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Abstract. Theory of Computation is an important topic in Computer Science,
and teaching it presents a significant challenge, as it involves many abstract and
mathematical concepts. This complexity hinders and delays the adoption of edu-
cational activities that require a large number of questions, such as exercise lists
or mock exams. In this context, automatic question generation has the potential
to support student learning by focusing their attention on the presented material
and reinforcing knowledge through the repetition of basic concepts across va-
ried exercises. In this work, we present a tool integrated with Jupyter Notebook
to generate exercises for the construction and minimization of deterministic fi-
nite automata and their corresponding answer, using regular expressions and a
genetic algorithm to optimize the generation of questions with varying difficulty
levels. Additionally, the proposed tool is capable of grading the generated exer-
cises, presenting counterexamples that can help students understand why their
submitted solution is incorrect.

Resumo. Teoria da Computação é um importante tópico para a Ciência da
Computação e seu ensino é um grande desafio, uma vez que envolve muitos con-
ceitos abstratos e matemáticos. Isso dificulta e atrasa a adoção de atividades
educacionais que demandam muitas questões, como listas de exercı́cios ou si-
mulados. Neste contexto, a geração automática de questões tem potencial para
contribuir no aprendizado do estudante, ao focar a sua atenção no material
apresentado e repetir conceitos básicos através de variados exercı́cios. Neste
trabalho, apresentamos uma ferramenta, integrada ao Jupyter Nootebook, para
gerar exercı́cios de construção de autômatos finitos determinı́sticos e seus res-
pectivos gabaritos usando o conceito de expressões regulares e um algoritmo
genético para otimizar a geração de questões com nı́veis variados de dificul-
dade. Adicionalmente, a ferramenta proposta é capaz de corrigir os exercı́cios
gerados, apresentando contra-exemplos que podem ser utilizados pelo aluno
para compreender o porquê da solução por ele elaborada não estar correta.

1. Introdução
Teoria da Computação é um importante tópico para o entendimento da Ciência
da Computação e faz parte dos currı́culos sugeridos pela Sociedade Brasileira de
Computação [Zorzo et al. 2017]. Usualmente, o ensino deste assunto envolve conceitos
matemáticos, como demonstrações e algoritmos [Mohammed 2020]. Tradicionalmente,
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o ensino de Teoria da Computação é feito sem o auxı́lio de softwares, e os estudantes
trabalham nos exercı́cios propostos usando papel e lápis.

O uso deste modelo tradicional de exercı́cios possui alguns problemas. Primeiro,
para uma melhor compreensão do conteúdo, alunos necessitam fazer uma grande quanti-
dade de exercı́cios e ter retorno sobre a correção de suas soluções, o que pode sobrecar-
regar o docente que não deve apenas atestar se uma resposta está incorreta mas também
justificar o motivo do erro com o intuito de orientar o aluno na produção de uma solução
adequada. Outro aspecto muito relevante a ser considerado é o esforço na criação de
exercı́cios com diferentes nı́veis de dificuldade e em uma quantidade adequada.

Dessa forma, a Geração Automática de Questões (GAQ) surgiu como uma solução
para estes desafios. As técnicas de GAQ estão interessadas na construção de algoritmos
para produzir questões de boa qualidade a partir de fontes de conhecimento. De acordo
com [Alsubait et al. 2012], pesquisas sobre GAQ remontam à década de 70 e atualmente
vem ganhando importância com o surgimento de cursos online abertos e outras tec-
nologias de aprendizado digital [Qayyum and Zawacki-Richter 2018, Gaebel et al. 2014,
Goldbach and Hamza Lup 2017].

A criação manual de exercı́cios que envolvem autômatos finitos determinı́sticos,
abrangendo tanto sua construção quanto sua minimização, é um processo desafiador e
intensivo em recursos. Teoria dos Autômatos, tópico tratado em Teoria da Computação,
com seu caráter abstrato e matemático, frequentemente apresenta obstáculos significati-
vos para o ensino e a aprendizagem. Um sistema de geração de exercı́cios dedicado a
essa área, além de simplificar a elaboração de problemas práticos e teóricos, ofereceria a
oportunidade de explorar uma ampla variedade de cenários de aprendizado.

Ao apresentar uma variedade de desafios, desde os fundamentos da construção de
autômatos até a complexidade da minimização, a ferramenta pode incentivar os estudan-
tes a praticar a aplicação dos conceitos teóricos, promovendo uma abordagem mais ativa
e interativa. Além disso, com a integração com outro trabalho realizado por [Costa 2023],
o sistema também consegue oferecer feedback imediato, permitindo aos estudantes apri-
morarem suas habilidades e corrigirem equı́vocos de maneira eficiente.

Sendo assim, o principal objetivo deste trabalho é projetar e desenvolver uma
ferramenta para criação automática de exercı́cios sobre construção e minimização de
autômatos finitos determinı́sticos. Essa ferramenta produz uma série de exercı́cios e suas
respectivas soluções.

Este artigo está organizado da seguinte forma. A Seção 2 apresenta uma breve
fundamentação teórica, necessária para a compreensão do trabalho. Na Seção 3 são apre-
sentados os trabalhos relacionados a esta proposta. Uma visão geral da ferramenta é apre-
sentada na Seção 4 e o desenvolvimento da ferramenta e problemas encontrados ao longo
do caminho. Em seguida, na Seção 5 são apresentados os resultados e funcionalidades
desenvolvidas. Por fim, a Seção 6 apresenta a conclusão e os trabalhos futuros.

O código-fonte da ferramenta está disponı́vel no repositório do GitHub:
https://github.com/lives-group/automata-language.
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2. Fundamentação teórica

Intuitivamente, um autômato pode ser entendido como uma máquina abstrata para deter-
minar se uma certa palavra pertence ou não a uma linguagem. Um Autômato Finito Deter-
minı́stico (AFD) pode ser definido formalmente como uma quı́ntupla M = (E,Σ, δ, i, F ),
em que E é um conjunto de estados, Σ é um alfabeto, δ é uma função de transição, i ∈ E
é o estado inicial e F ⊆ E é um conjunto de estados finais.

Para exemplificar esses conceitos, considere a seguinte linguagem sobre Σ =
{0, 1}: L = {0, 1}∗{11}. Ou seja, a linguagem de palavras sobre {0, 1} que terminam
em 11. Um AFD que reconhece palavras desta linguagem é apresentado a seguir.

Astart B C

0

1
1

0

1

0

Usualmente, AFDs são apresentados utilizando grafos direcionados em que
nós denotam estados do autômato e arestas rotuladas denotam sua função de
transição. Formalmente, o AFD anterior é descrito pela seguinte quı́ntupla:
({A,B,C}, {0, 1}, δ, A, {C}), em que a função de transição δ é definida pela seguinte
tabela:

δ 0 1
A A B
B A C
C A C

Uma palavra é reconhecida por um AFD caso o processamento da palavra termine
em um estado final do autômato. Diz-se que uma linguagem L é regular se existe um AFD
M tal que L(M) = L, ou seja, se todas as palavras da linguagem são reconhecidas pelo
AFD M . Dessa forma, tem-se que autômatos são uma maneira de especificar uma lingua-
gem regular. Outro formalismo amplamente utilizado para definir linguagens regulares
são as chamadas expressões regulares, que permitem uma especificação de linguagens
utilizando uma notação algébrica. Por exemplo, (0+ 1)∗11 é uma expressão regular (ER)
que define a mesma linguagem do AFD anterior. A equivalência entre expressões regu-
lares e autômatos finitos é um resultado clássico da teoria da computação. Ao invés de
utilizar a equivalência normalmente apresentada em livros clássicos [Sipser 2013], que, a
partir de uma expressão regular, obtém um autômato não determinı́stico e, em seguida o
converte em um AFD equivalente, usaremos um algoritmo baseado no conceito de deri-
vadas, definido por [Brzozowski 1964].

Algoritmos genéticos (AG) referem-se a uma meta-heurı́stica inspirada pelo pro-
cesso de seleção natural que pertence à classe de algoritmos evolutivos. Dada uma
população, indivı́duos com caracterı́sticas genéticas melhores têm maiores chances de
sobrevivência e de produzirem filhos cada vez mais aptos, enquanto indivı́duos menos
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aptos tendem a desaparecer. Analogamente, algoritmos genéticos, através de operações
como seleção, mutação e recombinação, criam soluções cada vez melhores para um de-
terminado problema, comumente de otimização ou busca.

3. Trabalhos relacionados
[Bezáková et al. 2020] afirmam haver um atraso entre um modelo ser introduzido e o
aluno receber um retorno sobre tarefas relacionadas. Nesse tempo, o professor já avançou
muito nos tópicos da disciplina e os alunos ficam progressivamente mais confusos. So-
mado a isso, as turmas podem ser grandes, dificultando ainda mais para que o professor
tire as dúvidas de todos os alunos. [Rodger 2002] também afirma que estudantes apren-
dem melhor vendo representações (textuais, visuais ou animadas) de um conceito: livros
didáticos podem oferecer representações textuais e algumas visuais, enquanto softwares
podem fornecer representações visuais e animadas. No entanto, apenas observar não é
o suficiente, os alunos devem ser capazes de interagir com o conceito de alguma forma
e receber feedback para verificar sua compreensão. Dessa forma, nossa ferramenta visa
fornecer feedback imediato (como contra-exemplos, caso a resposta esteja errada), as-
sim como imagens dos autômatos (tanto dos enunciados, como daqueles que os próprios
alunos construı́ram) e uma forma de verificar se uma palavra é aceita pelo autômato.

[Chakraborty et al. 2011] listam diversas ferramentas de simulação de autômatos
e algumas caracterı́sticas sobre elas, como os tipos de autômatos suportados (autômatos
finitos, autômatos de pilha, máquinas de Turing), suporte para não-determinismo, su-
porte para sub-máquinas e linguagem de implementação. Dentre eles, o único que su-
porta todas essas funcionalidades é o Java Formal Languages and Automata Package
(JFLAP) [Rodger 2002] 1, além de ser uma das mais populares para o ensino de Teoria
da Computação. Junto às funcionalidades já citadas, o JFLAP também oferece produto
de autômatos, conversão de autômatos finitos não-determinı́sticos (AFN) para autômatos
finitos determinı́sticos, conversão de AFD para gramáticas e vice-versa, entre outras.
[Paiva et al. 2023] propõem uma estratégia utilizando três ferramentas (JFLAP, LFApp
e LFAweb) e aponta que o JFLAP é a ferramenta mais completa, pois cobre mais de 90%
dos conteúdos geralmente apresentados nas disciplinas de Teoria da Computação. No
entanto, [Cassanho et al. 2024] apontam que embora a ferramenta se revela eficaz para o
ensino, tem uma interface pouco amigável, com alguns alunos julgando-a ultrapassada,
não intuitiva e que a documentação disponı́vel é insuficiente e dificulta o uso eficiente da
ferramenta.

O SimStudio [Chudá and Rodina 2010] oferece a possibilidade de descrever os
autômatos tanto por meio de linguagens simbólicas quanto visualmente, criando o dia-
grama, porém não possui todas as funcionalidades que o JFLAP oferece. E o Language
Emulator [Vieira et al. 2003] aceita as especificações de um autômato por meio de uma
interface interativa e simula o seu comportamento, mas também não oferece todas as
funções que o JFLAP oferece.

Os trabalhos anteriores não suportam a geração automática de questões, ou seja,
todos os exercı́cios devem ser criados manualmente. [Adithi et al. 2015] levantam duas
questões: (1) é possı́vel o professor transmitir, de maneira não ambı́gua, a descrição do
problema de uma forma segura (i.e., sem revelar sua própria solução)? (2) essa ferramenta

1Disponı́vel em https://jflap.org/.
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pode operar offline (i.e., sem conexão com a internet)? A questão (1) por si só pode ser
resolvida permitindo que alunos enviem suas tentativas para um servidor, onde podem ser
comparadas com a solução do professor para equivalência, porém tal feedback não pode
ser obtido por alunos sem conexão confiável à internet.

Na linha de geração automática, [Shenoy et al. 2016] apresentam uma ferramenta
que recebe um problema de construção de autômato finito determinı́stico P como entrada
e gera um número arbitrário de problemas P1, P2, ... em ordem decrescente de similari-
dade a P . A saı́da da ferramenta pode ser restringida a problemas que são mais fáceis,
mais difı́ceis ou tão difı́ceis quanto P . A partir de uma base de problemas, composta de
107 problemas “semente”, novos exercı́cios são gerados combinando e alterando esses
problemas. Porém, é mostrado que esses exercı́cios podem gerar linguagens que não são
regulares, ou seja, não seria possı́vel construir um AFD para resolver o exercı́cio.

Em contrapartida, nossa ferramenta consegue gerar um conjunto com uma quan-
tidade de questões definidas pelo próprio aluno sem necessidade de uma base prévia de
problemas, pois o gabarito da questão é gerado junto ao enunciado, mas não é inicial-
mente apresentado ao aluno, além de ter uma garantia de que a linguagem gerada sempre
é regular e será possı́vel construir um AFD. Dessa forma, o aluno pode gerar questões
e receber feedback de forma offline, além de experimentar com diferentes expressões re-
gulares e palavras próprias, já que a ferramenta consegue produzir AFD equivalentes à
qualquer ER e validar se determinadas palavras pertencem ou não à linguagem definida
pela ER (e pelo AFD).

[Casamaximo et al. 2024] apresentam um mapeamento sistemático da literatura
sobre jogos educativos com potencial para abordar conceitos fundamentos de lingua-
gens formais e autômatos, que utilizam elementos de jogos dinâmicos (como narrati-
vas) e mecânicos, entre outros, para envolver os jogadores e facilitar a compreensão dos
princı́pios teóricos subjacentes. Porém, os jogos tendem a abordar um conjunto mais li-
mitado de conceitos em comparação com outros softwares educativos, por exemplo, pela
necessidade de criar uma narrativa coesa para cada jogo e integrar os conceitos de forma
significativa dentro desse contexto. Nosso trabalho se diferencia pelo foco na geração de
questões e gabaritos de forma automática.

4. Visão geral da ferramenta proposta
Nesta seção é apresentada uma visão geral da ferramenta proposta neste trabalho. A Fi-
gura 1 ilustra os seus principais componentes. A ferramenta visa produzir dois tipos de
questões: construir um AFD a partir de expressão regular e obter o autômato mı́nimo equi-
valente a um AFD. Para produção de ambos os tipos de questões, primeiro é necessário
gerar uma expressão regular aleatória. A partir da representação da ER utilizando teoria
de conjuntos, é possı́vel criar o enunciado do primeiro tipo de questão, apresentando a
ER ao aluno e solicitando que construa um AFD que aceite a mesma linguagem. Utili-
zando o método de construção baseada em derivadas apresentado por [Brzozowski 1964],
é possı́vel gerar um AFD equivalente à ER e, então, gerar uma imagem do AFD, que
serve dois propósitos: como gabarito para questões de construção de AFDs e como parte
do enunciado para questões de minimização de AFDs. A geração do gabarito e correção
automática para questões de minimização serão abordadas em trabalhos futuros.

Para corrigir e apresentar contra-exemplos para as submissões para questões de
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Figura 1. Visão geral da ferramenta

criação de autômatos, primeiro são criados dois autômatos: um que aceita apenas pala-
vras incorretamente aceitas pelo autômato do aluno e outro que aceita apenas palavras
incorretamente rejeitadas pelo autômato do aluno. A partir deles, usando algoritmos de
caminhamento de grafo, é possı́vel gerar e apresentar os contra-exemplos aos alunos.

Para a implementação da ferramenta proposta, foi utilizada a linguagem Rac-
ket [Flatt and PLT 2010, Version 8.17].

4.1. Operações sobre expressões regulares

Foram desenvolvidas também funções para simplificar expressões regulares, por meio da
reescrita de igualdades entre as operações, como a união (ou interseção) com o conjunto
vazio e a concatenação com a palavra vazia. Tais igualdades preservam a semântica da
expressão obtida e evitam o acréscimo de estados desnecessários durante a criação do
autômato.

Um componente importante do processo de simplificação de expressões regulares
é determinar quando duas expressões regulares são ou não equivalentes. Intuitivamente,
a função percorre a estrutura recursiva das expressões para determinar se estas são ou não
equivalentes. Porém, simplesmente percorrer a estrutura recursiva de expressões para o
teste de equivalência não é suficiente. Algumas operações sobre expressões regulares são
comutativas (união e interseção) e associativas (união, interseção e concatenação) impe-
dindo uma implementação direta do teste. Para contornar esse problema, foi adicionada
uma etapa de reescrita que aninha, recursivamente, as sub expressões das operações de
concatenação, união e interseção à direita e simplifica-as usando as funções citadas ante-
riormente.

Para união e interseção, dois passos adicionais são feitos: 1) a ordenação dos ele-
mentos de forma arbitrária (e igual para todas as ERs), para que o teste de equivalência
possa ser feito percorrendo linearmente as expressões regulares e 2) a remoção de ele-
mentos duplicados, que são equivalentes. Sobre o ponto 1), a ordenação pode ser feita,
pois essas operações são associativas e comutativas (a função impõe uma ordem sobre
expressões regulares). A ordem estabelecida determina a seguinte prioridade: sı́mbolo,
concatenação, interseção, união, complemento, fecho de Kleene, λ e ∅. Expressões re-
gulares do mesmo tipo são ordenadas lexicograficamente pelo primeiro sı́mbolo que elas
contêm. O ponto 2) é necessário, pois, embora as funções auxiliares mencionadas an-
teriormente já simplifiquem idempotência, como os elementos são aninhados a direita,
elementos equivalentes podem ficar em nı́veis diferentes da árvore.
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4.2. Geração de uma ER

Para produzir ERs foi adotada uma abordagem simples: expressões geradas aleatoria-
mente. Para isso, a biblioteca de testes baseados em propriedades, rackcheck2 foi uti-
lizada. A escolha de uso desta biblioteca é motivada pelo fato desta possuir geradores
de valores aleatórios para diversos tipos primitivos da linguagem Racket e funções para
combinar geradores para criar funções que produzem tipos de dados quaisquer.

4.3. Operações de crossover e mutação

Para explicar o funcionamento dessas operações, considere o seguinte: a estrutura de
expressões regulares levam, de forma simples, a uma representação de árvore.
Exemplo 1.

A representação da expressão regular (0 + 1)∗11 como uma árvore.

Figura 2. Árvore da expressão (0 + 1)∗11

Dessa forma, o crossover é feito trocando duas subárvores das árvores das ex-
pressões r e s.
Exemplo 2. Considere as expressões r = (0 + 1)∗11 e s = 10 + 01.

As Figuras 3 e 4 apresentam as árvores das expressões r e s, respectivamente. Os
nós preenchidos em cinza são os nós raı́zes das sub árvores trocadas.

As Figuras 5 e 6 apresentam as árvores geradas pelo crossover: r′ = (10)∗11 e
s′ = 0 + 1 + 01.

Figura 3. Árvore da ex-
pressão r = (0 +
1)∗11

Figura 4. Árvore da ex-
pressão s = 10 + 01

E a mutação é feita trocando a operação, caso seja um nó interno da árvore, ou o
sı́mbolo, caso seja um nó folha.

2Disponı́vel em https://docs.racket-lang.org/rackcheck/index.html.
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Figura 5. Árvore da ex-
pressão r′ = (10)∗11

Figura 6. Árvore da ex-
pressão s′ = 0 + 1 +
01

Exemplo 3. Considere a expressão r = (0 + 1)∗11.

A Figura 7 apresenta a árvore dessa expressão e a Figura 8 apresenta o resultado
da mutação, r′ = (0 + 1)∗ + 11. O nó preenchido em cinza foi o nó que sofreu mutação.

Figura 7. Árvore da ex-
pressão r = (0 +
1)∗11

Figura 8. Árvore da ex-
pressão r′ = (0 +
1)∗ + 11

A seguir, é apresentada uma forma alternativa para realizar o crossover: dada duas
expressões r e s e os nós Ar, Br, As e Bs, de forma que Br esteja na sub árvore cuja raiz é
Ar e Bs esteja na sub árvore cuja raiz é As, trocando o trecho das árvores que se encontra
entre Ar e Br e entre As e Bs nas duas árvores, incluindo Ar, Br, As e Bs.
Exemplo 4. Considere as expressões r = (11 + 0)∗0 e s = (¬(000))∗.

As Figuras 9 e 10 apresentam as árvores das expressões r e s, respectivamente.
Os nós preenchidos em cinza são os nós que delimitam o trecho que será trocado.

As Figuras 11 e 12 apresentam as árvores geradas pelo crossover: r′ = ¬(110)0
e s′ = (((0 + 0)0)∗)∗.

4.4. Criação das questões

Por terem enunciados similares, apenas as expressões são necessárias para criação das
questões. Basta variar a expressão sobre a qual o exercı́cio trata para criar novos
exercı́cios.

Foram definidas três funções objetivo para o desenvolvimento do algoritmo
genético, para gerar questões com dificuldade variada. A dificuldade da questão é de-
finida pelo número de estados do autômato equivalente à expressão regular do enunciado
da questão. Um número de estados menor ou igual a quatro é considerado um exercı́cio
fácil, de cinco a oito estados é considerado um exercı́cio médio e de nove a doze é con-
siderado um exercı́cio difı́cil. O limite de 12 estados para questões difı́ceis existe para
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Figura 9. Árvore da ex-
pressão r = (11 +
0)∗0

Figura 10. Árvore
da expressão
s = (¬(000))∗

Figura 11. Árvore
da expressão
r′ = ¬(110)0

Figura 12. Árvore da ex-
pressão s′ = (((0 +
0)0)∗)∗

não criar autômatos com estados demais, o que torna a resolução do exercı́cio em um
processo mais tedioso do que desafiador. Não foram encontradas na literatura formas de
avaliar a dificuldade da criação do AFD equivalente à expressão regular e, por isso, foi
utilizado esse método. Porém, usando esse método, autômatos finitos com muitos estados
que apresentam a forma de uma lista seriam categorizados como difı́ceis, mesmo que na
realidade sejam simples, por serem lineares.

5. Testes e resultados

Nesta seção são apresentados os testes realizados para avaliar a eficácia do algoritmo
genético desenvolvido. O objetivo principal desses testes foi gerar um conjunto diversi-
ficado de questões, com a proporção de questões fáceis, média e difı́ceis escolhidas pelo
usuário. Por exemplo, em uma lista de 10 exercı́cios, o aluno pode querer 3 questões
fáceis, 3 médias e 4 difı́ceis. Para os testes e resultados apresentados, todas as questões
geradas são de nı́vel fácil, com o intuito de facilitar a avaliação e comparação dos resul-
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tados. Esta escolha não afeta nos resultados de outras dificuldades, pois uma falha na
geração de questões de um nı́vel seria reproduzida em todos os nı́veis, mudando apenas a
função objetivo do AG, que avalia o total de nós do autômato equivalente à ER.

Os indivı́duos da população inicial são as diferentes expressões regulares geradas
aleatoriamente. O crossover consiste em, dada duas expressões r e s, trocar subexpressões
delas, gerando duas novas expressões r′ e s′, enquanto a mutação consiste em trocar uma
operação ou um sı́mbolo da expressão.

Com o intuito de variar a geração das questões, o algoritmo genético é executado
uma vez para cada questão da lista a ser gerada, variando a dificuldade das questões ge-
radas para manter a proporção escolhida pelo usuário, e o melhor indivı́duo da população
final é escolhido para entrar na lista.

A escolha do nó onde as operações de crossover e mutação acontecem é aleatória e
os resultados iniciais podem ser observados na Tabela 1. Inicialmente, devido a utilização
da função de reescrita de ER, que aninhava as expressões para a direita, um número n
entre 1 e a altura da folha mais a direita é gerado e o n-ésimo nó no caminho formado
pelos galhos mais à direita na árvore é escolhido para ser o ponto.

Tabela 1. Exemplos de expressões de nı́vel fácil geradas com simplificação das
expressões e apenas um ponto de crossover.

Identificador Expressão
1 λ

2 (1)∗

3 λ

4 (0 + (11 & (1)∗) + λ)

5 (1)∗

Tabela 2. Média e desvio padrão do número de estados das expressões e geração
em que o algoritmo genético terminou usando as caracterı́sticas do gera-
dor na Tabela 1.

Média Desvio padrão
Número de estados 3 1
Iterações até convergência 4 2

A Tabela 1 apresenta o resultado de uma execução do algoritmo genético para
gerar questões de nı́vel fácil. É possı́vel ver que embora o algoritmo tenha gerado 10 ERs,
existem apenas 3 expressões distintas. Para tentar aumentar a variedade nas expressões
geradas, o crossover foi modificado para ser feito em 2 pontos das expressões.

A Tabela 2 apresenta os resultados, arredondados, de 100 execuções do algoritmo
genético para gerar questões fáceis. Ela apresenta a média aritmética e desvio padrão
do número de estados dos AFDs equivalentes às expressões geradas. A geração final
é a quantidade de iterações executadas pelo algoritmo genético até sua convergência. A
média de estados mostra que as expressões geradas são satisfatórias, atendendo o requisito
para questões fáceis. Além disso, o número pequeno de iterações executadas mostra que
o problema é relativamente simples de resolver, obtendo soluções satisfatórias para o
problema. Porém, como dito antes, as expressões geradas apresentam muitas repetições.
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A Tabela 3 mostra algumas expressões de dificuldade fácil geradas por esse
método. Ela mostra que, embora a variedade de expressões geradas tenha aumentado,
as expressões ainda se repetem.

A Tabela 4 apresenta os resultados, arredondados, de 100 execuções do algoritmo
genético para gerar questões fáceis, usando o método descrito anteriormente. A média de
estados para questões fáceis ficou acima do limite esperado para questões fáceis, gerando
mais questões de dificuldade média. Além disso, o número de iterações executadas mostra
que dessa forma, o algoritmo precisou executar bem mais iterações e, em alguns casos,
alcançou o número máximo de iterações antes de convergir.

Tabela 3. Exemplos de expressões de nı́vel fácil geradas com simplificação das
expressões e dois pontos de crossover.

Identificador Expressão
1 ((0 + λ))∗

2 (0 + λ)
3 ((0 + ((0 + 00))∗) & (1)∗)
4 ¬((0 + 1))((0 + 1))∗

5 λ

Tabela 4. Média e desvio padrão do número de estados das expressões e geração
em que o algoritmo genético terminou usando as caracterı́sticas do gera-
dor na Tabela 3.

Média Desvio padrão
Número de estados 3 6
Iterações até convergência 6 3

Durante os testes, foi observado que a reescrita estava diminuindo o tamanho das
expressões, devido às simplificações realizadas. Também foi observado que a escolha
de caminhar pelos galhos mais a direita fez com que o inı́cio das expressões (o lado
esquerdo da árvore) não mudasse ao longo das gerações do algoritmo genético. Esses
dois fatores fizeram com que o algoritmo genético convergisse muito rápido e gerasse
muitas expressões idênticas ao final da execução.

Para tentar reduzir esse efeito, as expressões não são mais reescritas durante a
execução do algoritmo genético e o método para escolher o ponto para crossover e
mutação foi alterado para trocar trechos das árvores que se encontram entre 2 pontos
escolhidos de forma aleatória. Isso gerou mais diversidade nas expressões geradas na
população final do algoritmo genético, mas frequentemente essas expressões podiam ser
simplificadas para outras expressões que acabavam repetindo, i.e., mesmo as expressões
sendo diferentes, ainda eram equivalentes. Para tentar aumentar o número de expressões
não equivalentes, foram feitos diversos ajustes na frequência das operações e nos sı́mbolos
que podem ser gerados durante a criação da população inicial.

A Tabela 5 apresenta os resultados dessas mudanças. A Tabela 6 apresenta os
resultados, arredondados, de 100 execuções do algoritmo genético para gerar questões
fáceis. A média de estados mostra que as expressões geradas são satisfatórias, atendendo
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o requisito para questões fáceis. E o número pequeno de iterações executadas mostra que
com esse método o algoritmo voltou a convergir mais rapidamente.

Tabela 5. Exemplos de expressões de nı́vel fácil geradas sem simplificação das
expressões e crossover por caminho.

Identificador Expressão
1 (0 + ((0 + λ) & (1 + λ)))
2 (0 + 1)
3 ¬(λ)(1)∗
4 (0 + ((0 + λ) & (1 + λ)))¬(0)
5 (0 + ((0 + λ) & (1)∗))¬(0)

Tabela 6. Média e desvio padrão do número de estados das expressões e geração
em que o algoritmo genético terminou usando as caracterı́sticas do gera-
dor na Tabela 5.

Média Desvio padrão
Número de estados 3 0,8
Iterações até convergência 4 2

6. Conclusões

Durante o desenvolvimento deste trabalho, foi explorada a criação de uma ferramenta
dinâmica para auxiliar na compreensão de AFDs. A implementação bem-sucedida de um
sistema capaz de gerar expressões regulares aleatórias, com nı́veis variados de dificul-
dade, e criar autômatos equivalentes promove uma abordagem prática e interativa para o
ensino-aprendizagem de conceitos abstratos e desafiadores. Além disso, a visualização
das estruturas por meio de imagens reforça a compreensão visual e abre caminho para
treinamento da minimização dos autômatos.

Com a integração ao IRacket3, um kernel de Racket para Jupyter, foi gerado um
Jupyter Notebook contendo exercı́cios de dificuldades variadas, com o total de exercı́cios
de cada dificuldade escolhidos pelo próprio aluno, o que pode aumentar ainda mais a
utilidade e impacto da ferramenta, possibilitando uma adaptação mais personalizada às
necessidades de cada estudante e ampliando as possibilidades de interação com o ambi-
ente de aprendizado. Por fim, também é possı́vel integrar novos tipos de questões e seus
gabaritos à ferramenta, como minimização de AFDs e converter AFN para AFD, entre
outros.

Como trabalhos futuros, pretendemos avaliar o impacto do uso da ferramenta
em cursos de Teoria da Computação e continuar seu desenvolvimento, avaliando outros
métodos para geração de questões com diferentes nı́veis de dificuldade e desenvolver a
geração do gabarito e correção automática para questões de minimização.

O código-fonte da ferramenta está disponı́vel no repositório do GitHub:
https://github.com/lives-group/automata-language.

3Disponı́vel em https://docs.racket-lang.org/iracket/index.html.
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