential to inform evidence-based educational practices. To address these gaps, this
study, conducted through a systematic literature mapping (SLM), investigates how gener-
ative Al has been applied in programming education, focusing on the identification of its
functions, comparison with traditional approaches, and analysis of the main challenges.

To this end, Section [2] presents related work and outlines the originality of this
study; Section [3| describes the methodological protocol, including selection criteria,
search strategies, and data extraction procedures; Section |4 organizes the findings around
the three research questions, discussing their implications and limitations; finally, Sec-
tion [5] summarizes the study’s contributions and offers recommendations for advancing
the field.

2. Related Work

The application of generative Al in programming education has attracted growing inter-
est; however, studies focusing on Al functions in collaboration, comparisons with tradi-
tional approaches, and specific challenges remain limited. Silva et al. [Silva et al. 2024
conducted a mapping study focused on educational experiences involving generative Al,
classifying the studies into five distinct categories and identifying potential benefits such
as automated feedback, support for problem-solving, and personalized examples, while
also pointing out challenges related to the variability of Al responses.

Manorat et al. [[Manorat et al. 2025]] conducted a review on the use of Al and
machine learning in higher education programming courses, covering intelligent tutoring
systems, automated code grading, recommendation engines, and learning support sys-
tems. The study presents a functional taxonomy of the systems analyzed and empha-
sizes the need for further research into cognitive and pedagogical aspects. Liu and Li
[Liu and L1 2024 organized a thematic review exploring automatic code generation tools
applied to education, highlighting four key dimensions: technical, pedagogical, usability,
and ethical. The authors propose a framework to evaluate these tools based on criteria
such as adaptability, explainability, and safety.
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This study distinguishes itself as a systematic mapping focused on Al-assisted
programming with generative Al, proposing a functional taxonomy—collaborative par-
ticipant, support tool, and pedagogical mediator—and offering a structured comparative
analysis between traditional and Al-mediated approaches. Additionally, the study system-
atizes the main challenges in the field, organized into six categories: technical, pedagogi-
cal, communicational, ethical, institutional, and assessment-related. The findings provide
evidence of how Al reconfigures traditional collaborative dynamics, contributing to the
advancement of future research and the development of responsible educational practices.

3. Methods

A Systematic Mapping Study (SMS), also referred to as a scoping study, is a comprehen-
sive review of primary studies in a specific area, aimed at identifying available evidence
on a topic [Kitchenham et al. 2007]] and determining whether there are subtopics that re-
quire further investigation [Felizardo et al. 2017].

The SLM protocol was adapted from the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) model, originally developed for systematic
reviews on the effects of interventions in the healthcare field. However, the model is also
recommended for systematic reviews in other areas, provided they involve mixed methods
that include quantitative and qualitative studies [Page et al. 2021]. The adoption of the
PRISMA protocol aims to ensure transparency, methodological rigor, and reproducibility
in conducting this investigation.

Based on the need to deepen understanding of how generative Al has been used
in programming education and what current challenges exist in this field, three research
questions were defined: RQ1: What are the main functions of generative Al systems in
programming education? RQ2: How does literature compare traditional collaborative
programming with Al-assisted approaches? RQ3: What are the main challenges identi-
fied in the literature concerning programming education assisted by generative Al?

This set of questions was designed to support discussions on the transformations
introduced by the use of generative Al in programming learning processes. These three
questions enable a focused mapping both on identifying the roles currently played by
generative Al and on the pedagogical changes resulting from its adoption, in contrast to
traditional practices, while describing the main obstacles to be overcome for advancement
of the field.

To support the selection and quality of analyzed evidence, specific inclusion and
exclusion criteria were applied. To be selected, a study should explicitly address the
use of generative Al in programming learning. Works unrelated to the central theme,
publications in languages other than Portuguese and English, studies published before
2020, publications that were not complete articles, and duplicate works were excluded.
Although systematic mappings traditionally prioritize peer-reviewed publications, the in-
clusion of the ArXiv repository was justified by the emerging nature of the field, where
relevant studies are first made available as preprints and leading journals accept submis-
sions previously available on ArXiv, ensuring broader coverage of the most recent studies
with the same quality criteria applied to other publications. The 5-year timeframe (2020-
2025), more restrictive than usual in systematic mappings (10-15 years), was established
considering the emerging nature of generative Al applied to programming.
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The search for publications was conducted across seven databases relevant to the
fields of Computer Education and Artificial Intelligence: ACM DL, DBLP, IEEE Xplore,
Science Direct, Springer, SOL, and |ArXiv. The search was configured by adapting the
search strin to available parameters in each database’s search options, adjusting syntax
to accommodate specific requirements and operators of each platform while preserving
the structure of essential elements. The specific string adaptations for each database are
documented in the Supplementary Materia]ﬂ to ensure research transparency and repro-
ducibility.

The selection process was conducted independently by two researchers, following
sequential filters. In the first filter, titles and abstracts were analyzed to verify exclusion
criteria. In the second filter, articles were read to verify inclusion criteria and relevance to
research questions. The Porifera tool was used to assist in constructing the search string,
defining criteria, importing results from databases, and recording filtering decisions. The
results of the applied filters are also detailed in the Supplementary Material.

Information extraction was supported by the Google NotebookLM tool for pre-
liminary identification of relevant elements in the texts. The extraction prompts were
designed, tested, and iteratively refined, with the final prompts used and raw results doc-
umented in the Supplementary Material. The quality criterion established was that the
volume of relevant information automatically extracted should exceed 90% of the content
obtained through complete reading and manual extraction of a set of 8 papers (approxi-
mately 15% of the selected studies). To ensure that critical information was not omitted,
the researchers conducted manual verification of the selected papers, complementing and
correcting the automatic extractions when necessary.

4. Results

The systematic search across the seven selected databases identified a total of 495 pub-
lications. The distribution of works by database was: Scopus with 236 studies (47.7%),
DBLP with 97 (19.6%), ScienceDirect with 77 (15.6%), IEEE with 34 (6.9%), arXiv with
19 (3.8%), ACM with 18 (3.6%), and SOL with 14 (2.8%). After removing 86 duplicates
(17.37% of the initial total), 409 unique publications remained for analysis.

Based on the inclusion and exclusion criteria defined in Section |3} the execution of
the first filter (title and abstract analysis) rejected 305 studies (61.62% of the initial total),
leaving 104 publications considered potentially relevant. In the second filter, after in-
depth reading of the works, an additional 52 studies were excluded (10.51% of the initial
total), resulting in 52 publications selected for final analysis (10.51% of the initial total
identified). Information extraction was supported by the Google NotebookLM tool, with
the prompts used and raw extraction results presented in the Supplementary Material, and
the 52 selected works are available in a public foldelﬂ The following sections present the

IThe base search string used was: ((“programming” AND (“pair” OR “collaborative” OR “in teams)
OR “social coding”)) AND (“artificial intelligence” OR “AI” OR “generative” OR “large language model”
OR “LLM” OR “code assistant” OR “automatic code completion” OR “code completion”) AND (“teach-
ing” OR “learning” OR “education” OR “instruction” OR “computer education’).

2Supplementary Material available at: https://encurtador.com.br/umdQ5

3Folder with the 52 selected works available at: https://drive.google.com/drive/
folders/1oxLii0LC6VV1H3zZvgqJuYeNIWMbL8XcW?usp=sharing
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responses developed for each of the three research questions that guided this systematic
mapping.

4.1. What are the main functions of generative Al systems in programming
education?

The analysis of the selected studies identified three main functions performed by genera-
tive Al in programming education: Collaborative participant — Al systems that actively
participate in programming tasks, assuming driver/navigator roles [Williams et al. 2000]
and engaging in continuous dialogue; Support tool — Al systems activated on-demand
to provide specific assistance such as code generation or debugging help, without contin-
uous interaction; and Pedagogical mediator — Al systems designed to facilitate learning
through adaptive scaffolding, progress monitoring, and personalized feedback.

Table (1| presents the consolidated classification of the studies according to the
function performed, as described above. The first column indicates the Al function cate-
gory and the number of SMS studies assigned to each category, while the second column
lists the references of the studies classified under each function.

Table 1. Distribution of studies according to identified Al functions in program-
ming education

Classification Studies
(count)
Al as a collaborative | [Al Madi 2023 |Imai2022, |Robeetal. 20221 [Manfredi et al. 2023l  |Vadaparty et al. 2025|
participant in pair pro- | [Domingo 2023| |Chen 2024 [Bird et al. 2022} |Gérecki 2024, Zhang et al. 2024, |Hassany et al. 2024,
gramming (23) Ma et al. 2024, [Zhang et al. 2023, |Dos Santos and Cury 2023} |Kuttal et al. 2021, [Ma et al. 2023\
Valovy 2023| Wang et al. 2025| Valovy and Buchalcevova 2023| Robe and Kuttal 2022,
Wei et al. 20241 Jiang et al. 2025| [Kazemitabaar et al. 2023

Al as a support tool | [Phung et al. 2023| Piccolo et al. 2023\ Carvalho and Oliveira 2024} Asare et al. 2023|
23) Puryear and Sprint 2022, |Barke et al. 2023 |Dibia et al. 2023 [Bani¢ et al. 2023| [Rao et al. 2024,
Simaremare et al. 2024} Moradi Dakhel et al. 2023} Yilmaz and Karaoglan Yilmaz 2023}
Groothuijsen et al. 2024} Amoozadeh et al. 2024, De Silva et al. 2024} Bassner et al. 2024,
Nguyen and Nadi 2022 Jiang et al. 2023} |Chan et al. 2023\ |Rasnayaka et al. 2024, |Feng et al. 2024a,
Sarkar et al. 2022, [Zhou et al. 2025]

Al as a pedagogical | [Norton et al. 2024, Zhang et al. 2025| Yang et al. 2025} Paludo and Montresor 2024,
mediator (6) Tang et al. 2024 [Feng et al. 2024b]]

Figure 1| provides an integrated view of the main challenges, benefits, and spe-
cific characteristics associated with each function, offering a holistic perspective on the
pedagogical potential and limitations of each identified approach.

Analysis of the selected studies characterizes each function based on methodolog-
ical approaches, technologies employed, and observed learning outcomes.

Studies classifying Al as a collaborative participant mostly describe systems
developed by the researchers themselves, often integrating LLMs through commercial
Application Programming Interfaces (APIs), such as GPT. These systems were designed
to operate in a continuous, adaptive, and dialogic manner throughout the programming
activity.

The functions performed include: (i) automatic code sharing and regeneration
based on the collaborative context [Feng et al. 2024a]]; (ii) acting as a virtual driver
or navigator in immersive environments [Gorecki 2024, Manfredi et al. 2023]]; (iii) ex-
ecuting tasks of explanation, correction, and validation in iterative debugging cycles
[Ma et al. 2024]; (iv) simulating human pairing dynamics through structured dialogue
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Figure 1. Functions performed by generative Al in programming education

[Robe and Kuttal 2022, Jiang et al. 2025]]; and (v) offering continuous real-time code sug-
gestions [Bird et al. 2022, Imai 2022].

The learning impacts include improved productivity, with a higher number of lines
of code produced [Imai 2022]], and reduced social anxiety compared to working with hu-
man peers [Kuttal et al. 2021]]. Comparative studies indicate that students paired with Al
achieved performance levels equivalent to those of human pairs [Robe et al. 2022], al-
though some reported a lack of dynamic engagement, describing the experience of work-
ing with Al as “talking to our own thoughts” [Simaremare et al. 2024]].

Studies describing Al as a support tool characterize its use as occasional, reac-
tive, and centered on resolving doubts, providing conceptual explanations, or generating
code on demand. In this category, Al is triggered by the student at specific moments
during the programming activity, without maintaining continuous interaction.

The functions include: (i) code generation based on natural language de-
scriptions through specific prompts [Puryear and Sprint 2022, Nguyen and Nadi 2022];
(i) offering suggestions such as intelligent autocompletion or exploration of alter-
natives [Barke et al. 2023|]; (iii) automatic creation of exercises and educational con-
tent [Chan et al. 2023]]; (iv) automated debugging triggered after compilation failures
[De Silva et al. 2024]; and (v) explanation of concepts and provision of code snippets
[Yilmaz and Karaoglan Yilmaz 2023, Groothuijsen et al. 2024]).

GitHub Copilot is the most widely studied tool, integrated into environments such
as VS Code to provide real-time suggestions. Studies reported that it was capable of solv-
ing most introductory tasks [Puryear and Sprint 2022]]. The impacts include reduced time
to complete tasks [Rasnayaka et al. 2024]], improved algorithmic thinking by freeing time
from routine tasks [Yilmaz and Karaoglan Yilmaz 2023]], and enhanced conceptual un-
derstanding [Groothuijsen et al. 2024]]. However, some studies identified risks of overde-
pendence and limitations in adapting to specific contexts [Moradi Dakhel et al. 2023]].

Studies that classify Al as a pedagogical mediator describe systems specifically
designed to facilitate the learning process through adaptive scaffolding, which consists of
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structured and temporary support tailored to the student’s level, progress monitoring, and
personalized formative feedback, with an emphasis on developing cognitive and metacog-
nitive skills.

The functions include: (i) providing contextualized hints and guidance based on
the current state of the code [[Yang et al. 2025]; (ii) facilitating the process through the five
stages of computational thinking [Zhang et al. 2025]; (iii) promoting reflective learning
through critical editing of generated code [Paludo and Montresor 2024]; (iv) offering per-
sonalized feedback at multiple levels of difficulty [Norton et al. 2024]; and (v) delivering
tutoring adapted to the specific context of the course [Feng et al. 2024b]].

The reported impacts indicate promising outcomes in metacognitive development.
Students exhibited fewer off-task behaviors, increased focus on iterative refinement, and
broader exploration of cognitive dimensions [Zhang et al. 2025]. The RAP Lab signifi-
cantly enhanced metacognitive awareness and deepened students’ understanding of prob-
lems [Paludo and Montresor 2024]], while CourseAssist stood out by providing responses
considered more useful, accurate, and pedagogically appropriate than those generated by
generic models such as GPT-4 [Feng et al. 2024b].

The diversity of studies shows that, although the support tool function still pre-
dominates in the literature, an increasing number of proposals explore Al as a collabora-
tive partner in the coding process. At the same time, a third perspective is emerging that
positions Al as a pedagogical mediator, focusing on the educational process and the de-
velopment of metacognitive skills. This evolution suggests a hybrid learning ecosystem,
where different Al approaches may be integrated in a complementary way to address the
diverse needs of programming teaching and learning.

4.2. How does literature compare traditional collaborative programming with
Al-assisted approaches?

The analyzed literature provides evidence for comparing traditional collaborative pro-
gramming practices (pair programming) and those mediated by generative artificial intel-
ligence. Most selected studies do not perform direct or systematic comparisons between
these approaches. Nevertheless, available descriptions allow for identification of differ-
ences in learning experiences.

To systematize this comparative analysis, the observed aspects were organized into
six categories: (1) organizational aspects, (2) pedagogical aspects, (3) socio-emotional
aspects, (4) cognitive engagement and metacognitive strategies, (5) methodological char-
acteristics of studies, and (6) communication. These categories emerged from a hybrid
approach that combined existing frameworks from the literature with inductive analysis
of the collected data. The technical, pedagogical, and ethical dimensions were initially
inspired by the framework proposed by Liu and Li [Liu and Li2024], while the com-
munication and socio-emotional categories were identified during thematic analysis of
the primary studies, reflecting specific characteristics of generative Al tools in the edu-
cational context. These categories are detailed in Table [2| which summarizes the main
contrasts between the two approaches.

Regarding the organizational aspects, the main change is the elimination of
the need for coordination between two students. Systems such as Generative Co-
Learners (GCL) use Al agents to act as co-learners in asynchronous environments
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Table 2. Comparison between traditional pair programming and Al-assisted pro-

gramming, organized into six ana

lytical categories

Category | Traditional

| Assisted by Generative Al

[ Organizational Aspects

[Valovy and Buchalcevova 2023]).

Pair formation Pairing between students based on | Elimination of the need for a human partner through autonomous
affinity, performance, or availability | agents [Manfredi et al. 2023]]; role simulation and Al pairing in
[Robe and Kuttal 2022]. immersive environments [Gorecki 2024].
Interaction en- | In-person or remote environ- | Examples include asynchronous environments with Al inte-
vironment ments with synchronous tools | grated into IDEs [Imai 2022]; presence of simulated co-learners
[Robe and Kuttal 2022]); teacher mediation | [Wang et al. 2025]}; interaction via avatars in mixed reality (MR)
and direct interactions [Robe et al. 2022]. [Gorecki 2024].
Pedagogical Aspects ]
Learning out- | Peer collaboration fosters mutual learning | Error reduction [Puryear and Sprint 2022]]; significant initial
comes and code quality [Bani¢ et al. 2023]. learning gains [Sarkar et al. 2022]]; exposure to new languages and
libraries [Bird et al. 2022].
Role distribu- | Alternation between driver and naviga- | Al mostly assumes the role of driver [Bird et al. 2022]); the hu-
tion tor, with active contribution from both | man acts as navigator, evaluating and reformulating prompts
[Al Madi 2023]. [Paludo and Montresor 2024].

[ Socio-emotional Aspects ]
Engagement Peer interaction fosters idea ex- | Students report lower emotional involvement [Dibia et al. 2023];
and collabora- | change and emotional engage- | tendency to uncritically accept Al suggestions
tion ment [Robe and Kuttal 2022]]; | [Barke et al. 2023|]; perception of isolation and loss of em-

Hawthorne effect observed | pathy [Dos Santos and Cury 2023]]; reduced peer collaboration

[Groothuijsen et al. 2024]).

Cognitive Engagement aj

nd Metacognitive Strategies

Peer discussions promote reasoning articu-
lation and mutual review [Ma et al. 2023|).

Reflection and
critical thinking

Prompt engineering as a reflective strategy
[Paludo and Montresor 2024]; analysis of Al suggestions and
debugging of errors [Ma et al. 2024]; potential for personalized
support [Zhang et al. 2025]].

[ Methodological Characteristics of the Studies

l

sions [Robe and Kuttal 2022].

Research  ap- | Qualitative studies focused on natu- | Investigation of  interaction flow  with  automated
proaches ral language-mediated interactions and | agents and validation criteria for Al  suggestions
observation of collaborative behaviors | [Barke etal. 2023| |[Dibia et al. 2023||; strategies such as de-
[Al Madi 2023\ Imai 2022]. bugging and prompt engineering [Ma et al. 2024].
[ Communication ]
Communication | Direct interaction-based communication, | More explicit and structured communication, adapted to Al per-
style with greater fluency in conceptual discus- | ception [Robe et al. 2022]; focus on clearly formulated prompts

and objectives [Dibia et al. 2023]); reduced mutual conceptual ne-
gotiation [Ma et al. 2023|); limitations in joint meaning-making
[Groothuijsen et al. 2024]).

[Wang et al. 2025]], while mixed reality approaches allow for the complete replacement
of the physical presence of partners [Manfredi et al. 2023|]. This flexibility increases ac-
cessibility and enhances the scalability of the practice.

In terms of pedagogical aspects, empirical evidence shows a shift from the
“learn-to-code” model to a “code-to-learn” paradigm. While traditional programming ap-
proaches typically require understanding the problem before writing code, in Al-assisted
interactions, students often begin by generating code automatically and then seek to un-
derstand its functionality afterward [Valovy and Buchalcevova 2023|]. Additionally, there
is a transformation in the nature of the predominant cognitive task: the activity of code
creation (Create), typical of traditional approaches, is replaced by tasks involving the
use and modification of existing code (Use-Modify), enabling a greater focus on analysis
and comprehension, but also demanding distinct skills in critical reading and debugging
[Kazemitabaar et al. 2023]].

In the socio-emotional aspects, studies reveal that participants felt that pair-
ing students with generative Als lacked dynamism and did not foster engagement
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[Simaremare et al. 2024)], due to the absence of genuine collaboration between team
members when Al is used as the navigator [Groothuijsen et al. 2024]]. However, students
reported ease of communication with the Al [Dos Santos and Cury 2023], suggesting po-
tential benefits for less confident learners.

Cognitive engagement is transformed through prompt engineering as a metacog-
nitive strategy, fostering deep reflection on one’s own thinking and revealing the capa-
bilities and limitations of Al-generated content [Paludo and Montresor 2024]]. Evidence
shows that correcting ChatGPT errors involves iterative questioning and promotes deeper
cognitive processes [Zhang et al. 2025], in contrast to the spontaneous verbalization typ-
ical of traditional programming.

In terms of communication, there is a shift from implicit to explicit modes, where
developers working with agents use a higher frequency of questions and clarifications,
along with formal and explicit communication about role-switching—contrasting with
the natural fluency of human interaction [Robe et al. 2022].

Thus, the evidence converges to show that traditional programming empha-
sizes discussions that support reasoning articulation, with cooperative behavior being
key to success [Maetal. 2023]. Al-assisted programming promotes autonomy and
flexibility but shifts the core activity toward verifying and debugging generated code
[Sarkar et al. 2022]], requiring new mediation strategies and critical integration of the
technology into the educational process.

4.3. What are the main challenges identified in the literature regarding Al-assisted
programming education?

By analyzing the challenges reported in the literature on Al-assisted programming edu-
cation, it becomes possible to guide efforts toward overcoming them and enhancing the
benefits of these technologies. Six main categories were defined to organize these chal-
lenges: (1) technical, (2) pedagogical (including cognitive aspects), (3) communication
and interaction, (4) ethical and social, (5) institutional and implementation-related, and
(6) assessment-related. A summary of these challenges is presented in Figure 2]

Several studies highlight technical limitations, such as inconsistencies in Al be-
havior and the generation of faulty code. GPT-4, for instance, tends to make exten-
sive changes to code, not always respecting the original context provided by the stu-
dent [Phung et al. 2023|]. Problems have been identified with the integration of tools
like Copilot into different Integrated Development Environments (IDEs), server instabil-
ity, and difficulties in controlling the suggestions generated [Zhang et al. 2023|]. These
models may produce insecure or technically incorrect code without indicating uncer-
tainty, requiring constant validation [[Gdrecki 2024, Bird et al. 2022]]. There is also low
explainability of suggestions and an inability to handle complex or infrequent tasks
[Chen 2024, Zhang et al. 2024]].

In the pedagogical domain, the challenges encompass both instructional and cog-
nitive aspects. Students have shown behaviors of passive acceptance of Al suggestions
and a tendency toward overreliance, compromising their autonomy [Dibia et al. 2023]].
Cognitively, long responses increase mental load and hinder the fluency of reasoning
[Barke et al. 2023]]. Difficulties in reviewing, understanding, or modifying the generated
code represent additional barriers, especially among learners with limited prior knowl-
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Figure 2. Challenges in Al-assisted programming education.

edge [Ma et al. 2023, [Kazemitabaar et al. 2023]]. Studies also indicate inequality in per-
ceived benefits, with more experienced students tending to benefit more from these tools
[Kazemitabaar et al. 2023|.

Regarding the challenges of communication and interaction, exchanges with
Al agents are perceived as less natural and more structured than those between hu-
mans. There is a lower occurrence of interruptions, debates, and negotiated solu-
tions [[Groothuyjsen et al. 2024]. The use of multiple agents may lead to confusion re-
garding the authorship of suggestions [Wang et al. 2025]]. Difficulties in maintaining
shared awareness in Al-mediated collaborative environments have been documented
[Feng et al. 20244a]]. In this context, the term shared awareness refers to the ability to
maintain a common and dynamic understanding of the task state, performed actions, and
participants’ intentions, ensuring that Al contributions are aligned with the interaction
history and the current focus of the activity [Feng et al. 2024a].

Ethical and social issues involve risks to academic integrity, such as cheating
on exams and ambiguous authorship of Al-generated code [Carvalho and Oliveira 2024].
Concerns have been raised about the transparency of Al models, which often op-
erate as “black boxes” [Jiang et al. 2025[]. Data leakage incidents have been identi-
fied, including cases where suggestions contained personal information [Bird et al. 2022,
Zhang et al. 2023]]. Uncertainties about licensing and copyright of generated code further
highlight the need for clear institutional guidelines.

From an institutional and implementation perspective, the main issues in-
clude infrastructure limitations, language barriers in tools predominantly available in En-
glish [Phung et al. 2023, [Simaremare et al. 2024], and the absence of clear institutional
guidelines [Carvalho and Oliveira 2024]. Recurring operational limitations have also
been reported, which compromise the stable adoption of these tools [Zhou et al. 2025,
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Zhang et al. 2023|.

In the assessment dimension, there is a wide diversity of metrics originally de-
signed for traditional contexts, which fail to capture fundamental aspects of collaborative
interactions between humans and Al agents. The literature highlights the absence of spe-
cific metrics to qualify human-AlI collaboration [Dibia et al. 2023], the lack of standard-
ized instruments that enable consistent comparisons [[Kazemitabaar et al. 2023]], and the
underuse of multimodal data [Domingo 2023]]. There is also a recognized need for longi-

tudinal investigations and labeled datasets documenting real interactions between humans
and Al agents [Robe et al. 2022].

Unlike technical problems, which may be mitigated through technological ad-
vances, the reported challenges emphasize the need for research that considers the het-
erogeneity of contexts in the formulation of public policies and the definition of research
agendas, in order to avoid exacerbating educational inequalities.

4.4. Discussion

This mapping reveals transformations in programming education dynamics when medi-
ated by generative Al, highlighting both the potential and the challenges for educational
practice. The distinction between Al as a collaborative participant, support tool, or ped-
agogical mediator represents a conceptual evolution in the field.

These transformations challenge established assumptions about program-
ming learning.  The shift from a “learn-to-code” to a ‘“code-to-learn” model
[Valovy and Buchalcevova 2023|| represents a paradigmatic change that, while reducing
entry barriers and facilitating familiarization with new technologies, may compromise
central elements of human collaboration. The reduction in socio-emotional exchanges
and mutual conceptual negotiation [Groothuijsen et al. 2024, Ma et al. 2023|] contrasts
with the reflective nature of programming learning and Al use, where discussions and
productive conflicts tend to foster deep learning. New forms of cognitive engagement are
also emerging, mediated by prompt engineering and the critical evaluation of automated
suggestions [Paludo and Montresor 2024]].

For educators and developers, the findings highlight the importance of preserv-
ing essential elements of human collaboration. Strategies include: (1) implementing hy-
brid approaches that combine human—human interaction with Al support; (2) developing
structured protocols for the critical evaluation of automated suggestions to prevent pas-
sive acceptance [Dibia et al. 2023]]; (3) providing specific teacher training for identifying
signs of uncritical dependence [Barke et al. 2023]] and promoting metacognitive reflec-
tion; and (4) designing activities that explicitly require conceptual negotiation among
students prior to using Al. The observed trend toward more adaptive and socially re-
sponsive agents represents an opportunity to develop more effective systems that balance
automated assistance with the promotion of intellectual autonomy.

This study presents limitations that should guide future interpretations. The rapid
evolution of Al technologies may have rendered some analyzed tools obsolete. The ab-
sence of direct experimental comparisons in primary studies limits the ability to establish
robust causal relationships, and the predominance of studies in English may introduce
cultural bias, especially considering the inferior performance of Al tools in multilingual
contexts [Simaremare et al. 2024]]. Additionally, the use of Google NotebookLM for ini-
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tial information extraction, although followed by rigorous manual verification by the re-
searchers, constitutes a potential threat to validity, as automated processing may have
resulted in the omission of relevant information during the preliminary analysis phase.

In the Brazilian context, studies indicate that tools based on generative Al have
supported programming learning by providing individualized support to students, even
in large classes, and by helping address initial conceptual difficulties often associated
with dropout rates [Carvalho and Oliveira 2024]. Empirical evaluations have shown that
generative Al solutions offer clear responses, functional code, and helpful guidance for
novice students, fostering personalized learning [Carvalho and Oliveira 2024]. Evidence
also highlights the risks of uncritical acceptance of Al-generated responses by students,
even when incorrect, reinforcing the importance of strategies aimed at critical evaluation
and the development of metacognitive skills [Deus et al. 2024, [Filho et al. 2023]].

5. Conclusion

This mapping study investigated how generative Al has been incorporated into program-
ming education, based on the analysis of 52 selected studies. The main outcome was the
proposition of a classification that distinguishes three functional roles of Al: collaborative
participant, support tool, and pedagogical mediator. The identification of a shift from a
“learn-to-code” to a “code-to-learn” model, accompanied by changes in communication
(more structured and less spontaneous), cognitive engagement (with the emergence of
prompt engineering), and socio-emotional dynamics (with reduced interpersonal nego-
tiation), is relevant for understanding the evolution of the field, offering comprehensive
systematization of pedagogical implications of generative Al in programming education.

The identified challenges go beyond technical limitations, encompassing risks of
uncritical dependence, the weakening of genuine collaboration, and the lack of appro-
priate metrics for human-Al interaction. These findings demonstrate that effective in-
tegration requires hybrid approaches that preserve essential elements of programming
education without Al.

For educational practice, the following are recommended: (1) specific teacher
training for mediating hybrid learning environments; (2) development of structured pro-
tocols for the critical evaluation of automated suggestions; and (3) implementation of
pedagogical models that systematically alternate between human collaboration and Al
assistance. For researchers, the suggested future agenda includes the development of
collaborative metrics tailored to human-Al interaction and investigations across diverse
educational contexts.

Despite limitations from rapid technological evolution and scarce direct experi-
mental comparisons, this study establishes theoretical and empirical foundations for the
responsible integration of generative Al into programming education. The success of this
integration will depend on coordinated efforts among researchers, educators, and devel-
opers to balance the benefits of automated assistance with the development of intellectual
autonomy and the preservation of the social dimension of learning.
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