X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Elaboracao de algoritmos para criacao de exercicios sobre
Automatos Finitos Deterministicos

Guilherme Augusto Anicio Drummond do Nascimento', Reinaldo Silva Fortes?,
Valéria de Carvalho Santos?, Rodrigo Geraldo Ribeiro?

! Programa de P6s-Graduag@o em Ciéncia da Computagio, Universidade Federal de Ouro Preto
guilherme.drummond@aluno.ufop.edu.br
2 Departamento de Computagio, Universidade Federal de Ouro Preto
{valeriacs, reifortes, rodrigo.ribeiro}@ufop.edu.br

Abstract. Theory of Computation is an important topic in Computer Science,
and teaching it presents a significant challenge, as it involves many abstract and
mathematical concepts. This complexity hinders and delays the adoption of edu-
cational activities that require a large number of questions, such as exercise lists
or mock exams. In this context, automatic question generation has the potential
to support student learning by focusing their attention on the presented material
and reinforcing knowledge through the repetition of basic concepts across va-
ried exercises. In this work, we present a tool integrated with Jupyter Notebook
to generate exercises for the construction and minimization of deterministic fi-
nite automata and their corresponding answer, using regular expressions and a
genetic algorithm to optimize the generation of questions with varying difficulty
levels. Additionally, the proposed tool is capable of grading the generated exer-
cises, presenting counterexamples that can help students understand why their
submitted solution is incorrect.

Resumo. Teoria da Computacdo é um importante tépico para a Ciéncia da
Computacdo e seu ensino é um grande desafio, uma vez que envolve muitos con-
ceitos abstratos e matemdticos. Isso dificulta e atrasa a adogdo de atividades
educacionais que demandam muitas questoes, como listas de exercicios ou si-
mulados. Neste contexto, a geracdo automdtica de questoes tem potencial para
contribuir no aprendizado do estudante, ao focar a sua atengdo no material
apresentado e repetir conceitos bdsicos através de variados exercicios. Neste
trabalho, apresentamos uma ferramenta, integrada ao Jupyter Nootebook, para
gerar exercicios de construcdo de autdomatos finitos deterministicos e seus res-
pectivos gabaritos usando o conceito de expressoes regulares e um algoritmo
genético para otimizar a gera¢do de questées com niveis variados de dificul-
dade. Adicionalmente, a ferramenta proposta é capaz de corrigir os exercicios
gerados, apresentando contra-exemplos que podem ser utilizados pelo aluno
para compreender o porqué da solucdo por ele elaborada ndo estar correta.

1. Introducao

Teoria da Computacdo é um importante tépico para o entendimento da Ciéncia
da Computagcdao e faz parte dos curriculos sugeridos pela Sociedade Brasileira de
Computagao [Zorzo et al. 2017]. Usualmente, o ensino deste assunto envolve conceitos
matematicos, como demonstracdes e algoritmos [Mohammed 2020]. Tradicionalmente,

DOI: 10.5753/shie.2025.12594 676



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

o ensino de Teoria da Computacdo é feito sem o auxilio de softwares, e os estudantes
trabalham nos exercicios propostos usando papel e lapis.

O uso deste modelo tradicional de exercicios possui alguns problemas. Primeiro,
para uma melhor compreensdo do conteddo, alunos necessitam fazer uma grande quanti-
dade de exercicios e ter retorno sobre a correcao de suas solugdes, o que pode sobrecar-
regar o docente que ndo deve apenas atestar se uma resposta estd incorreta mas também
justificar o motivo do erro com o intuito de orientar o aluno na produ¢do de uma solucao
adequada. Outro aspecto muito relevante a ser considerado € o esfor¢o na criacao de
exercicios com diferentes niveis de dificuldade e em uma quantidade adequada.

Dessa forma, a Geragdo Automadtica de Questoes (GAQ) surgiu como uma solucao
para estes desafios. As técnicas de GAQ estdo interessadas na construgdo de algoritmos
para produzir questdoes de boa qualidade a partir de fontes de conhecimento. De acordo
com [Alsubait et al. 2012], pesquisas sobre GAQ remontam a década de 70 e atualmente
vem ganhando importancia com o surgimento de cursos online abertos e outras tec-
nologias de aprendizado digital [Qayyum and Zawacki-Richter 2018, Gaebel et al. 2014,
Goldbach and Hamza Lup 2017].

A criacdo manual de exercicios que envolvem autdmatos finitos deterministicos,
abrangendo tanto sua constru¢do quanto sua minimizac¢ao, ¢ um processo desafiador e
intensivo em recursos. Teoria dos Autdmatos, topico tratado em Teoria da Computacio,
com seu carater abstrato e matematico, frequentemente apresenta obsticulos significati-
vos para o ensino e a aprendizagem. Um sistema de geracao de exercicios dedicado a
essa drea, além de simplificar a elaboracdo de problemas préaticos e tedricos, ofereceria a
oportunidade de explorar uma ampla variedade de cendrios de aprendizado.

Ao apresentar uma variedade de desafios, desde os fundamentos da construgdo de
autdmatos até a complexidade da minimizacao, a ferramenta pode incentivar os estudan-
tes a praticar a aplicacdo dos conceitos tedricos, promovendo uma abordagem mais ativa
e interativa. Além disso, com a integra¢do com outro trabalho realizado por [Costa 2023],
o sistema também consegue oferecer feedback imediato, permitindo aos estudantes apri-
morarem suas habilidades e corrigirem equivocos de maneira eficiente.

Sendo assim, o principal objetivo deste trabalho é projetar e desenvolver uma
ferramenta para criacdo automdtica de exercicios sobre constru¢do € minimizagdo de
automatos finitos deterministicos. Essa ferramenta produz uma série de exercicios e suas
respectivas solugoes.

Este artigo estd organizado da seguinte forma. A Secdo 2 apresenta uma breve
fundamentagdo tedrica, necessdria para a compreensao do trabalho. Na Secdo 3 sdo apre-
sentados os trabalhos relacionados a esta proposta. Uma visao geral da ferramenta € apre-
sentada na Secdo 4 e o desenvolvimento da ferramenta e problemas encontrados ao longo
do caminho. Em seguida, na Secdo 5 sdo apresentados os resultados e funcionalidades
desenvolvidas. Por fim, a Secdo 6 apresenta a conclusado e os trabalhos futuros.

O codigo-fonte da ferramenta estd disponivel no repositério do GitHub:
https://github.com/lives-group/automata-language.

677



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

2. Fundamentacao teorica

Intuitivamente, um automato pode ser entendido como uma méquina abstrata para deter-
minar se uma certa palavra pertence ou nao a uma linguagem. Um Autdomato Finito Deter-
ministico (AFD) pode ser definido formalmente como uma quintupla M = (E, X, 6,1, F),
em que F € um conjunto de estados, 3 é um alfabeto, J é uma fun¢ao de transigao, i € £
€ o estado inicial e /' C FE € um conjunto de estados finais.

Para exemplificar esses conceitos, considere a seguinte linguagem sobre > =
{0,1}: L = {0,1}*{11}. Ou seja, a linguagem de palavras sobre {0, 1} que terminam
em 11. Um AFD que reconhece palavras desta linguagem € apresentado a seguir.

0 1
1

(4o (5
start —|

0

Usualmente, AFDs sdo apresentados utilizando grafos direcionados em que
nés denotam estados do autdmato e arestas rotuladas denotam sua funcdo de
transi¢ao. Formalmente, o AFD anterior é descrito pela seguinte quintupla:
({A,B,C},{0,1},9,A,{C}), em que a fun¢do de transi¢do 0 é definida pela seguinte
tabela:

Q>
o N N N )
QQ -

Uma palavra € reconhecida por um AFD caso o processamento da palavra termine
em um estado final do autdmato. Diz-se que uma linguagem L € regular se existe um AFD
M tal que L(M) = L, ou seja, se todas as palavras da linguagem sdo reconhecidas pelo
AFD M. Dessa forma, tem-se que autdmatos sao uma maneira de especificar uma lingua-
gem regular. Outro formalismo amplamente utilizado para definir linguagens regulares
sdo as chamadas expressoes regulares, que permitem uma especificacdo de linguagens
utilizando uma notagéo algébrica. Por exemplo, (0 + 1)*11 é uma expressao regular (ER)
que define a mesma linguagem do AFD anterior. A equivaléncia entre expressoes regu-
lares e automatos finitos € um resultado classico da teoria da computacdo. Ao invés de
utilizar a equivaléncia normalmente apresentada em livros cldssicos [Sipser 2013], que, a
partir de uma expressao regular, obtém um autdmato ndo deterministico e, em seguida o
converte em um AFD equivalente, usaremos um algoritmo baseado no conceito de deri-
vadas, definido por [Brzozowski 1964].

Algoritmos genéticos (AG) referem-se a uma meta-heuristica inspirada pelo pro-
cesso de sele¢do natural que pertence a classe de algoritmos evolutivos. Dada uma
populacdo, individuos com caracteristicas genéticas melhores t€ém maiores chances de
sobrevivéncia e de produzirem filhos cada vez mais aptos, enquanto individuos menos

678



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

aptos tendem a desaparecer. Analogamente, algoritmos genéticos, através de operacoes
como selecdo, mutacdo e recombinagdo, criam solu¢des cada vez melhores para um de-
terminado problema, comumente de otimizac¢ao ou busca.

3. Trabalhos relacionados

[Bezakova et al. 2020] afirmam haver um atraso entre um modelo ser introduzido e o
aluno receber um retorno sobre tarefas relacionadas. Nesse tempo, o professor ja avangou
muito nos topicos da disciplina e os alunos ficam progressivamente mais confusos. So-
mado a isso, as turmas podem ser grandes, dificultando ainda mais para que o professor
tire as ddvidas de todos os alunos. [Rodger 2002] também afirma que estudantes apren-
dem melhor vendo representacdes (textuais, visuais ou animadas) de um conceito: livros
didaticos podem oferecer representacdes textuais € algumas visuais, enquanto softwares
podem fornecer representagdes visuais € animadas. No entanto, apenas observar ndo é
o suficiente, os alunos devem ser capazes de interagir com o conceito de alguma forma
e receber feedback para verificar sua compreensdo. Dessa forma, nossa ferramenta visa
fornecer feedback imediato (como contra-exemplos, caso a resposta esteja errada), as-
sim como imagens dos autdmatos (tanto dos enunciados, como daqueles que os proprios
alunos construiram) e uma forma de verificar se uma palavra € aceita pelo automato.

[Chakraborty et al. 2011] listam diversas ferramentas de simula¢dao de autdmatos
e algumas caracteristicas sobre elas, como os tipos de autdomatos suportados (autdmatos
finitos, autdmatos de pilha, maquinas de Turing), suporte para ndo-determinismo, su-
porte para sub-mdquinas e linguagem de implementacdo. Dentre eles, o unico que su-
porta todas essas funcionalidades é o Java Formal Languages and Automata Package
(JFLAP) [Rodger 2002] !, além de ser uma das mais populares para o ensino de Teoria
da Computagdo. Junto as funcionalidades ja citadas, o JFLAP também oferece produto
de autOmatos, conversdo de autdomatos finitos ndo-deterministicos (AFN) para autdmatos
finitos deterministicos, conversdo de AFD para graméticas e vice-versa, entre outras.
[Paiva et al. 2023] propdem uma estratégia utilizando trés ferramentas (JFLAP, LFApp
e LFAweb) e aponta que o JFLAP € a ferramenta mais completa, pois cobre mais de 90%
dos conteudos geralmente apresentados nas disciplinas de Teoria da Computacdo. No
entanto, [Cassanho et al. 2024] apontam que embora a ferramenta se revela eficaz para o
ensino, tem uma interface pouco amigédvel, com alguns alunos julgando-a ultrapassada,
ndo intuitiva e que a documentagao disponivel € insuficiente e dificulta o uso eficiente da
ferramenta.

O SimStudio [Chudé and Rodina 2010] oferece a possibilidade de descrever os
autdmatos tanto por meio de linguagens simbdlicas quanto visualmente, criando o dia-
grama, porém nao possui todas as funcionalidades que o JFLAP oferece. E o Language
Emulator [Vieira et al. 2003] aceita as especificacoes de um autdmato por meio de uma
interface interativa e simula o seu comportamento, mas também ndo oferece todas as
fungdes que o JFLAP oferece.

Os trabalhos anteriores ndo suportam a geracdo automdtica de questdes, ou seja,
todos os exercicios devem ser criados manualmente. [Adithi et al. 2015] levantam duas
questdes: (1) € possivel o professor transmitir, de maneira ndo ambigua, a descri¢do do
problema de uma forma segura (i.e., sem revelar sua propria solucdo)? (2) essa ferramenta

'Disponivel em https://jflap.org/.

679



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

pode operar offline (i.e., sem conexdo com a internet)? A questdo (1) por si s6 pode ser
resolvida permitindo que alunos enviem suas tentativas para um servidor, onde podem ser
comparadas com a solucdo do professor para equivaléncia, porém tal feedback nao pode
ser obtido por alunos sem conexao confidvel a internet.

Na linha de geracdo automdtica, [Shenoy et al. 2016] apresentam uma ferramenta
que recebe um problema de constru¢do de autdmato finito deterministico P como entrada
e gera um numero arbitrario de problemas P;, P, ... em ordem decrescente de similari-
dade a P. A saida da ferramenta pode ser restringida a problemas que sdo mais faceis,
mais dificeis ou tao dificeis quanto P. A partir de uma base de problemas, composta de
107 problemas “semente”, novos exercicios sdo gerados combinando e alterando esses
problemas. Porém, é mostrado que esses exercicios podem gerar linguagens que nao sao
regulares, ou seja, nao seria possivel construir um AFD para resolver o exercicio.

Em contrapartida, nossa ferramenta consegue gerar um conjunto com uma quan-
tidade de questdes definidas pelo proprio aluno sem necessidade de uma base prévia de
problemas, pois o gabarito da questdo € gerado junto ao enunciado, mas nao € inicial-
mente apresentado ao aluno, além de ter uma garantia de que a linguagem gerada sempre
¢ regular e serd possivel construir um AFD. Dessa forma, o aluno pode gerar questdes
e receber feedback de forma offline, além de experimentar com diferentes expressoes re-
gulares e palavras proprias, ja que a ferramenta consegue produzir AFD equivalentes a
qualquer ER e validar se determinadas palavras pertencem ou ndo a linguagem definida
pela ER (e pelo AFD).

[Casamaximo et al. 2024] apresentam um mapeamento sistemdtico da literatura
sobre jogos educativos com potencial para abordar conceitos fundamentos de lingua-
gens formais e autdOmatos, que utilizam elementos de jogos dindmicos (como narrati-
vas) € mecanicos, entre outros, para envolver os jogadores e facilitar a compreensao dos
principios tedricos subjacentes. Porém, os jogos tendem a abordar um conjunto mais li-
mitado de conceitos em comparacdo com outros softwares educativos, por exemplo, pela
necessidade de criar uma narrativa coesa para cada jogo e integrar os conceitos de forma
significativa dentro desse contexto. Nosso trabalho se diferencia pelo foco na geracdo de
questdes e gabaritos de forma automatica.

4. Visao geral da ferramenta proposta

Nesta secdo é apresentada uma visdo geral da ferramenta proposta neste trabalho. A Fi-
gura 1 ilustra os seus principais componentes. A ferramenta visa produzir dois tipos de
questdes: construir um AFD a partir de expressdo regular e obter o autbmato minimo equi-
valente a um AFD. Para produ¢do de ambos os tipos de questdes, primeiro € necessario
gerar uma expressao regular aleatéria. A partir da representacao da ER utilizando teoria
de conjuntos, € possivel criar o enunciado do primeiro tipo de questdo, apresentando a
ER ao aluno e solicitando que construa um AFD que aceite a mesma linguagem. Utili-
zando o método de construcao baseada em derivadas apresentado por [Brzozowski 1964],
¢ possivel gerar um AFD equivalente a ER e, entdo, gerar uma imagem do AFD, que
serve dois propdsitos: como gabarito para questdes de constru¢do de AFDs e como parte
do enunciado para questdes de minimizagcao de AFDs. A geracdo do gabarito e corre¢ao
automadtica para questoes de minimizagdo serdo abordadas em trabalhos futuros.

Para corrigir e apresentar contra-exemplos para as submissdes para questoes de

680



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Geragdes de expressdes
regulares aleatorias

h 4

Representacao da ER em
forma de conjunto

Y

Producao do enunciado para
exercicios de construgao de
AFDs

Producao do gabarito para
exercicios de construgao de
AFDs

Geragao do AFD equivalente

Geragao da imagem desse

Producao do enunciado para

FEXercicios de minimizagao de

aER AFD AFDs

Figura 1. Visao geral da ferramenta

criacdo de autdomatos, primeiro sao criados dois autdmatos: um que aceita apenas pala-
vras incorretamente aceitas pelo autdmato do aluno e outro que aceita apenas palavras
incorretamente rejeitadas pelo autdmato do aluno. A partir deles, usando algoritmos de
caminhamento de grafo, € possivel gerar e apresentar os contra-exemplos aos alunos.

Para a implementacdo da ferramenta proposta, foi utilizada a linguagem Rac-
ket [Flatt and PLT 2010, Version 8.17].

4.1. Operacoes sobre expressoes regulares

Foram desenvolvidas também fungdes para simplificar expressdes regulares, por meio da
reescrita de igualdades entre as operagdes, como a unido (ou interse¢do) com o conjunto
vazio e a concatenacdo com a palavra vazia. Tais igualdades preservam a semantica da
expressao obtida e evitam o acréscimo de estados desnecessarios durante a criacdo do
autdmato.

Um componente importante do processo de simplificacdo de expressoes regulares
¢ determinar quando duas expressdes regulares sdo ou nio equivalentes. Intuitivamente,
a fungdo percorre a estrutura recursiva das expressoes para determinar se estas sao ou nao
equivalentes. Porém, simplesmente percorrer a estrutura recursiva de expressdes para o
teste de equivaléncia ndo € suficiente. Algumas operacdes sobre expressoes regulares sao
comutativas (unido e interse¢do) e associativas (unido, intersecao e concatenagdo) impe-
dindo uma implementacao direta do teste. Para contornar esse problema, foi adicionada
uma etapa de reescrita que aninha, recursivamente, as sub expressoes das operagdes de
concatenacdo, unido e intersecdo a direita e simplifica-as usando as fung¢des citadas ante-
riormente.

Para unido e intersecao, dois passos adicionais sdo feitos: 1) a ordenagdo dos ele-
mentos de forma arbitraria (e igual para todas as ERs), para que o teste de equivaléncia
possa ser feito percorrendo linearmente as expressoes regulares e 2) a remogao de ele-
mentos duplicados, que sdo equivalentes. Sobre o ponto 1), a ordenagdo pode ser feita,
pois essas operacdes sdo associativas e comutativas (a fungdo impde uma ordem sobre
expressoes regulares). A ordem estabelecida determina a seguinte prioridade: simbolo,
concatenagdo, interse¢do, unido, complemento, fecho de Kleene, \ e (). Expressoes re-
gulares do mesmo tipo s@o ordenadas lexicograficamente pelo primeiro simbolo que elas
contéem. O ponto 2) é necessdrio, pois, embora as fungdes auxiliares mencionadas an-
teriormente ja simplifiquem idempoténcia, como os elementos sdo aninhados a direita,
elementos equivalentes podem ficar em niveis diferentes da arvore.

681



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

4.2. Geracao de uma ER

Para produzir ERs foi adotada uma abordagem simples: expressdes geradas aleatoria-
mente. Para isso, a biblioteca de testes baseados em propriedades, rackcheck® foi uti-
lizada. A escolha de uso desta biblioteca é motivada pelo fato desta possuir geradores
de valores aleatérios para diversos tipos primitivos da linguagem Racket e fungdes para
combinar geradores para criar fun¢des que produzem tipos de dados quaisquer.

4.3. Operacoes de crossover e mutacao

Para explicar o funcionamento dessas operagdes, considere o seguinte: a estrutura de
expressoes regulares levam, de forma simples, a uma representacao de arvore.
Exemplo 1.

A representacdo da expressao regular (0 + 1)*11 como uma drvore.

SYMBOL 0

Figura 2. Arvore da expressao (0 + 1)*11

Dessa forma, o crossover € feito trocando duas subarvores das arvores das ex-
pressoes 7 € s.
Exemplo 2. Considere as expressoesr = (0+ 1)*11 e s = 10 + 01.

As Figuras 3 e 4 apresentam as drvores das expressoes r e s, respectivamente. Os
nos preenchidos em cinza sdo os nos raizes das sub drvores trocadas.

As Figuras 5 e 6 apresentam as drvores geradas pelo crossover: ' = (10)*11 e
s'=0+14 0L

CONCATENATION
CONCATENATION

CONCATENATION

Figura 3. Arvore da ex- Figura 4. Arvore da ex-
pressio r = (0 + pressdo s = 10 + 01
1)*11

E a mutacio € feita trocando a operagdo, caso seja um né interno da arvore, ou o
simbolo, caso seja um no6 folha.

Disponivel em https://docs.racket—lang.org/rackcheck/index.html.

682



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

<D
QoD Ccovcareuanoy >
Gt > G i
Figura 5. Arvore da ex- Figura 6. Arvore da ex-
pressao r’ = (10)*11 pressao s’ =0+ 1+

01

Exemplo 3. Considere a expressdor = (0 + 1)*11.

A Figura 7 apresenta a drvore dessa expressdo e a Figura 8 apresenta o resultado
da mutagdo, ' = (0 4+ 1)* 4+ 11. O nd preenchido em cinza foi o né que sofreu mutagao.

CONCATENATION

SYMBOL 0 SYMBOL 0

Figura 7. Arvore da ex- Figura 8. Arvore da ex-
pressao r = (0 + pressao ' = (0 +
1)*11 1)*+11

A seguir, € apresentada uma forma alternativa para realizar o crossover: dada duas
expressdes r e s e 0s nés A,, B,, As e B, de forma que B, esteja na sub arvore cuja raiz é
A, e B esteja na sub arvore cuja raiz é A, trocando o trecho das drvores que se encontra
entre A, e B, e entre A, e B, nas duas arvores, incluindo A,, B,, A, e B,.

Exemplo 4. Considere as expressdes r = (11 +0)*0 e s = (—=(000))*.

As Figuras 9 e 10 apresentam as drvores das expressoes r e s, respectivamente.
Os nos preenchidos em cinza sdo os nos que delimitam o trecho que serd trocado.

As Figuras 11 e 12 apresentam as drvores geradas pelo crossover: v’ = —(110)0

es' = (((0+0)0)")"

4.4. Criacao das questoes

Por terem enunciados similares, apenas as expressdes sao necessarias para criagdo das
questdes. Basta variar a expressdo sobre a qual o exercicio trata para criar novos
exercicios.

Foram definidas trés funcdes objetivo para o desenvolvimento do algoritmo
genético, para gerar questdes com dificuldade variada. A dificuldade da questdo é de-
finida pelo nimero de estados do autdmato equivalente a expressao regular do enunciado
da questdo. Um ndmero de estados menor ou igual a quatro é considerado um exercicio
facil, de cinco a oito estados € considerado um exercicio médio e de nove a doze € con-
siderado um exercicio dificil. O limite de 12 estados para questdes dificeis existe para

683



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Figura 9. Arvore da ex- Figura 10. Arvore
pressao r = (11 + da expressao
0)%0 s = (=(000))*

CONCATENATION

CONCATENATION

SYMBOL 0

Figura 11. Arvore Figura 12. Arvore da ex-
da expressao pressao s’ = (((0 +
1 = =(110)0 0)0)*)*

ndo criar autdmatos com estados demais, o que torna a resolucdo do exercicio em um
processo mais tedioso do que desafiador. Nao foram encontradas na literatura formas de
avaliar a dificuldade da criacdo do AFD equivalente a expressao regular e, por isso, foi
utilizado esse método. Porém, usando esse método, autdmatos finitos com muitos estados
que apresentam a forma de uma lista seriam categorizados como dificeis, mesmo que na
realidade sejam simples, por serem lineares.

5. Testes e resultados

Nesta secdo sdo apresentados os testes realizados para avaliar a eficidcia do algoritmo
genético desenvolvido. O objetivo principal desses testes foi gerar um conjunto diversi-
ficado de questdes, com a proporcao de questdes faceis, média e dificeis escolhidas pelo
usudrio. Por exemplo, em uma lista de 10 exercicios, o aluno pode querer 3 questdes
faceis, 3 médias e 4 dificeis. Para os testes e resultados apresentados, todas as questdes
geradas sdo de nivel facil, com o intuito de facilitar a avaliacdo e comparacdo dos resul-

684



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

tados. Esta escolha ndo afeta nos resultados de outras dificuldades, pois uma falha na
geracao de questoes de um nivel seria reproduzida em todos os niveis, mudando apenas a
func¢do objetivo do AG, que avalia o total de nds do autdomato equivalente a ER.

Os individuos da populacao inicial sdo as diferentes expressoes regulares geradas
aleatoriamente. O crossover consiste em, dada duas expressoes r € s, trocar subexpressoes
delas, gerando duas novas expressoes 7’ e s’, enquanto a mutag¢do consiste em trocar uma
operacdo ou um simbolo da expressao.

Com o intuito de variar a geracao das questdes, o algoritmo genético é executado
uma vez para cada questdo da lista a ser gerada, variando a dificuldade das questdes ge-
radas para manter a propor¢ao escolhida pelo usudrio, e o melhor individuo da populagdo
final € escolhido para entrar na lista.

A escolha do n6 onde as operacdes de crossover e mutagao acontecem € aleatdria e
os resultados iniciais podem ser observados na Tabela 1. Inicialmente, devido a utilizagao
da fun¢do de reescrita de ER, que aninhava as expressdes para a direita, um nimero n
entre 1 e a altura da folha mais a direita € gerado e o n-€simo n6é no caminho formado
pelos galhos mais a direita na arvore € escolhido para ser o ponto.

Tabela 1. Exemplos de expressoes de nivel facil geradas com simplificacao das
expressoes e apenas um ponto de crossover.

Identificador | Expressdo

)*

0+ (11 & (1)°) + \)
1)*

> >

N AW N =
—~|—

Tabela 2. Média e desvio padrao do numero de estados das expressoes e geracao
em que o algoritmo genético terminou usando as caracteristicas do gera-
dor na Tabela 1.

Média | Desvio padrao
Niimero de estados 3 1
IteracOes até convergéncia 4

A Tabela 1 apresenta o resultado de uma execugdo do algoritmo genético para
gerar questdes de nivel facil. E possivel ver que embora o algoritmo tenha gerado 10 ERs,
existem apenas 3 expressoes distintas. Para tentar aumentar a variedade nas expressoes
geradas, o crossover foi modificado para ser feito em 2 pontos das expressoes.

A Tabela 2 apresenta os resultados, arredondados, de 100 execugdes do algoritmo
genético para gerar questdes faceis. Ela apresenta a média aritmética e desvio padrao
do numero de estados dos AFDs equivalentes as expressoes geradas. A geracdo final
¢ a quantidade de iteragdes executadas pelo algoritmo genético até sua convergéncia. A
média de estados mostra que as expressoes geradas sao satisfatorias, atendendo o requisito
para questdes faceis. Além disso, o nimero pequeno de iteragdes executadas mostra que
o problema € relativamente simples de resolver, obtendo solucdes satisfatrias para o
problema. Porém, como dito antes, as expressoes geradas apresentam muitas repeticoes.

685



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

A Tabela 3 mostra algumas expressoes de dificuldade fécil geradas por esse
método. Ela mostra que, embora a variedade de expressdes geradas tenha aumentado,
as expressoes ainda se repetem.

A Tabela 4 apresenta os resultados, arredondados, de 100 execugdes do algoritmo
genético para gerar questoes faceis, usando o método descrito anteriormente. A média de
estados para questdes faceis ficou acima do limite esperado para questdes faceis, gerando
mais questoes de dificuldade média. Além disso, o nimero de iteracdes executadas mostra
que dessa forma, o algoritmo precisou executar bem mais iteragdes e, em alguns casos,
alcancou o niimero méximo de iteracdes antes de convergir.

Tabela 3. Exemplos de expressoes de nivel facil geradas com simplificacao das
expressoes e dois pontos de crossover.

Identificador | Expressao

((0+A)"

(04 X)

((0+ ((0+00))") & (1)*)
;((0 +1D))((0+1))

N | W NI =

Tabela 4. Média e desvio padrao do numero de estados das expressoes e geracao
em que o algoritmo genético terminou usando as caracteristicas do gera-
dor na Tabela 3.

Média | Desvio padrao
Niimero de estados 3 6
IteracOes até convergéncia 6 3

Durante os testes, foi observado que a reescrita estava diminuindo o tamanho das
expressoes, devido as simplificagdes realizadas. Também foi observado que a escolha
de caminhar pelos galhos mais a direita fez com que o inicio das expressoes (o lado
esquerdo da drvore) ndo mudasse ao longo das geracdes do algoritmo genético. Esses
dois fatores fizeram com que o algoritmo genético convergisse muito rapido e gerasse
muitas expressoes idénticas ao final da execucao.

Para tentar reduzir esse efeito, as expressdes ndo sao mais reescritas durante a
execugdo do algoritmo genético e o método para escolher o ponto para crossover e
mutacio foi alterado para trocar trechos das arvores que se encontram entre 2 pontos
escolhidos de forma aleatéria. Isso gerou mais diversidade nas expressdes geradas na
populacdo final do algoritmo genético, mas frequentemente essas expressoes podiam ser
simplificadas para outras expressdes que acabavam repetindo, i.e., mesmo as expressoes
sendo diferentes, ainda eram equivalentes. Para tentar aumentar o nimero de expressoes
nao equivalentes, foram feitos diversos ajustes na frequéncia das operagdes e nos simbolos
que podem ser gerados durante a criacao da populagdo inicial.

A Tabela 5 apresenta os resultados dessas mudangas. A Tabela 6 apresenta os
resultados, arredondados, de 100 execugdes do algoritmo genético para gerar questoes
faceis. A média de estados mostra que as expressoes geradas sao satisfatorias, atendendo

686



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

o requisito para questdes faceis. E o nimero pequeno de iteracdes executadas mostra que
com esse método o algoritmo voltou a convergir mais rapidamente.

Tabela 5. Exemplos de expressoes de nivel facil geradas sem simplificacao das
expressoes e crossover por caminho.

Identificador | Expressao

1 O+ ((0+X) & (14 X))

2 (0+1)

3 ~(M)(@)*

4 0+ ((0+A) & (1 +4)))=(0)
5 (04 ((0+A) & (1)7))=(0)

Tabela 6. Média e desvio padrao do numero de estados das expressoes e geracao
em que o algoritmo genético terminou usando as caracteristicas do gera-
dor na Tabela 5.

Média | Desvio padrao
Numero de estados 3 0,8
IteracOes até convergéncia 4 2

6. Conclusoes

Durante o desenvolvimento deste trabalho, foi explorada a criacdo de uma ferramenta
dindmica para auxiliar na compreensao de AFDs. A implementa¢cdo bem-sucedida de um
sistema capaz de gerar expressdes regulares aleatdrias, com niveis variados de dificul-
dade, e criar autdmatos equivalentes promove uma abordagem prética e interativa para o
ensino-aprendizagem de conceitos abstratos e desafiadores. Além disso, a visualizagdo
das estruturas por meio de imagens reforca a compreensdo visual e abre caminho para
treinamento da minimizacao dos autdmatos.

Com a integracdo ao IRacket®, um kernel de Racket para Jupyter, foi gerado um
Jupyter Notebook contendo exercicios de dificuldades variadas, com o total de exercicios
de cada dificuldade escolhidos pelo proprio aluno, o que pode aumentar ainda mais a
utilidade e impacto da ferramenta, possibilitando uma adaptacdo mais personalizada as
necessidades de cada estudante e ampliando as possibilidades de interagdo com o ambi-
ente de aprendizado. Por fim, também € possivel integrar novos tipos de questdes e seus
gabaritos a ferramenta, como minimizacao de AFDs e converter AFN para AFD, entre
outros.

Como trabalhos futuros, pretendemos avaliar o impacto do uso da ferramenta
em cursos de Teoria da Computacdo e continuar seu desenvolvimento, avaliando outros
métodos para geracdo de questdes com diferentes niveis de dificuldade e desenvolver a
geracao do gabarito e correcdao automatica para questdes de minimizagao.

O coédigo-fonte da ferramenta estd disponivel no repositério do GitHub:
https://github.com/lives-group/automata-language.

*Disponivel em https://docs.racket-lang.org/iracket/index.html.

687



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Agradecimentos

O presente trabalho foi realizado com apoio da Coordenacdo de Aperfeicoamento de Pes-
soal de Nivel Superior - Brasil (CAPES) - Cédigo de Financiamento 001. A Fundagio de
Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), Cédigo do Financiamento
APQ-03665-22.

Referéncias

Adithi, G., Adiga, A., Pavithra, K., Vasisht, P. P., and Kumar, V. (2015). Secure, offline
feedback to convey instructor intent. In 2015 IEEE Seventh International Conference
on Technology for Education (T4E), pages 105-108, Warangal, India. IEEE.

Alsubait, T., Parsia, B., and Sattler, U. (2012). Automatic generation of analogy questions
for student assessment: an ontology-based approach. Research in Learning Techno-
logy, 20.

Bezakov4, 1., Hemaspaandra, E., Lieberman, A., Miller, H., and Narvéez, D. E. (2020).
Prototype of an automated feedback tool for intro cs theory. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education, SIGCSE ’20, page 1311,
New York, NY, USA. Association for Computing Machinery.

Brzozowski, J. A. (1964). Derivatives of regular expressions. Journal of the ACM (JACM),
11(4):481-494.
Casamaximo, R., Silva, P., Michels, J. F., and Barbosa, C. R. (2024). Avaliacdo de jogos

digitais no ensino de linguagens formais e autdomatos. In Anais do XXXV Simpdsio Bra-
sileiro de Informdtica na Educagdo, pages 538-550, Porto Alegre, RS, Brasil. SBC.

Cassanho, L., Michels, J. F., and Barbosa, C. R. (2024). Avaliacdo do jflap para ensino de
autdmatos. In Anais do XXXV Simpdsio Brasileiro de Informdtica na Educagdo, pages
513-524, Porto Alegre, RS, Brasil. SBC.

Chakraborty, P., Saxena, P. C., and Katti, C. P. (2011). Fifty years of automata simulation:
a review. acm inroads, 2(4):59-70.

Chuda, D. and Rodina, D. (2010). Automata simulator. In Proceedings of the 11th Inter-
national Conference on Computer Systems and Technologies and Workshop for PhD
Students in Computing on International Conference on Computer Systems and Tech-
nologies, CompSysTech *10, page 394-399, New York, NY, USA. Association for
Computing Machinery.

Costa, C. S. (2023). Desenvolvimento de algoritmos para correcdo automdtica de
exercécios sobre automatos finitos deterministicos.

Flatt, M. and PLT (2010). Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Design Inc. https://racket-lang.org/trl/.

Gaebel, M., Kupriyanova, V., Morais, R., and Colucci, E. (2014). E-learning in euro-
pean higher education institutions: Results of a mapping survey conducted in october-
december 2013. European University Association.

Goldbach, I. and Hamza Lup, F. (2017). Survey on e-learning implementation in eastern-
europe spotlight on romania. In The Ninth International Conference on Mobile, Hy-
brid, and On-line Learning, eLmL, number 2, pages 05—13, Nice, Franca.

688



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Mohammed, M. K. O. (2020). Teaching formal languages through visualizations, simu-
lators, auto-graded exercises, and programmed instruction. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education, SIGCSE °20, page 1429,
New York, NY, USA. Association for Computing Machinery.

Paiva, P., Souza, M., and Terra, R. (2023). Ferramentas de apoio para a disciplina de
linguagens formais e autdmatos: uma proposta de uso. In Anais do XXXIV Simpdsio
Brasileiro de Informdtica na Educagdo, pages 1698—1709, Porto Alegre, RS, Brasil.
SBC.

Qayyum, A. and Zawacki-Richter, O. (2018). Open and distance education in Australia,
Europe and the Americas: National perspectives in a digital age. Springer Nature,
Singapore.

Rodger, S. H. (2002). Using hands-on visualizations to teach computer science from
beginning courses to advanced courses. In Second Program Visualization Workshop,
number 14, pages 103-112, Hornstrup Center, Dinamarca.

Shenoy, V., Aparanji, U., Sripradha, K., and Kumar, V. (2016). Generating dfa construc-
tion problems automatically. In 2016 International Conference on Learning and Tea-
ching in Computing and Engineering (LaTICE), pages 32-37, Mumbai, India. IEEE.

Sipser, M. (2013). Introduction to the theory of computation (3rd international ed.). Cen-
gage Learning.

Vieira, L. F. M., Vieira, M. A. M., and José, N. (2003). Language emulator, uma ferra-
menta de auxilio no ensino de teoria da computagao.

Zorzo, A. F.,, Nunes, D., Matos, E., Steinmacher, 1., de Araujo, R. M., Correia, R.,
and Martins, S. (2017). Referenciais de formacao para os cursos de graduagdo em
computagao.

689



