X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Apertem os Cintos... o Copiloto Sumiu! O Impacto do Ensino
de Programacao Segura em Computacao

Nadia Luana Lobkov!, Paulo Ricardo Lisboa de Almedia',
André Ricardo Abed Grégio', José Alexandre D’Abruzzo Pereira®

! Departamento de Informatica — Universidade Federal do Parana (UFPR)
Curitiba — PR — Brasil

2Faculdade de Ciéncia e Tecnologia — Universidade de Coimbra
Coimbra — Portugal

{nadialobkov, paulorla, gregio}@ufpr.br, Jjosepldei.uc.pt

Abstract. Courses focused on computer programming are fundamental com-
ponents of computing curricula. However, many programs do not adequa-
tely emphasize secure programming techniques, resulting in professionals who,
although capable of developing software, do not do so securely. In this study,
85 questionnaires completed by students from two computing programs were
analyzed. The students were divided into two groups: those who considered
themselves capable of secure programming and those who did not. The results
are concerning, revealing no significant difference in secure programming abi-
lity between the two groups. Additionally, the performance of students who re-
ceived basic programming instruction with the simultaneous introduction of se-
cure programming techniques was compared to that of students who were taught
programming alone. Once again, no significant differences were observed, sug-
gesting that teaching secure programming techniques during the initial stages
of learning to program may be insufficient, or inadequate, for students to effec-
tively acquire these skills.

Resumo. Disciplinas voltadas a programagdo de computadores sdo fundamen-
tais nos cursos de computacdo. No entanto, muitos curriculos ndo enfatizam
adequadamente técnicas de programacdo segura, formando profissionais que,
embora capazes de desenvolver software, ndo o fazem de maneira segura. Neste
trabalho, foram analisados 85 questiondrios respondidos por estudantes de dois
cursos da drea. Os alunos foram divididos em dois grupos: aqueles que se
consideravam aptos a programar com seguranga e aqueles que ndo se consi-
deravam capazes. Os resultados sdo preocupantes, revelando que ndo hd dife-
renga significativa na capacidade de programacdo segura entre os grupos. Além
disso, comparou-se o desempenho de estudantes que tiveram aulas de progra-
magdo bdsica com introdugdo simultdnea de técnicas de programagdo segura
com o de estudantes que cursaram apenas a programagdo convencional. Nova-
mente, ndo foram observadas diferencas significativas, indicando que o ensino
de técnicas de programacgdo segura durante o aprendizado inicial de progra-
magdo pode ndo ser suficiente, ou mesmo adequado, para promover o dominio
dessas prdticas.

DOI: 10.5753/shie.2025.12961 1445

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

1. Introducao

Programacdo de computadores € uma disciplina fundamental na ciéncia da computacio
e um dos primeiros assuntos aos quais os estudantes deste tipo de curso aprendem. O
ensino da programacgdo, entretanto, enfatiza funcionalidades das linguagens em detri-
mento da seguranga de cddigo [McGraw 2006]. Com o aumento de ataques ciberné-
ticos e vulnerabilidades em sistemas criticos, a integracdo de préticas de codificacio
segura na formacdo de desenvolvedores tornou-se essencial. Porém, muitos cursos de
programacgdo em nivel superior ainda negligenciam esse aspecto, formando profissionais
que reproduzem falhas conhecidas, como buffer overflows, SQL injection e race conditi-
ons [Howard and LeBlanc 2003].

H4 mais de duas décadas a literatura da drea vem mostrando que a maioria das
vulnerabilidades comumente exploradas em sistemas poderia ser evitada com técnicas
basicas de programacdo defensiva [Viega and McGraw 2001, Seacord 2013], além de ar-
gumentar que a seguranca deve ser incorporada no ciclo de desenvolvimento desde o
primeiro dia, ndo como um acréscimo apods a liberagdo (deployment/release) do soft-
ware [Barnum and McGraw 2005]. O CERT Secure Coding Standards, desenvolvido e
publicado pelo Software Engineering Institute (SEI), enfatiza a importancia de se ensi-
nar desde cedo praticas como validacdo de entrada, gerenciamento seguro de memoria e
principios de minimos privilégios [CERT/SEI 2024].

O ensino tradicional de programacdo, focado apenas em sintaxe e algoritmos,
cria uma lacuna perigosa: alunos aprendem a escrever cdigo que funciona, mas nao
codigo que resiste a exploragdes [Lam et al. 2022]. Além disso, o uso massivo de
ferramentas de auxilio a codificagdo, como o Microsoft Copilot e o ChatGPT, pro-
paga entre os estudantes a pratica de copiar e colar fungdes e até mesmo progra-
mas completos sem uma andlise mais minuciosa acerca da seguranca do codigo ge-

rado [Rahman et al. 2019, Hong et al. 2021].

Esse tipo de prética € especialmente critica em linguagens como C e C++ que, se
por um lado sao flexiveis e dao grande poder ao programador, também cobram a respon-
sabilidade de se saber o que se estd programando. Nas linguagens citadas, erros de ma-
nipulacdo de memoria sdo comuns e potencialmente catastroficos, onde intimeros casos
amplamente difundidos mostram que mds préticas levaram a falhas de seguranca ampla-
mente exploradas [Votipka et al. 2020].

Considerando (i) a situacao atual de ensino de programacao em uma universidade
brasileira, (ii) que alguns alunos foram expostos a conceitos de programacao segura du-
rante as disciplinas de programacao introdutdrias, e (iii) a auto-declaracdo dos estudantes
sobre seus conhecimentos sobre seguranca na codificacio, o presente trabalho foca em
responder as seguintes Questdes de Pesquisa (QPs):

* QP1: Ha4 diferencas entre alunos que se consideram capazes de programar de
forma segura e aqueles que ndo se consideram?

e QP2: Os alunos que tiveram conceitos de programacdo segura enquanto apren-
diam a programar, programam de maneira mais segura do que os demais?

* QP3: Os alunos melhoram a seguranca de suas programacdes conforme progri-
dem no curso, ou existe um plateau em que os alunos deixam de progredir?

Para responder tais perguntas, foram analisados os questiondrios de 85 alunos de

1446

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

dois cursos de computacdo da Universidade Federal do Parand. Os resultados mostram
que o emprego de metodologias que tentam ensinar programacio segura enquanto os
alunos ainda estdo aprendendo a programar podem ser insuficientes. Além disso, tais
metodologias podem criar a falsa percep¢ao nos estudantes de que eles sabem programar
seguramente, mostrando indicios do Efeito Dunning-Kruger [Kruger and Dunning 1999],
onde as lacunas de conhecimento dos estudantes podem ser impeditivos para que eles
percebam os pontos em que precisam melhorar.

O restante do artigo estd organizado da seguinte forma: na Secao 2 sao apresenta-
dos os trabalhos relacionados. J4 na Secdo 3 é detalhada a metodologia usada para coleta
e andlise dos dados. Na Sec¢do 4 sdo apresentados e discutidos os resultados. Finalmente,
na Sec¢do 5, sdo apresentadas as consideracdes finais e propostos os trabalhos futuros.

2. Trabalhos Relacionados

[Taylor et al. 2013] discutem a crescente importancia do ensino de programagdo segura
na formacdo em Ciéncia da Computagdo, destacando iniciativas que integraram "Segu-
ranga e Garantia da Informacdo"como uma drea de conhecimento essencial. Os autores
desmistificam concepcdes equivocadas, como a ideia de que nao hd espaco no curriculo
para programacao segura ou que apenas ensinar técnicas de codificacdo segura resolvera
os problemas de seguranca de software. Além disso, sdo apresentadas ferramentas e pro-
jetos para facilitar a inclus@o de préticas de programacdo segura em disciplinas introdu-
térias e avangadas. Por fim, € enfatizada a necessidade de envolver toda a comunidade
académica, desde professores até alunos, para criar uma “mentalidade de seguranca” e
melhorar a qualidade do software desenvolvido.

[Chi et al. 2013] propdem um framework para integrar préticas de codificacao se-
gura no ensino de programacio, utilizando ferramentas de andlise estdtica (como Find-
Bugs [Pugh and Loskutov 2015] e Splint [Evans and Larochelle 2002]) em um sistema
web chamado TSCPSTEM, o qual oferece exercicios praticos, quizzes e demonstracdes
adaptados a diferentes disciplinas (Ciéncias Naturais, Engenharia, Matemdtica e Cién-
cia da Computagdo). O experimento com 70 estudantes de STEM mostrou um aumento
de 130% no desempenho em testes apds o uso dos médulos, comprovando a eficicia da
abordagem. Os resultados destacam a importancia de ensinar seguranca desde o inicio
da formagdo, preparando futuros desenvolvedores para evitar vulnerabilidades comuns,
como buffer overflows e SQL injection.

[Singleton et al. 2020] abordam o problema das praticas de programacgdo insegu-
ras, especialmente no uso incorreto de primitivas criptogrificas, como 0 armazenamento
de dados sensiveis em texto puro em aplicativos bancarios méveis, destacando a falta de
integracdo desses conceitos em programas académicos e a caréncia de ferramentas au-
tomatizadas para orientar desenvolvedores na escrita de cddigo seguro. Para suprir tal
lacuna, o artigo apresenta CryptoTutor, uma ferramenta que identifica automaticamente
erros comuns em implementacdes criptograficas e sugere corregdes. Além disso, discu-
tem como ferramentas como essa podem ser incorporadas em cursos de programagao em
niveis universitario e pré-universitario, visando melhorar a seguranca do software desde a
fase educacional.

[Espinha Gasiba et al. 2023] exploram o uso do ChatGPT como ferramenta para
auxiliar desenvolvedores na identificacdo e correcdo de vulnerabilidades em cddigo,

1447

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

baseando-se em experimentos com cinco snippets vulnerdveis em C/C++. Os resultados
mostram que o ChatGPT identificou corretamente 60% das vulnerabilidades e sugeriu so-
lucdes criativas, porém com limitacdes como falta de contexto, alteracdes indesejadas na
semantica do cddigo e complexidade excessiva. O estudo destaca o potencial do modelo
como auxilio educacional e profissional em seguranca de software, mas alerta para riscos
como pldgio e dependéncia de dados desatualizados.

[Lam et al. 2022] investigam as lacunas no conhecimento de programacao segura
entre estudantes de Ciéncia da Computacdo, por meio de entrevistas com 21 alunos de
duas universidades dos EUA. Os resultados revelaram que os alunos enfrentam dificul-
dades em &reas fundamentais, como compreensao de mensagens do compilador, uso de
recursos online (como Stack Overflow), conhecimento de memoria e fun¢des inseguras
em C (por exemplo, gets, strcpy), além de uma abordagem pouco critica em relagdo
a seguranca. O trabalho destaca que cursos introdutdrios frequentemente negligenciam
praticas seguras, e que materiais didaticos e exemplos em sala podem refor¢ar més pra-
ticas. Esses achados reforcam a necessidade de integrar seguranca de forma transversal
no curriculo, desde disciplinas iniciais, e de desenvolver intervencdes educacionais que
abordem essas lacunas, como mddulos especificos ou é€nfase em andlise de cédigo. O
estudo complementa pesquisas anteriores sobre a eficdcia de ferramentas de revisdo de
codigo e a importancia de uma “mentalidade de seguranca” desde o inicio da formacao.

3. Metodologia

Para a realizagdo deste estudo, foram aplicados questiondrios aos alunos de dois cursos
de graduacao do em Computagdo da Universidade Federal do Parand. Os questiondrios
foram amplamente divulgados aos alunos desses cursos, sendo que o preenchimento do
questiondrio foi realizado de forma voluntdria. A metodologia seguida para a criacao dos
formuldrios, aplicagdo, coleta e analise dos dados pode ser vista na Figura 1.

PREPARAGAO APLICAGAO TRIAGEM DE DADOS ANALISE
e —
Criagdo do banco de Divulgagdo dos Dados filtrados
questdes de Programagio questionarios para os alunos ingressou antes de
Segura baseado nos Padrdes dos cursos de Informética RO
de Codificagdo SEI CERT e Geragdo de gréficos para
J ¥ a analise dos dados
l Participacdo voluntdria RemogZo desses dados] l
Criagdo dos questiondrios de dos estudantes ~
. Interpretagdo das
multipla escolha e L L
q q o anélises estatfsticas
discursivo na plataforma Classificagdo de alunos
Moodle que tiveram disciplinas
l Coleta das respostas de programacio segura

Figura 1. Etapas para a Realizacao da Pesquisa

Dois tipos de questiondrios foram disponibilizados aos alunos: i) questdes de mul-
tipla escolha, e ii) questdes discursivas. Em ambos os casos, 5 questdes de autoavaliagao
foram apresentadas no inicio do questiondrio aos participantes a fim de caracterizi-los.
No questiondrio de multipla escolha, existiam 10 questdes técnicas (totalizando 15, com
as de autoavaliacdo). J& no questiondrio com questdes discursivas, existiam 6 questdes

1448

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

discursivas além das questdes de autoavaliacdo. Os alunos podiam optar entre preencher
apenas o questiondrio de multipla escolha, ou preencher ambos os questiondrios (alunos
que preencheram apenas o questiondrio discursivo foram desconsiderados).

As questdes técnicas foram elaboradas baseadas nos Padrdes de Codificagdo SEI
CERT [CERT/SEI 2024] e pertenciam a uma de trés categorias possiveis: Vetores, Strings
e gerenciamento de memoria. O escopo do estudo € apenas em programacdo segura na
linguagem de programacdo C, e por isso a sintaxe das questdes focou nessa linguagem.
A seguir, cada classe é brevemente apresentada, juntamente com um exemplo de questao.

Vetores — Questdes que focam em verificar a capacidade dos alunos em identificar
problemas relacionados ao uso de vetores, como indexacdo e alocagdo incorretas.

Exemplo de questao:

No cédigo abaixo, qual é o problema que pode levar a um comportamento indefi-
nido?

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(int index) {
if (index < TABLESIZE) {
return table + index;
}
return NULL;
}

a. O cddigo ndo verifica se o indice € maior que TABLESIZE.
b. O cédigo ndo retorna um ponteiro vélido.

c. O codigo ndo verifica se o indice € negativo.

d. O cédigo ndo aloca memdria suficiente para o vetor.

Strings — De forma similar aos vetores, as questdes relativas a strings almejam
verificar a capacidade dos alunos em identificar problemas como acesso a indices invéli-
dos, buffers overflows e afins.

Exemplo de questao:

Por que o c6digo abaixo € inseguro, mesmo compilando sem warnings?

char xfilename = "config.txt";
filename[0] = 'C’; // Tenta mudar ’c’ para 'C’

a. Falta usar malloc() para alocar filename.

b. O tipo char* ndo é compativel com strings literais.

c. O compilador ndo permite a reatribuicio de filename.

d. String literais sdo armazenadas em memdria somente leitura, e modificd-las causa comportamento
indefinido.

Gerenciamento de Memoria — Questdes relativas ao gerenciamento adequado de
memoria, incluindo alocagdo dinamica de varidveis e problemas relacionados ao escopo
de varidveis.

Exemplo de questao:

1449

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Qual das seguintes afirmagdes é verdadeira sobre o uso de ponteiros para memoria
que ja foi liberada?

a. Tanto ler quanto escrever na memoria liberada é comportamento indefinido.

b. E seguro ler a meméria ap6s a liberacdo, mas nio escrever nela.

c. O ponteiro automaticamente se torna invélido e ndo pode ser mais usado.

d. A memoria liberada é automaticamente limpa pelo sistema operacional, garantindo que nenhum
dado permaneca acessivel.

Vale notar que o foco das questdes técnicas era verificar a capacidade dos alunos
em identificar problemas de programacao que podem deixar softwares vulnerdveis. Por
exemplo, problemas de buffer overflow em vetores e strings sdo conhecidos por gerar tais
brechas de seguranca e tanto ponteiros quanto aloca¢do dinamica de memdria sao assuntos
muitas vezes lecionados sem preocupacdo de associagdo com potenciais problemas de
corrup¢do de memoria, principalmente em turmas de programacao introdutdrias.

Ao todo, 85 alunos responderam apenas as questdes de multipla escolha, enquanto
39 alunos responderam tanto as questdes de multipla escolha quanto as questdes discur-
sivas. Na Figura 2 € exibida a quantidade de alunos que responderam aos questionarios
de acordo com o ano de ingresso. Alunos que ingressaram antes do ano de 2020 foram
desconsiderados das anélises devido ao baixo nimero de respondentes (6 alunos).

T

8
= 30 8
Q
ho]
g
% 99
& 9
Q
s 4
@]
s 0] . 17 l
= 12
5 10 6
Z 5

0 ? :

| | | |
2020 2021 2022 2023 2024

Apenas Miiltipla Escolha || Multipla Escolha e Discursivo

Figura 2. Distribuicao dos respondentes por tipo de resposta e ano de ingresso

4. Resultados e Discussao

Esta secdo apresenta e discute os resultado obtidos. Apresentamos os resultados das ques-
toes de multipla escolha (Secdo 4.1), seguido dos resultados das questdes discursivas (Se-
cdo 4.2).

4.1. Questoes de Miiltipla Escolha

A Tabela 1 mostra os resultados médios obtidos pelos alunos de acordo com suas autoa-
valiagdes. Como pode ser observado, alunos que se julgaram como tendo algum conhe-
cimento de programacao segura obtiveram notas médias levemente superiores aos alunos

1450

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

que se julgaram como ndo tendo conhecimento. Devido a baixa diferenca, foi executado
um Teste Mann-Whitney-Wilcoxon, que com nivel de significancia de p = 0.95 nio rejei-
tou a hipétese nula de que as distribuicdes dos dois grupos de alunos eram as mesmas. Em
outras palavras, de acordo com o teste, ndo € possivel identificar diferenca significativa
entre oS grupos.

Julga que aprendeu conceitos de programacado segura?
Sim, mesmo que parcialmente. N&o aprendeu ou nio lembra.
Alunos 58 27
Nota Média (desvio) 6.6 (£2.2) 6.3 (x2.1)

Tabela 1. Desempenho dos alunos de acordo com suas autoavaliacoes.

O resultado da Tabela 1 € interessante e preocupante, pois mostra um possivel
efeito Dunning-Kruger [Kruger and Dunning 1999], onde os estudantes podem ter lacu-
nas tdo grandes em seus conhecimentos que podem ser incapazes de identificar suas fa-
lhas, nesse caso, se julgando incorretamente como capazes de criar programas seguros.

Ja na Tabela 2 sdo exibidos os resultados obtidos pelos alunos que assistiram ao
menos uma disciplina em que pelo menos parte do conteido de programacdo foi minis-
trado incluindo conceitos de programagdo segura, versus os alunos que nao tiveram. De
forma similar aos resultados obtidos na Tabela 2, as notas obtidas sdo similares, € um
Teste Mann-Whitney-Wilcoxon nio identifica diferenca significativa entre os grupos.

Teve disciplinas com programacao segura?

Sim, ao menos algumas. Nao.
Alunos 64 21
Nota Média (desvio) 6.52 (£ 1.92) 6.62 (£ 2.78)

Tabela 2. Desempenho dos alunos que tiveram ou nao disciplinas com progra-
macao segura.

Vale citar que sdo considerados alunos que tiveram disciplinas com conceitos de
programacdo segura aqueles que, por exemplo, tiveram disciplinas introdutérias de pro-
gramacdo, onde aprenderam a programar juntamente com alguns conceitos basicos de
seguranga como, por exemplo, validar se um ponteiro retornado pelo malloc € valido. O
resultado mostra esse tipo de estratégia para o ensino de programacgdo segura pode nao
ser suficiente [Lam et al. 2022].

Finalmente, na Figura 3 sdo exibidos os resultados médios dos alunos de acordo
com seus respectivos anos de ingresso. A expectativa € de que alunos que entraram em
anos anteriores, por terem passado mais semestres na universidade e serem mais experi-
entes, sejam mais competentes em responder as questdes de programacao segura em C.

Os resultados apresentados na Figura 3 mostram alguns comportamentos interes-
santes. Primeiro, como esperado, os alunos que entraram mais recentemente nos cursos
possuem uma grande variancia nos seus resultados. A variancia pode ser explicada pelo
fato de alguns alunos j4 entrarem no curso com algum conhecimento de programacao.

No entanto, de forma contraintuitiva, alunos que ingressaram no curso no ano de
2023 ou anteriormente nao apresentaram notas médias significativamente maiores que os

1451

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

10 — — —

Nota

2020 2021 2022 2023 2024
Ano de Ingresso

Figura 3. Distribuicdo das notas por ano de ingresso do aluno (questées de
multipla escolha)

alunos mais recentes, apesar de terem variancias menores. Era de se esperar que alunos
que cursaram mais disciplinas focadas em programacdo por estarem hd mais tempo no
curso melhorassem suas notas, mas esse fato ndo é observado nos dados. Mais interes-
sante ainda sdo os resultados referentes ao ano de 2021, sendo esse o inico ano em que
os resultados obtidos pelos alunos foram piores que os dos recém ingressantes. Apesar
de ndo estar no escopo deste trabalho, este pode ser um indicativo de que o periodo de
pandemia da COVID-19, juntamente com a abordagem de aulas remotas, pode ter afetado
negativamente o aprendizado dos alunos.

4.2. Questoes Discursivas

Nesta Secdo sdo apresentados os resultados considerando-se as questOes discursivas.
Como discutido na Secdo 3, apenas 39 alunos responderam as questdes discursivas. Os
resultados das Tabelas 3 e 4 mostram, respectivamente, os resultados dos alunos de acordo
com suas autoavaliacdes, e de acordo com a presenga ou ndo de conteidos de programa-
cdo segura ministrados durante as disciplinas de programacao.

Julga que aprendeu conceitos de programacgao segura?
Sim, mesmo que parcialmente. N&ao aprendeu ou nio lembra.
Alunos 23 16
Nota Média (desvio) 6.0 (£2.9) 52(x2.1)

Tabela 3. Desempenho dos alunos de acordo com suas autoavaliagoes (questoes
discursivas)

Os resultados das tabelas levam as mesmas conclusdes das anélises realizadas na
Secao 4.1, onde as diferencas entre os grupos de alunos foi relativamente pequena. Na
Tabela 3 foi possivel observar que alunos que julgam ter aprendido conceitos de progra-
macao segura tiveram um desempenho ligeiramente melhor quando comparado aos que
nao aprenderam ou ndo lembram, mas, ainda assim, essa diferenca pode ndo ser signifi-
cativa.

1452

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Teve disciplinas com programacao segura?

Sim, ao menos algumas. N3o.
Alunos 30 9
Nota Média (desvio) 55(£2.6) 6.3 (£2.5)

Tabela 4. Desempenho dos alunos que tiveram ou néo disciplinas com progra-
macao segura (questdes discursivas)

Um resultado particularmente intrigante emerge da Tabela 4, a qual evidencia que
os alunos que tiveram aulas juntamente com conceitos basicos de programacao segura ob-
tiveram em média notas mais baixas quando comparados aos que ndo passaram por essa
formacdo. Porém, mais uma vez, os grupos nio possuem diferencas significativas e as
diferencas nas notas provavelmente vieram do acaso. Além disso, devemos tomar esses
resultados com cuidado devido a baixa amostragem de alunos que nao tiveram programa-
cdo segura na Tabela 4.

4.3. Discussao

Os resultados mostram que o ensino de técnicas de programagdo segura, juntamente com
o ensino de técnicas de programacao bésica, como € o caso dos alunos que participaram
desta pesquisa, ndo € efetivo. Considerando as perguntas de pesquisa propostas no inicio
deste trabalho, obtemos as seguintes anélises.

QP1: Ha diferencgas entre alunos que se consideram capazes de programar de
forma segura e aqueles que ndo se consideram?

R.: Nao ha diferenca significativa nos resultados obtidos pelos alunos que julga-
vam conhecer, a0 menos em partes, programacio segura, versus os demais. Essa é uma
das principais descobertas deste trabalho, onde concluimos que os estudantes estdo cri-
ando uma falsa percep¢do de que tém conhecimentos de programacao segura, podendo os
levar a erros crassos devido ao excesso de confianca.

QP2: Os alunos que tiveram conceitos de programacao segura enquanto apren-
diam a programar, programam de maneira mais segura do que os demais?

R.: Mais uma vez, ndo hd diferenca significativa entre os grupos. Essa descoberta
mostra que as formas de ensino de programagdo segura nos cursos sao insuficientes ou
ineficazes para o aprendizado dos alunos.

QP3: Os alunos melhoram a seguranca de suas programacgdes conforme progri-
dem no curso, ou existe um plateau em que os alunos deixam de progredir?

R.: Os alunos melhoram a qualidade de suas programagdes (com relacdo a segu-
ranga) entre seus primeiro e segundo anos nos cursos. No entanto, os alunos atingem um
plateau de conhecimento ja no segundo ano nos cursos. Isso mostra, mais uma vez, que o
ensino de técnicas de programacgdo segura ndo estdo sendo suficientes nos cursos, € isso
persiste durante os varios semestres letivos que os alunos cursam.

Para mitigar esses problemas, recomenda-se que a criacao de disciplinas focadas
apenas em programacgdo segura, na qual alunos ja com alguma experiéncia em progra-
macao podem se matricular. Dessa forma, os alunos podem focar apenas nos conceitos
de seguranga, sem a carga cognitiva extra de, em paralelo, precisarem aprender a progra-

1453

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

mar. Tal disciplina existe nos cursos analisados, no entanto, essa disciplina se encontra
no final do curso, e a vasta maioria dos alunos que responderam aos questiondrios ndo a
cursaram. Além disso, tal disciplina pode focar, por exemplo, na aprendizagem focada
em problemas, a fim de aumentar o engajamento dos alunos.

5. Conclusao e Trabalhos Futuros

Os resultados deste trabalho mostram que os alunos que tiveram contetidos de progra-
macgdo segura em conjunto com conteidos bésicos de programa¢do ndo foram capazes
de absorver os conteidos corretamente, nao sendo melhores do que seus pares que nao
tiveram tais conteidos de programacio segura. Além disso, o fato de grupos de alunos
que se consideram capazes de programar seguramente ndo ser capaz de superar o grupo
que ndo se considera capaz de programar seguramente mostra que os alunos podem estar
criando uma falsa percepcao sobre suas capacidades de criar softwares seguros.

Apesar de a literatura de codifica¢io segura ter aproximadamente 25 anos, ainda se
veé a necessidade de integrar a programacao segura nos curriculos de computacao, apresen-
tando estratégias pedagdgicas baseadas em referéncias consolidadas, como os padrdes do
CERT e obras cldssicas de seguranca de software. Sem essa mudancga curricular e sem o
incentivo a se ter disciplinas especificas de seguranca em todo o ciclo de desenvolvimento
de software, os cursos relacionados a computacdo continuardo a formar desenvolvedores
que, mesmo competentes tecnicamente, perpetuam vulnerabilidades evitaveis.

Vale notar alguns aspectos e limitacdes desta pesquisa, dentre eles: 1 — A grande
maioria dos alunos pesquisados ndo cursaram disciplinas focadas apenas em programa-
cdo segura, pois ndo hd oferta no curriculo, dessa forma, a anélise se limita aos alunos
que cursaram apenas disciplinas de programacdo bésica onde alguns conceitos de progra-
macdo segura sdo introduzidos em assuntos como alocacdo dindmica de memoéria. 2 —
A andlise foca em alunos de uma unica instituicdo e; 3 — O fato de que poucos alunos
responderam as questdes dissertativas pode ter gerado limitagdes nas andlises.

Contudo, o presente trabalho mostra a importancia de pesquisas sobre as habili-
dades de programacdo segura de alunos em cursos de computagdo em geral, a fim de se
identificar problemas e limitacdes em sua formacdo. As descobertas deste trabalho servi-
rdo para discussdes sobre a reorganizacdo da grade curricular dos cursos de computacao
a fim de, por exemplo, trazer mais conteidos focados primariamente em programacgao
segura e o ciclo de desenvolvimento seguro de software, pensado para se adicionar segu-
ranga desde o projeto de um software, bem como o de reorganizar disciplinas focadas em
seguranga na matriz curricular a fim de que estas sejam absorvidas da melhor forma pos-
sivel pelos estudantes. O objetivo principal de se dar énfase para disciplinas especificas
em seguranc¢a € o de formar desenvolvedores capazes de revisar criticamente c6digos e
evitar vulnerabilidades comuns.

Como trabalho futuro, pretende-se expandir a pesquisa para coletar mais dados
com participantes sobre programacao segura tanto em C quanto em outras linguagens de
programacao, na Universidade Federal do Parana e em outras instituicdes colaboradoras
do Brasil ou do exterior, considerando-se também alunos de pds-graduagao.

1454

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Referéncias

Barnum, S. and McGraw, G. (2005). Knowledge for software security. IEEE Security
and Privacy, 3(2):74-78.

CERTY/SEI (2024). CERT secure coding standards. https://wiki.sei.cmu.edu/
confluence/display/seccode.

Chi, H., Jones, E. L., and Brown, J. (2013). Teaching secure coding practices to stem
students. In Proceedings of the 2013 on InfoSecCD ’13: Information Security Curri-
culum Development Conference, InfoSecCD 13, page 42—48, New York, NY, USA.
Association for Computing Machinery.

Espinha Gasiba, T., Oguzhan, K., Kessba, I., Lechner, U., and Pinto-Albuquerque, M.
(2023). I'm Sorry Dave, I'm Afraid I Can’t Fix Your Code: On ChatGPT, CyberSecu-
rity, and Secure Coding. In Peixoto de Queirds, R. A. and Teixeira Pinto, M. P., editors,
4th International Computer Programming Education Conference (ICPEC 2023), vo-
lume 112 of Open Access Series in Informatics (OASlcs), pages 2:1-2:12, Dagstuhl,
Germany. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Evans, D. and Larochelle, D. (2002). Splint - annotation-assisted static program checker.
https://splint.org/.

Hong, H., Woo, S., and Lee, H. (2021). Dicos: Discovering insecure code snippets from
stack overflow posts by leveraging user discussions. In Proceedings of the 37th Annual
Computer Security Applications Conference, ACSAC 21, page 194-206, New York,
NY, USA. Association for Computing Machinery.

Howard, M. and LeBlanc, D. (2003). Writing Secure Code. Microsoft Press, 2 edition.

Kruger, J. and Dunning, D. (1999). Unskilled and unaware of it: how difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. Journal of per-
sonality and social psychology, 77(6):1121.

Lam, J., Fang, E., Almansoori, M., Chatterjee, R., and Soosai Raj, A. G. (2022). Iden-
tifying gaps in the secure programming knowledge and skills of students. In Procee-
dings of the 53rd ACM Technical Symposium on Computer Science Education - Volume
1, SIGCSE 2022, page 703-709, New York, NY, USA. Association for Computing
Machinery.

McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley.

Pugh, B. and Loskutov, B. (2015). Findbugs - find bugs in java programs. https:
//findbugs.sourceforge.net/.

Rahman, A., Farhana, E., and Imtiaz, N. (2019). Snakes in paradise?: Insecure python-
related coding practices in stack overflow. In 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR), pages 200-204.

Seacord, R. C. (2013). Secure Coding in C and C++. Addison-Wesley, 2 edition.

Singleton, L., Zhao, R., Song, M., and Siy, H. (2020). Cryptotutor: Teaching secure
coding practices through misuse pattern detection. In Proceedings of the 21st Annual
Conference on Information Technology Education, SIGITE °20, page 403408, New
York, NY, USA. Association for Computing Machinery.

1455

X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

Taylor, B., Bishop, M., Hawthorne, E., and Nance, K. (2013). Teaching secure coding:
the myths and the realities. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE 13, page 281-282, New York, NY, USA.
Association for Computing Machinery.

Viega, J. and McGraw, G. (2001). Building Secure Software. Addison-Wesley.

Votipka, D., Fulton, K. R., Parker, J., Hou, M., Mazurek, M. L., and Hicks, M. (2020).
Understanding security mistakes developers make: qualitative analysis from build it,
break it, fix it. In Proceedings of the 29th USENIX Conference on Security Symposium,
USA. USENIX Association.

1456

