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Abstract. Providing high-quality formative feedback to programming students
remains a key challenge, especially in large-scale educational settings. Addres-
sing this need, the present work introduces and validates an adaptive framework
grounded in large language models (LLMs) for automatic code assessment and
personalized feedback generation. The solution leverages pedagogical strate-
gies and advanced prompt engineering to foster conceptual mediation and mea-
ningful student support. Analysis of 300 real student submissions showed 74.7%
agreement with traditional autograders and 93.3% of feedbacks rated as quali-
tatively coherent, highlighting the potential to enhance learning outcomes and
expand innovative assessment practices.

Resumo. Oferecer feedback formativo de qualidade a estudantes de
programação é um dos principais desafios educacionais, sobretudo em ambien-
tes com grande número de participantes. A partir desse contexto, este trabalho
apresenta o desenvolvimento e a validação de um framework adaptativo base-
ado em grandes modelos de linguagem (LLMs) para avaliação automática de
código e geração de feedback personalizado. A ferramenta emprega estratégias
pedagógicas e técnicas avançadas de engenharia de prompt para promover
mediação conceitual e apoio ao estudante. A análise de 300 tentativas reais
evidenciou 74,7% de concordância com autograders tradicionais e 93,3% de fe-
edbacks qualitativamente avaliados como coerentes, destacando potencial para
apoiar a aprendizagem significativa e ampliar o alcance de práticas avaliativas
inovadoras.

1. Introdução

O ensino de programação é central na formação em Computação, mas permanece um
desafio pedagógico crı́tico em cursos introdutórios. Estudos documentam altas taxas de
evasão e reprovação associadas a dificuldades na compreensão conceitual e desenvol-
vimento do raciocı́nio algorı́tmico [Alvim et al. 2024, Medeiros et al. 2019]. Além das
barreiras técnicas, ambientes massivos e o excesso de atividades “extra-classe” sobre-
carregam docentes, inviabilizando feedback individualizado [Teusner et al. 2018], fator
considerado essencial para aprendizagem efetiva.
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Autograders tradicionais, apesar de úteis para avaliação funcional e detecção
rápida de erros [Keuning et al. 2018], mostram-se insuficientes para desenvolver com-
petências complexas como depuração e boas práticas [Zawacki-Richter et al. 2019,
Cheng et al. 2023].

O avanço dos Large Language Models (LLMs) viabilizou tutores capazes de in-
terpretar código e gerar explicações adaptativas [Bassner et al. 2024], abrindo perspec-
tivas para feedback formativo em escala. Persistem, contudo, desafios como feedback
excessivamente direto (respostas prontas) ou orientações genéricas [Krupp et al. 2024,
Lampou 2023].

Diante desses desafios e das limitações das abordagens tradicionais de feedback
automatizado, propomos um framework inovador para avaliação adaptativa de código,
fundamentado na Teoria da Aprendizagem Significativa de Ausubel [Ausubel 1963]. A
proposta distingue-se por: (i) usar o conhecimento prévio do estudante como âncora
para feedback contextualizado; (ii) estruturar o apoio pedagógico de forma progres-
siva, diferenciando pelo histórico de interações; e (iii) priorizar a construção de signifi-
cado conceitual e o desenvolvimento de competências metacognitivas, em detrimento de
correções superficiais. Inspirado em perspectivas socioconstrutivistas [Vygotsky 1978]
e em princı́pios de autorregulação da aprendizagem [Zimmerman 2002], o framework
preserva a autonomia estudantil e favorece a participação ativa e reflexiva na aprendiza-
gem. Sua arquitetura contempla acompanhamento longitudinal do histórico de tentativas,
personalização via engenharia avançada de prompts, detecção automatizada de padrões
de erro e adaptação dinâmica do detalhamento do feedback, promovendo intervenções
alinhadas ao desenvolvimento conceitual.

Para avaliar sua efetividade, investigamos:

QP1: A avaliação por LLMs pode substituir autograders tradicionais com precisão equi-
valente?

QP2: Os feedbacks gerados apresentam qualidade e coerência para apoio à aprendiza-
gem?

QP3: Qual o impacto do framework nos custos operacionais em larga escala?

O artigo estrutura-se em: trabalhos relacionados (Seção 2); arquitetura do fra-
mework (Seção 3); metodologia (Seção 4); resultados (Seção 5); discussão (Seção 6);
limitações e trabalhos futuros (Seção 7); e conclusões (Seção 8).

2. Trabalhos relacionados
Trabalhos recentes indicam que grande parte dos sistemas de avaliação automatizada,
frequentemente baseados em julgamentos binários (certo/errado), ainda oferece pouco
estı́mulo à reflexão, escassa mediação formativa e limitada detecção de padrões persisten-
tes de erro ou escalonamento de ajuda [Keuning et al. 2018, Messer et al. 2023]. Embora
úteis para verificação de correção, os autograders seguem mostrando limitações signifi-
cativas no apoio a iniciantes, sobretudo quando o objetivo é promover a compreensão
conceitual [Paiva et al. 2022, Leite and Blanco 2020].

Em resposta a essas limitações, a literatura tem recomendado explicitamente me-
canismos de feedback progressivo, estratégias para identificar recorrências e dispositivos
de regulação pedagógica ao longo do tempo [Schwerter et al. 2022, Gill et al. 2024]. Esta
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evolução reflete-se na trajetória da automação da avaliação de código, que tem migrado de
soluções iniciais baseadas em testes unitários e detecção de plágio [Ihantola et al. 2010,
Ala-Mutka 2005] para abordagens mais sofisticadas que incorporam análise semântica e
geração textual de feedback, culminando recentemente na exploração do uso de LLMs
[Gill et al. 2024, Cheng et al. 2023].

Persistem, entretanto, desafios de alinhamento entre o feedback gerado au-
tomaticamente e as expectativas pedagógicas: imprevisibilidade dos LLMs, calibra-
gem de prompts para evitar respostas vagas ou a entrega de soluções e a necessi-
dade de combinar critérios objetivos com abordagens adaptativas que fomentem auto-
nomia do estudante [Bassner et al. 2024, Pereira and Ferreira Mello 2025, Yu et al. 2023,
Schwerter et al. 2022, Brown et al. 2020].

Nesse cenário, ferramentas representativas como Iris [Bassner et al. 2024] e Co-
deTailor [Cheng et al. 2023] marcaram avanços na integração de LLMs. Iris enfatiza fe-
edback progressivo e personalização em tempo real, mas sua memória de contexto perma-
nece restrita ao histórico imediato, sem continuidade longitudinal. CodeTailor personaliza
Parsons Puzzles a partir de erros do aluno, favorecendo diagnósticos especı́ficos, porém
não opera como tutor adaptativo e formativo ao longo de múltiplas tentativas. Em con-
traste, o framework aqui proposto mantém uma thread pedagógica persistente e integra
personalização, registro histórico e mediação formativa, conforme detalhado na Seção 3.

Além disso, nossa arquitetura incorpora memória longitudinal, engenharia de
prompts restritiva, validação por pós-processamento e estratégias de caching para
otimização de custos, alinhando-se às recomendações mais recentes para avaliação in-
teligente e adaptativa no ensino de programação.

3. Visão Geral e Arquitetura

Neste trabalho, framework designa a integração de princı́pios pedagógicos, arquite-
tura lógica, estratégias de feedback e implementação computacional que materializam
a avaliação adaptativa de código. Embora exposto como API em Python (FastAPI) e
consumido por uma plataforma de exercı́cios, o arranjo didático e o encadeamento de de-
cisões o aproximam de um sistema de tutoria adaptativa, com potencial de aplicação em
diferentes ambientes de ensino.

Arquiteturalmente, o framework atua como tutor virtual adaptativo: promove
intervenções formativas graduais e personalizadas, ancoradas no histórico de tentativas
do estudante. Operacionalmente, a plataforma envia enunciado, metadados e código;
a API compõe uma thread pedagógica por par estudante–exercı́cio, recupera do Mon-
goDB o histórico previamente registrado (códigos e feedbacks), incorpora o assistente
com regras e instruções e aciona o modelo de linguagem. A resposta retorna à API,
que aplica um pós-processamento do tipo “catraca” — seleção/filtragem/descarte — an-
tes da apresentação na interface. A Figura 1 resume esse ciclo e explicita as fronteiras
de comunicação: a UI interage apenas com a API/Backend, enquanto o núcleo (thread,
geração e pós-processamento) permanece desacoplado.

A geração dos feedbacks automáticos utiliza o modelo GPT-4.1-mini, da OpenAI,
escolhido pelo equilı́brio entre desempenho, custo e capacidade de contextualização em
ciclos breves de interação.
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Figura 1. Arquitetura do framework e ciclo de feedback em alto nı́vel.

A lógica do sistema é deliberadamente adaptativa: o feedback evolui em sinto-
nia com o progresso do estudante. Nas primeiras tentativas, privilegia orientações con-
ceituais; persistindo erros, aprofunda justificativas e oferece indı́cios mais diretos, sem
franquear a solução. O acompanhamento longitudinal identifica repetições de estratégias
ineficazes e aciona intervenção diferenciada, calibrando nı́vel de detalhamento e ênfase
pedagógica.

Outro diferencial é a checagem de relevância do feedback. Após cada resposta,
o estudante sinaliza a utilidade percebida (“útil/não útil”), informação que alimenta um
painel de monitoramento e subsidia revisão manual de casos-limite. Os logs detalhados
asseguram transparência, rastreabilidade e ajustes finos na engenharia de prompts e na
evolução do modelo pedagógico.

Por fim, a natureza agnóstica e o ciclo de realimentação contı́nua permitem es-
tender o suporte formativo a diferentes arranjos curriculares e nı́veis de proficiência, sem
sacrificar a economia operacional nem a coerência pedagógica do sistema.

3.1. Requisitos técnicos e operacionais

O framework foi concebido para oferecer suporte formativo adaptativo e seguro, centrado
no envio de código para análise e geração automática de feedback, sem abertura para per-
guntas livres. Diferenciando-se de abordagens de chat, a aplicação estrutura todo o ciclo
de interação como um pipeline automatizado e supervisionado, com ênfase nos seguintes
requisitos:

Contextualização e registro persistente. Para cada estudante–exercı́cio, manter uma th-
read pedagógica com enunciado, submissões, feedbacks e reações (“útil/não útil”); a cada
análise, reidratar uma janela curta do histórico para preservar continuidade sem acumular
ruı́do.

Adaptação controlada do feedback. Ajustar gradualmente o nı́vel de detalhamento com
base em evidências do histórico (p. ex., repetição de erros), preservando o foco conceitual
e sem fornecer solução pronta; liberar refinamentos de estilo/boas práticas apenas após
confirmação de corretude.

Filtragem e reforço pedagógico. Submeter cada saı́da a seleção/filtragem/descarte antes
da apresentação, bloqueando trechos resolutivos, referências a linhas/variáveis e desvios
de escopo; quando a indicação estruturada de corretude faltar, aplicar inferência heurı́stica
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conservadora; deduplicar solicitações semanticamente idênticas para evitar reprocessa-
mentos.

Observabilidade e retroalimentação. Manter logs estruturados e registrar a utilidade
percebida pelo estudante (“útil/não útil”) para auditoria, monitoramento e ajustes finos do
comportamento do sistema.

Resiliência e operação. Garantir validação de entradas, controle de concorrência e reten-
tativas com backoff em falhas transitórias, assegurando estabilidade sob carga.

Integração e portabilidade. Preservar independência de plataforma e fronteiras claras
entre UI e núcleo, facilitando a adoção em diferentes ambientes sem acoplamento inde-
vido.

Esses requisitos permitiram construir uma solução robusta, capaz de operar sob
cargas reais e registrar dados essenciais para análises de desempenho e melhoria contı́nua.

3.2. Engenharia de prompt e direcionamento do modelo

A qualidade da interação entre estudantes e a API decorre do uso de um assistente es-
pecializado (OpenAI) configurado com um conjunto robusto de instruções sistêmicas
(system instruction). Diferentemente do envio isolado de prompts por requisição, essa
configuração mantém contexto persistente e pode incorporar técnicas como contextual
prompting, few-shot e self-consistency, o que sustenta diretrizes pedagógicas ao longo de
múltiplas trocas, reduz inconsistências e melhora a adequação das respostas aos objetivos
[Kasneci et al. 2023]. Como demonstrado por [Marvin et al. 2024], fornecer contexto é
determinante: sem ele, LLMs tendem a respostas genéricas; com contexto insuficiente,
produzem informações imprecisas; já com contexto adequado, aumentam a coerência e
a relevância das saı́das. Essa base de persistência contextual viabiliza a aplicação de
estratégias pedagógicas mais sofisticadas, alinhando o comportamento do modelo a obje-
tivos educacionais claros.

A configuração do assistente privilegia postura formativa, mediação ativa e apren-
dizagem autônoma. O system instruction orienta que o apoio ao estudante iniciante de
programação se dê por meio de incentivo à identificação autônoma de problemas, à re-
flexão conceitual e ao reconhecimento de melhorias, sem entrega de soluções prontas
ou indicação direta de erros. Essa abordagem combina Socratic prompting, scaffolding
de dicas e verificação conceitual com casos de teste internos, além de explicações con-
ceituais genéricas, validação algorı́tmica rigorosa, perguntas reflexivas e tom motivador
[Ding et al. 2024, Jang et al. 2024]. O resultado é um feedback que preserva o papel ativo
do aluno na resolução de problemas e previne respostas inadequadas.

Socratic prompting e scaffolding de dicas
“Você é um assistente que ajuda alunos iniciantes de programação a entender e cor-
rigir seu código. Sua tarefa é: guiar o estudante a identificar e corrigir problemas
por conta própria, verificar se o código atende ao enunciado, reconhecer oportuni-
dades de otimização. Não apresente trechos de código nem indique diretamente onde
está o erro. Sempre que identificar um problema, explique o conceito envolvido de
forma didática e, ao final, proponha uma pergunta reflexiva curta para estimular a
revisão crı́tica.”
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A implementação do few-shot prompting ocorre pela inclusão, no próprio system
instruction, de exemplos reais e sintéticos de respostas ideais e inadequadas, calibrando a
saı́da do modelo quanto a formato, linguagem e nı́vel de detalhamento [Wei et al. 2022,
Brown et al. 2020, Pornprasit and Tantithamthavorn 2024]. Esse recurso é amplamente
reconhecido como eficaz para garantir consistência e previsibilidade no uso educacional
de LLMs.

Exemplo adequado
“Seu código calcula uma soma, mas lembre-se de dividir pelo número de elementos
para obter a média. Como garantir que o cálculo está correto mesmo para listas
vazias?”

Exemplo inadequado
“Sua resposta está errada. Seu código não atende o enunciado e apresenta problemas
com operadores matemáticos.”
Motivo: resposta vaga e pouco construtiva, que não orienta o estudante nem segue o
padrão esperado de clareza e mediação.

Outro aspecto central do system instruction são as restrições explı́citas (prompt
constraints), que vedam menção a linhas, variáveis ou fornecimento de código
pronto, prevenindo prompt injection e preservando o caráter conceitual do feed-
back [Pereira and Ferreira Mello 2025, Yu et al. 2023]. A contextualização dinâmica
é reforçada pela incorporação do histórico de tentativas e feedbacks no contexto das
interações, permitindo respostas mais adaptativas. Em complemento, a aplicação de pós-
processamento para filtrar saı́das e bloquear sugestões explı́citas ou qualquer desvio de
escopo é uma prática já apontada como essencial para garantir segurança e aderência
pedagógica em assistentes baseados em LLMs [Kazemitabaar et al. 2024].

Ao centralizar a lógica de interação no assistente, o framework alcança maior
coerência, eficiência e controle pedagógico, reduz custos computacionais e minimiza ris-
cos de comportamento inconsistente, aproximando-se do estado da arte no uso educacio-
nal responsável de LLMs e potencializando o impacto formativo com segurança operaci-
onal.

4. Metodologia
A abordagem metodológica deste estudo foi delineada para responder diretamente às
questões de pesquisa da Seção 1, assegurando alinhamento entre objetivos investigativos
e estratégias de análise de dados.

Para avaliar a qualidade e a operacionalidade do framework, utilizamos registros
reais de disciplinas introdutórias de programação (Python) em uma plataforma educaci-
onal, preservando o encadeamento das tentativas. Os dados contemplam envios finais e
salvamentos intermediários, caracterı́sticos do desenvolvimento incremental e nem sem-
pre representativos de tentativas estruturadas.

Visando relevância pedagógica, selecionou-se uma amostra estratificada de 300
tentativas, priorizando casos nos quais os estudantes consolidavam estruturas básicas de
código e evidenciavam dificuldades autênticas. A amostra, composta por 100 soluções
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corretas e 200 incorretas, reflete a dinâmica realista de ambientes educacionais: ini-
ciantes frequentemente submetem múltiplas soluções erradas antes de alcançar uma
implementação funcional. Essa distribuição permite tanto analisar padrões recorrentes
quanto estimar métricas como acurácia, sensibilidade e especificidade.

Todas as tentativas, inclusive as feitas em blocos (Blockly), foram convertidas
para Python antes do armazenamento, assegurando uniformidade dos dados.

O processo metodológico foi organizado em três eixos principais, cada um vincu-
lado às questões de pesquisa:

• Substituição de autograders tradicionais (QP1): Para investigar em que medida
a avaliação automatizada por LLMs pode substituir autograders, as 300 tentativas
selecionadas foram submetidas simultaneamente à API baseada em LLMs e a um
autograder tradicional, permitindo o cálculo da taxa de concordância, sensibili-
dade e especificidade.

• Qualidade e coerência dos feedbacks (QP2): Para avaliar a qualidade dos fe-
edbacks, foram aplicados dois procedimentos complementares: (i) análise auto-
matizada por classificador LLM especializado, instruı́do para identificar coerência
e alinhamento formativo; e (ii) revisão manual de uma amostra estratificada por
especialistas, que atribuı́ram julgamentos qualitativos de utilidade e clareza.

• Custos operacionais (QP3): O impacto do uso do framework sobre os custos
operacionais foi mensurado por meio do registro detalhado do tempo de proces-
samento, consumo de recursos e número de tokens utilizados em cada interação,
permitindo estimar o custo efetivo da avaliação em larga escala.

Essa estrutura busca garantir que cada dimensão do problema de pesquisa seja
tratada de forma rigorosa e transparente, permitindo não apenas a replicação do estudo,
mas também uma análise crı́tica dos resultados.

4.1. Comparação com Autograder Tradicional

A plataforma utilizada neste estudo já integrava um autograder convencional, responsável
por avaliar automaticamente se cada código submetido pelos estudantes passava ou não
nos testes de validação. Para a análise de concordância (QP1), cada uma das 300 tentati-
vas selecionadas foi submetida ao endpoint de análise da API baseada em LLMs. Embora
o endpoint principal da API tenha sido concebido prioritariamente para fornecer feedback
formativo, o assistente LLM foi instruı́do, por meio de engenharia de prompt, a também
indicar explicitamente, via flag de status, se o código analisado era considerado correto.
Essa informação, integrada ao feedback, tornou possı́vel comparar, em cada tentativa, o
resultado dos casos de teste (autograder) com a classificação de código correto/incorreto
fornecida pelo LLM. Essa abordagem permitiu aferir a taxa de concordância e os des-
vios entre as duas estratégias, além de sustentar métricas como acurácia, sensibilidade e
especificidade na identificação de soluções corretas.

4.2. Avaliação da Qualidade dos Feedbacks

A análise da qualidade e coerência dos feedbacks gerados (QP2) foi realizada imediata-
mente após a classificação de corretude, aproveitando os mesmos registros de feedback.
Para isso, foi desenvolvido um prompt especı́fico, aplicado a um LLM avaliador, com as
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seguintes instruções: receber o enunciado, o código do estudante e o feedback fornecido
pela API; classificar a resposta em uma das categorias: “coerente”, “incoerente” ou “in-
completo”, e justificar a classificação em uma frase, retornando o resultado em formato
JSON.

Após a classificação automatizada dos 300 feedbacks, uma amostra estratifi-
cada de 10% (ou seja, 30 casos) foi submetida a avaliação manual por especialistas em
educação em computação. Esse procedimento permitiu validar a precisão do classificador
LLM: caso fossem observadas divergências, o percentual final de feedbacks “coerentes”
seria ajustado de acordo com a taxa de acerto manual, por exemplo, caso 10% dos casos
amostrados apresentassem classificação equivocada, a métrica global era reduzida propor-
cionalmente. Essa triangulação metodológica assegura maior robustez e confiabilidade ao
indicador de qualidade dos feedbacks.

4.3. Avaliação dos Custos Operacionais

Por fim, a análise dos custos operacionais (QP3) foi conduzida a partir do registro de-
talhado de cada chamada à API durante os experimentos. Foram computados o tempo
de processamento, o consumo de recursos computacionais e o número de tokens proces-
sados em cada interação. Com base nesses dados, foi possı́vel estimar o custo efetivo
de operação do framework em cenários de larga escala, bem como realizar comparações
diretas com os custos tı́picos de execução dos autograders convencionais.

5. Resultados e Discussão

O presente estudo avaliou o desempenho do framework de feedback inteligente a partir
de múltiplas perspectivas: quantitativa, qualitativa e operacional. Em todas as etapas,
buscou-se compreender como as decisões de projeto e as estratégias de engenharia de
prompt influenciaram o comportamento da API frente a situações autênticas de aprendi-
zagem em programação.

5.1. Concordância com Autograders Tradicionais

Com o objetivo de responder à QP1, “A avaliação por LLMs pode substituir autograders
tradicionais com precisão equivalente?”, analisamos a concordância entre a classificação
binária da API baseada em LLMs e o resultado dos autograders convencionais embutidos
na plataforma educacional. Para cada uma das 300 tentativas avaliadas, o endpoint da
API indicou via flag se o código era considerado “correto” ou “incorreto”, possibilitando
a construção de uma matriz de confusão comparando esse diagnóstico com o dos casos
de teste automáticos.

Os resultados apontaram uma acurácia global de 74,7%, conforme Tabela 1, suge-
rindo um alto grau de alinhamento, mas também revelando divergências relevantes entre
os sistemas.

Tabela 1. Matriz de confusão entre avaliação da API e autograder
API: Correto API: Incorreto

Testes: Correto 61 39
Testes: Incorreto 36 163
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Ao examinar as divergências, identificamos que falsos positivos (18,1%) e fal-
sos negativos (20,3%) estão distribuı́dos de modo relativamente equilibrado, indicando
a ausência de viés sistemático por parte do LLM. Entretanto, a análise qualitativa das
divergências, realizada a partir de inspeção manual e do dataset, revelou padrões es-
pecı́ficos, que aprofundam a compreensão das limitações e potencialidades do framework:

• Alinhamento de critérios (FP/FN). Divergências entre foco pedagógico e re-
gras de teste geram dois padrões: (i) FP — o autograder reprova por for-
mato/contagem/regex, enquanto a API aceita por julgar a lógica suficiente; (ii) FN
— os testes aprovam sem exigir validação prevista no enunciado (p. ex., “inteiro
positivo”), e a API reprova por faltar essa checagem.

• Entrada e formato (I/O). Diferenças em número de entradas, tipos e formato de
saı́da (incluindo casas decimais e nomes exatos) explicam parte das discordâncias:
o autograder tende a penalizar variações estruturais, enquanto a API prioriza
aderência conceitual ao enunciado.

• Forma versus conteúdo. Problemas sutis de sintaxe/formatação (p. ex., esquecer
o f no print), escolhas de tipo de dado ou convenções de inicialização podem
não afetar a lógica central, mas impedem a aprovação nos testes; a API, por vezes,
os trata como oportunidades de melhoria.

• Ambiguidade do enunciado. Quando o texto permite múltiplas leituras
razoáveis, tanto a decisão do autograder quanto a da API podem ser justificáveis
por interpretações distintas, caracterizando desalinhamento conceitual mais que
erro do sistema.

Essa taxonomia sugere que boa parte das divergências resulta de diferentes prio-
ridades avaliativas: o autograder tende a operar com base em regras rı́gidas de validação,
enquanto o LLM, ao focar mediação pedagógica, pode privilegiar abordagens alterna-
tivas ou soluções que demonstrem compreensão conceitual, ainda que não estritamente
conforme a especificação.

Esses achados não apenas reforçam resultados prévios da litera-
tura [Gill et al. 2024, Cheng et al. 2023], como apontam para a necessidade de
estratégias hı́bridas ou calibradas para maximizar tanto a precisão técnica quanto o
potencial formativo. Destaca-se, ainda, o papel do feedback contextualizado do LLM,
que, mesmo em casos de discordância, frequentemente contribui para a aprendizagem
ao oferecer orientações para o aprimoramento da solução, superando limitações dos
autograders tradicionais.

Em sı́ntese, a análise detalhada das divergências demonstra que a adoção exclusiva
de autograders ou LLMs pode ser insuficiente para uma avaliação plenamente formativa
e justa, sugerindo a integração de ambos como uma abordagem mais robusta para apoiar
o desenvolvimento de competências em programação.

5.2. Qualidade dos Feedbacks

A avaliação qualitativa indicou que 93,3% dos feedbacks gerados pela API foram coe-
rentes, com orientação relevante e alinhada ao enunciado e ao código submetido. Esse
ı́ndice supera resultados de estudos afins [Schwerter et al. 2022, Bassner et al. 2024], si-
nalizando o potencial do framework para suporte formativo consistente.
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A validação manual, em amostra de 30 feedbacks, confirmou a confiabilidade da
classificação automática: apenas um caso divergente, sem impacto no percentual global.
O resultado reforça a aderência dos retornos aos critérios formativos propostos.

Dos 3,3% classificados como não coerentes, identificamos casos pontuais de des-
vio de escopo e respostas incompletas. Exemplo 1: a questão pedia apenas validação
textual e checagem condicional da entrada do usuário, mas o feedback passou a exi-
gir “estrutura de repetição”, requisito não previsto. Exemplo 2: a tarefa era verificar a
presença de um item pelo nome em uma lista, e o feedback introduziu “valores posi-
tivos/negativos”, conceito ausente no enunciado. Esses episódios sugerem associações
semânticas espúrias ou efeitos da janela curta de histórico, levando o modelo a extrapolar
além do que foi especificado.

Além disso, cerca de 3% das interações resultaram em erro técnico (formato ines-
perado, timeouts ou falhas de comunicação), limitações inerentes ao uso de LLMs em
escala e relevantes para implantação real.

Embora os resultados venham de exercı́cios curtos e introdutórios, controles de
contexto e filtragem (histórico curto, reforço do enunciado) elevaram a consistência e a
aderência do feedback. Ainda assim, o framework se mostra promissor com cautela: sua
efetividade precisa ser reavaliada em tarefas mais complexas e contextos menos restritos.

5.3. Resultados Operacionais: Eficiência, Custo e Escalabilidade

No aspecto operacional, o sistema demonstrou elevada eficiência: 80 das 300 interações
empregaram caching, reduzindo consumo de tokens e tempo de resposta para submissões
repetidas. O consumo médio por requisição foi de 2.334 tokens, tempo médio de 10,5
segundos, custo médio de US$ 0,0115 por análise e custo total de US$ 2,51 para as
219 interações com métricas válidas. Esses indicadores situam o framework como uma
solução viável para aplicações educacionais em larga escala, comparável (ou superior) a
sistemas documentados na literatura internacional [Bassner et al. 2024]. Estratégias de
otimização como caching inteligente e registro detalhado de métricas são decisivas para
viabilizar a adoção ampla e sustentável de LLMs no ensino.

6. Conclusões

Este trabalho apresentou uma API de feedback formativo adaptativo baseada em
LLMs para o ensino de programação. Ancorada na Teoria da Aprendiza-
gem Significativa [Ausubel 1963] e em práticas formativas [Black and Wiliam 2009,
Nicol and Macfarlane-Dick 2006], a arquitetura integra personalização progressiva,
avaliação conceitual, mediação do erro e rastreamento longitudinal, em con-
sonância com avanços em tutores inteligentes [Gill et al. 2024, Bassner et al. 2024,
Schwerter et al. 2022], reforçando o potencial dos LLMs no apoio à aprendizagem ativa.

Avaliamos 300 tentativas reais, abrangendo diferentes perfis e estilos de
solução. A análise quantitativa indicou 74,7% de concordância entre a avaliação
binária da API e autograders, valor comparável a estudos prévios [Schwerter et al. 2022,
Cheng et al. 2023], com sensibilidade e especificidade equilibradas. As divergências evi-
denciam que, enquanto autograders priorizam precisão funcional, o framework agrega
dimensões pedagógicas e heurı́sticas mais flexı́veis, aproximando-se da prática humana.
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Na avaliação qualitativa, 93,3% dos feedbacks foram coerentes, úteis e ali-
nhados a objetivos formativos, superando benchmarks recentes [Bassner et al. 2024,
Schwerter et al. 2022]. O resultado decorre de engenharia de prompt e decisões de pro-
jeto, como reforço do enunciado no prompt e seleção/filtragem de saı́das, que tornam o
feedback especı́fico e imediatamente aplicável, em linha com princı́pios de autorregulação
e aprendizagem ativa [Nicol and Macfarlane-Dick 2006]. Simultaneamente, o framework
supera limitações de autograders tradicionais, como julgamentos binários e mediação
insuficiente [Messer et al. 2023], ao substituir respostas booleanas por orientações pe-
dagógicas progressivas.

Operacionalmente, a API mostrou viabilidade técnica e econômica, com custo por
interação inferior a US$0,02 e tempos de resposta compatı́veis com uso em escala. Es-
tratégias de caching, reuso de threads e otimização de tokens sustentaram a escalabilidade
sem perda pedagógica.

Em sı́ntese, o principal valor da API está na qualidade, adaptabilidade e
contextualização dos feedbacks, convertendo a avaliação automatizada em aliada da
aprendizagem significativa. O framework é replicável e extensı́vel a outros domı́nios,
desde que respeitadas as especificidades disciplinares.

7. Limitações e direções para trabalhos futuros
Apesar dos resultados promissores, o escopo deste estudo permanece circunscrito por al-
gumas limitações que também apontam caminhos de evolução. Primeiro, a avaliação foi
conduzida offline, sobre histórico de submissões, o que restringe a observação de efeitos
dinâmicos de adaptação em tempo real; estudos in situ, com instrumentação longitudinal
(p. ex., A/B e séries temporais), poderão capturar continuidade, deriva e latência perce-
bida. Além disso, a análise concentrou-se no serviço de avaliação de código, sem cobrir
de modo equilibrado os demais fluxos do sistema; trabalhos futuros devem ampliar a
cobertura com métricas compartilhadas de qualidade, confiabilidade fim a fim e custo.

Outro limite decorre do perfil das tarefas: predominaram exercı́cios curtos e de
baixa complexidade, cenário favorável ao desempenho. Uma etapa seguinte é incorpo-
rar problemas multietapa, entradas maiores e nı́veis variáveis de ambiguidade, medindo
como coerência, especificidade do feedback e tempo de resposta escalam nesses contex-
tos. Em paralelo, a generalização permanece aberta: embora a arquitetura seja extensı́vel,
a validação empı́rica focou exclusivamente programação; estudos piloto em domı́nios
com I/O e critérios objetivos de correção, acompanhados de ajustes de instruções, critérios
avaliativos e benchmarks especı́ficos, são necessários.

Por fim, reconhecemos que a rotulagem automática dos feedbacks na etapa de
avaliação pode comprometer a fidedignidade dos resultados; para mitigar, implementou-
se um protocolo de validação cruzada com amostragem manual, com previsão de am-
pliar a amostra e realizar uma avaliação especı́fica da acurácia da classificação au-
tomática. Em paralelo, persistem limites do assistente, como imprevisibilidade dos mode-
los, “alucinações” e extrapolações do enunciado, que vêm sendo tratados por calibração
de prompts, reforço de restrições pedagógicas e filtros de pós-processamento; trabalhos
futuros incluirão checagens de consistência semântica entre tarefa e resposta, regeração
direcionada e ajustes que aumentem a especificidade do feedback e desestimulem padrões
genéricos.
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8. Considerações finais

O uso de LLMs em educação levanta desafios éticos centrais, amplamente discutidos
na literatura [Zhou et al. 2023, Porayska-Pomsta et al. 2024, Luckin et al. 2016]. Entre
os principais riscos destacam-se automação acrı́tica da avaliação, reforço de vieses al-
gorı́tmicos e ameaça à autonomia estudantil [Yan et al. 2024]. Atentos a esses aspectos,
orientamos o desenvolvimento por transparência, rastreabilidade e respeito à individuali-
dade do estudante.

Especificamente, evitou-se fornecer respostas diretas ou códigos completos,
priorizando mediação reflexiva e estı́mulo à autorregulação, em consonância com
[Black and Wiliam 2009, Zimmerman 2002]. Todas as interações são registradas para au-
ditoria, e realizamos revisão humana amostral, com foco nos feedbacks marcados como
“não úteis”, a fim de identificar padrões recorrentes e orientar refinamentos de instruções
e regras operacionais.

Reconhecemos a existência de potenciais vieses, tanto linguı́sticos (variedade de
registro, regionalismos e tom/severidade) quanto pedagógicos (suposições sobre conhe-
cimento prévio). As estratégias de mitigação implementadas neste trabalho incluem:
instruções pedagógicas explı́citas para promover elogios ao esforço e tom encorajador,
adaptação do nı́vel de detalhamento do feedback para evitar respostas genéricas, e pós-
processamento para bloquear respostas fora de contexto ou revelação direta de soluções.
Cabe destacar que a detecção automatizada de viés não foi contemplada no escopo atual.
Na dimensão da privacidade, aplicamos minimização de dados rigorosa e prevenção de
exposição de identificadores pessoais nos modelos e artefatos públicos.

Em uso contı́nuo, planejamos avaliação formal de viés com amostragem es-
tratificada por tipo de exercı́cio e nı́vel de proficiência, monitorando assimetrias de
tom/severidade e cobertura, e empregando auditorias manuais periódicas; os achados ali-
mentarão calibração de prompts, diretrizes pedagógicas e polı́ticas de uso. Com esse
arranjo, o framework busca conciliar ganhos formativos com responsabilidade no uso de
LLMs em contextos educacionais sensı́veis.
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