
Apertem os Cintos. . . o Copiloto Sumiu! O Impacto do Ensino
de Programação Segura em Computação

Nadia Luana Lobkov1, Paulo Ricardo Lisboa de Almedia1,
André Ricardo Abed Grégio1, José Alexandre D’Abruzzo Pereira2

1 Departamento de Informática – Universidade Federal do Paraná (UFPR)
Curitiba – PR – Brasil

2Faculdade de Ciência e Tecnologia – Universidade de Coimbra
Coimbra – Portugal

{nadialobkov, paulorla, gregio}@ufpr.br, josep@dei.uc.pt

Abstract. Courses focused on computer programming are fundamental com-
ponents of computing curricula. However, many programs do not adequa-
tely emphasize secure programming techniques, resulting in professionals who,
although capable of developing software, do not do so securely. In this study,
85 questionnaires completed by students from two computing programs were
analyzed. The students were divided into two groups: those who considered
themselves capable of secure programming and those who did not. The results
are concerning, revealing no significant difference in secure programming abi-
lity between the two groups. Additionally, the performance of students who re-
ceived basic programming instruction with the simultaneous introduction of se-
cure programming techniques was compared to that of students who were taught
programming alone. Once again, no significant differences were observed, sug-
gesting that teaching secure programming techniques during the initial stages
of learning to program may be insufficient, or inadequate, for students to effec-
tively acquire these skills.

Resumo. Disciplinas voltadas à programação de computadores são fundamen-
tais nos cursos de computação. No entanto, muitos currículos não enfatizam
adequadamente técnicas de programação segura, formando profissionais que,
embora capazes de desenvolver software, não o fazem de maneira segura. Neste
trabalho, foram analisados 85 questionários respondidos por estudantes de dois
cursos da área. Os alunos foram divididos em dois grupos: aqueles que se
consideravam aptos a programar com segurança e aqueles que não se consi-
deravam capazes. Os resultados são preocupantes, revelando que não há dife-
rença significativa na capacidade de programação segura entre os grupos. Além
disso, comparou-se o desempenho de estudantes que tiveram aulas de progra-
mação básica com introdução simultânea de técnicas de programação segura
com o de estudantes que cursaram apenas a programação convencional. Nova-
mente, não foram observadas diferenças significativas, indicando que o ensino
de técnicas de programação segura durante o aprendizado inicial de progra-
mação pode não ser suficiente, ou mesmo adequado, para promover o domínio
dessas práticas.

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1445DOI: 10.5753/sbie.2025.12961

1. Introdução
Programação de computadores é uma disciplina fundamental na ciência da computação
e um dos primeiros assuntos aos quais os estudantes deste tipo de curso aprendem. O
ensino da programação, entretanto, enfatiza funcionalidades das linguagens em detri-
mento da segurança de código [McGraw 2006]. Com o aumento de ataques ciberné-
ticos e vulnerabilidades em sistemas críticos, a integração de práticas de codificação
segura na formação de desenvolvedores tornou-se essencial. Porém, muitos cursos de
programação em nível superior ainda negligenciam esse aspecto, formando profissionais
que reproduzem falhas conhecidas, como buffer overflows, SQL injection e race conditi-
ons [Howard and LeBlanc 2003].

Há mais de duas décadas a literatura da área vem mostrando que a maioria das
vulnerabilidades comumente exploradas em sistemas poderia ser evitada com técnicas
básicas de programação defensiva [Viega and McGraw 2001, Seacord 2013], além de ar-
gumentar que a segurança deve ser incorporada no ciclo de desenvolvimento desde o
primeiro dia, não como um acréscimo após a liberação (deployment/release) do soft-
ware [Barnum and McGraw 2005]. O CERT Secure Coding Standards, desenvolvido e
publicado pelo Software Engineering Institute (SEI), enfatiza a importância de se ensi-
nar desde cedo práticas como validação de entrada, gerenciamento seguro de memória e
princípios de mínimos privilégios [CERT/SEI 2024].

O ensino tradicional de programação, focado apenas em sintaxe e algoritmos,
cria uma lacuna perigosa: alunos aprendem a escrever código que funciona, mas não
código que resiste a explorações [Lam et al. 2022]. Além disso, o uso massivo de
ferramentas de auxílio à codificação, como o Microsoft Copilot e o ChatGPT, pro-
paga entre os estudantes a prática de copiar e colar funções e até mesmo progra-
mas completos sem uma análise mais minuciosa acerca da segurança do código ge-
rado [Rahman et al. 2019, Hong et al. 2021].

Esse tipo de prática é especialmente crítica em linguagens como C e C++ que, se
por um lado são flexíveis e dão grande poder ao programador, também cobram a respon-
sabilidade de se saber o que se está programando. Nas linguagens citadas, erros de ma-
nipulação de memória são comuns e potencialmente catastróficos, onde inúmeros casos
amplamente difundidos mostram que más práticas levaram a falhas de segurança ampla-
mente exploradas [Votipka et al. 2020].

Considerando (i) a situação atual de ensino de programação em uma universidade
brasileira, (ii) que alguns alunos foram expostos à conceitos de programação segura du-
rante as disciplinas de programação introdutórias, e (iii) a auto-declaração dos estudantes
sobre seus conhecimentos sobre segurança na codificação, o presente trabalho foca em
responder às seguintes Questões de Pesquisa (QPs):

• QP1: Há diferenças entre alunos que se consideram capazes de programar de
forma segura e aqueles que não se consideram?

• QP2: Os alunos que tiveram conceitos de programação segura enquanto apren-
diam a programar, programam de maneira mais segura do que os demais?

• QP3: Os alunos melhoram a segurança de suas programações conforme progri-
dem no curso, ou existe um plateau em que os alunos deixam de progredir?

Para responder tais perguntas, foram analisados os questionários de 85 alunos de

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1446

dois cursos de computação da Universidade Federal do Paraná. Os resultados mostram
que o emprego de metodologias que tentam ensinar programação segura enquanto os
alunos ainda estão aprendendo a programar podem ser insuficientes. Além disso, tais
metodologias podem criar a falsa percepção nos estudantes de que eles sabem programar
seguramente, mostrando indícios do Efeito Dunning-Kruger [Kruger and Dunning 1999],
onde as lacunas de conhecimento dos estudantes podem ser impeditivos para que eles
percebam os pontos em que precisam melhorar.

O restante do artigo está organizado da seguinte forma: na Seção 2 são apresenta-
dos os trabalhos relacionados. Já na Seção 3 é detalhada a metodologia usada para coleta
e análise dos dados. Na Seção 4 são apresentados e discutidos os resultados. Finalmente,
na Seção 5, são apresentadas as considerações finais e propostos os trabalhos futuros.

2. Trabalhos Relacionados
[Taylor et al. 2013] discutem a crescente importância do ensino de programação segura
na formação em Ciência da Computação, destacando iniciativas que integraram "Segu-
rança e Garantia da Informação"como uma área de conhecimento essencial. Os autores
desmistificam concepções equivocadas, como a ideia de que não há espaço no currículo
para programação segura ou que apenas ensinar técnicas de codificação segura resolverá
os problemas de segurança de software. Além disso, são apresentadas ferramentas e pro-
jetos para facilitar a inclusão de práticas de programação segura em disciplinas introdu-
tórias e avançadas. Por fim, é enfatizada a necessidade de envolver toda a comunidade
acadêmica, desde professores até alunos, para criar uma “mentalidade de segurança” e
melhorar a qualidade do software desenvolvido.

[Chi et al. 2013] propõem um framework para integrar práticas de codificação se-
gura no ensino de programação, utilizando ferramentas de análise estática (como Find-
Bugs [Pugh and Loskutov 2015] e Splint [Evans and Larochelle 2002]) em um sistema
web chamado TSCPSTEM, o qual oferece exercícios práticos, quizzes e demonstrações
adaptados a diferentes disciplinas (Ciências Naturais, Engenharia, Matemática e Ciên-
cia da Computação). O experimento com 70 estudantes de STEM mostrou um aumento
de 130% no desempenho em testes após o uso dos módulos, comprovando a eficácia da
abordagem. Os resultados destacam a importância de ensinar segurança desde o início
da formação, preparando futuros desenvolvedores para evitar vulnerabilidades comuns,
como buffer overflows e SQL injection.

[Singleton et al. 2020] abordam o problema das práticas de programação insegu-
ras, especialmente no uso incorreto de primitivas criptográficas, como o armazenamento
de dados sensíveis em texto puro em aplicativos bancários móveis, destacando a falta de
integração desses conceitos em programas acadêmicos e a carência de ferramentas au-
tomatizadas para orientar desenvolvedores na escrita de código seguro. Para suprir tal
lacuna, o artigo apresenta CryptoTutor, uma ferramenta que identifica automaticamente
erros comuns em implementações criptográficas e sugere correções. Além disso, discu-
tem como ferramentas como essa podem ser incorporadas em cursos de programação em
níveis universitário e pré-universitário, visando melhorar a segurança do software desde a
fase educacional.

[Espinha Gasiba et al. 2023] exploram o uso do ChatGPT como ferramenta para
auxiliar desenvolvedores na identificação e correção de vulnerabilidades em código,

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1447

baseando-se em experimentos com cinco snippets vulneráveis em C/C++. Os resultados
mostram que o ChatGPT identificou corretamente 60% das vulnerabilidades e sugeriu so-
luções criativas, porém com limitações como falta de contexto, alterações indesejadas na
semântica do código e complexidade excessiva. O estudo destaca o potencial do modelo
como auxílio educacional e profissional em segurança de software, mas alerta para riscos
como plágio e dependência de dados desatualizados.

[Lam et al. 2022] investigam as lacunas no conhecimento de programação segura
entre estudantes de Ciência da Computação, por meio de entrevistas com 21 alunos de
duas universidades dos EUA. Os resultados revelaram que os alunos enfrentam dificul-
dades em áreas fundamentais, como compreensão de mensagens do compilador, uso de
recursos online (como Stack Overflow), conhecimento de memória e funções inseguras
em C (por exemplo, gets, strcpy), além de uma abordagem pouco crítica em relação
à segurança. O trabalho destaca que cursos introdutórios frequentemente negligenciam
práticas seguras, e que materiais didáticos e exemplos em sala podem reforçar más prá-
ticas. Esses achados reforçam a necessidade de integrar segurança de forma transversal
no currículo, desde disciplinas iniciais, e de desenvolver intervenções educacionais que
abordem essas lacunas, como módulos específicos ou ênfase em análise de código. O
estudo complementa pesquisas anteriores sobre a eficácia de ferramentas de revisão de
código e a importância de uma “mentalidade de segurança” desde o início da formação.

3. Metodologia
Para a realização deste estudo, foram aplicados questionários aos alunos de dois cursos
de graduação do em Computação da Universidade Federal do Paraná. Os questionários
foram amplamente divulgados aos alunos desses cursos, sendo que o preenchimento do
questionário foi realizado de forma voluntária. A metodologia seguida para a criação dos
formulários, aplicação, coleta e análise dos dados pode ser vista na Figura 1.

PREPARAÇÃO APLICAÇÃO TRIAGEM DE DADOS ANÁLISE

Criação do banco de
questões de Programação

Segura baseado nos Padrões
de Codificação SEI CERT

Criação dos questionários de
multipla escolha e

discursivo na plataforma

Moodle

Divulgação dos
questionários para os alunos

dos cursos de Informática

Participação voluntária
dos estudantes

Coleta das respostas

Aluno
ingressou antes de

2020?

Geração de gráficos para
a análise dos dados

Remoção desses dados

SIM

NÃO

Interpretação das
análises estatísticas

Classificação de alunos
que tiveram disciplinas
de programação segura

Dados filtrados

Figura 1. Etapas para a Realização da Pesquisa

Dois tipos de questionários foram disponibilizados aos alunos: i) questões de múl-
tipla escolha, e ii) questões discursivas. Em ambos os casos, 5 questões de autoavaliação
foram apresentadas no início do questionário aos participantes a fim de caracterizá-los.
No questionário de múltipla escolha, existiam 10 questões técnicas (totalizando 15, com
as de autoavaliação). Já no questionário com questões discursivas, existiam 6 questões

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1448

discursivas além das questões de autoavaliação. Os alunos podiam optar entre preencher
apenas o questionário de múltipla escolha, ou preencher ambos os questionários (alunos
que preencheram apenas o questionário discursivo foram desconsiderados).

As questões técnicas foram elaboradas baseadas nos Padrões de Codificação SEI
CERT [CERT/SEI 2024] e pertenciam a uma de três categorias possíveis: Vetores, Strings
e gerenciamento de memória. O escopo do estudo é apenas em programação segura na
linguagem de programação C, e por isso a sintaxe das questões focou nessa linguagem.
A seguir, cada classe é brevemente apresentada, juntamente com um exemplo de questão.

Vetores – Questões que focam em verificar a capacidade dos alunos em identificar
problemas relacionados ao uso de vetores, como indexação e alocação incorretas.

Exemplo de questão:

No código abaixo, qual é o problema que pode levar a um comportamento indefi-
nido?
enum { TABLESIZE = 100 };
static int table[TABLESIZE];

int *f(int index) {
if (index < TABLESIZE) {

return table + index;
}
return NULL;

}

a. O código não verifica se o índice é maior que TABLESIZE.
b. O código não retorna um ponteiro válido.
c. O código não verifica se o índice é negativo.
d. O código não aloca memória suficiente para o vetor.

Strings – De forma similar aos vetores, as questões relativas a strings almejam
verificar a capacidade dos alunos em identificar problemas como acesso à índices inváli-
dos, buffers overflows e afins.

Exemplo de questão:

Por que o código abaixo é inseguro, mesmo compilando sem warnings?
char *filename = "config.txt";
filename[0] = ’C’; // Tenta mudar ’c’ para ’C’

a. Falta usar malloc() para alocar filename.
b. O tipo char* não é compatível com strings literais.
c. O compilador não permite a reatribuição de filename.
d. String literais são armazenadas em memória somente leitura, e modificá-las causa comportamento
indefinido.

Gerenciamento de Memória – Questões relativas ao gerenciamento adequado de
memória, incluindo alocação dinâmica de variáveis e problemas relacionados ao escopo
de variáveis.

Exemplo de questão:

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1449

Qual das seguintes afirmações é verdadeira sobre o uso de ponteiros para memória
que já foi liberada?

a. Tanto ler quanto escrever na memória liberada é comportamento indefinido.
b. É seguro ler a memória após a liberação, mas não escrever nela.
c. O ponteiro automaticamente se torna inválido e não pode ser mais usado.
d. A memória liberada é automaticamente limpa pelo sistema operacional, garantindo que nenhum
dado permaneça acessível.

Vale notar que o foco das questões técnicas era verificar a capacidade dos alunos
em identificar problemas de programação que podem deixar softwares vulneráveis. Por
exemplo, problemas de buffer overflow em vetores e strings são conhecidos por gerar tais
brechas de segurança e tanto ponteiros quanto alocação dinâmica de memória são assuntos
muitas vezes lecionados sem preocupação de associação com potenciais problemas de
corrupção de memória, principalmente em turmas de programação introdutórias.

Ao todo, 85 alunos responderam apenas as questões de múltipla escolha, enquanto
39 alunos responderam tanto as questões de múltipla escolha quanto as questões discur-
sivas. Na Figura 2 é exibida a quantidade de alunos que responderam aos questionários
de acordo com o ano de ingresso. Alunos que ingressaram antes do ano de 2020 foram
desconsiderados das análises devido ao baixo número de respondentes (6 alunos).

2020 2021 2022 2023 2024

0

10

20

30

4

5
6

2

22

10
5

2

17
12

N
úm

er
o

de
R

es
po

nd
en

te
s

Apenas Múltipla Escolha Múltipla Escolha e Discursivo

Figura 2. Distribuição dos respondentes por tipo de resposta e ano de ingresso

4. Resultados e Discussão
Esta seção apresenta e discute os resultado obtidos. Apresentamos os resultados das ques-
tões de múltipla escolha (Seção 4.1), seguido dos resultados das questões discursivas (Se-
ção 4.2).

4.1. Questões de Múltipla Escolha
A Tabela 1 mostra os resultados médios obtidos pelos alunos de acordo com suas autoa-
valiações. Como pode ser observado, alunos que se julgaram como tendo algum conhe-
cimento de programação segura obtiveram notas médias levemente superiores aos alunos

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1450

que se julgaram como não tendo conhecimento. Devido à baixa diferença, foi executado
um Teste Mann-Whitney-Wilcoxon, que com nível de significância de p = 0.95 não rejei-
tou a hipótese nula de que as distribuições dos dois grupos de alunos eram as mesmas. Em
outras palavras, de acordo com o teste, não é possível identificar diferença significativa
entre os grupos.

Julga que aprendeu conceitos de programação segura?
Sim, mesmo que parcialmente. Não aprendeu ou não lembra.

Alunos 58 27
Nota Média (desvio) 6.6 (± 2.2) 6.3 (± 2.1)

Tabela 1. Desempenho dos alunos de acordo com suas autoavaliações.

O resultado da Tabela 1 é interessante e preocupante, pois mostra um possível
efeito Dunning-Kruger [Kruger and Dunning 1999], onde os estudantes podem ter lacu-
nas tão grandes em seus conhecimentos que podem ser incapazes de identificar suas fa-
lhas, nesse caso, se julgando incorretamente como capazes de criar programas seguros.

Já na Tabela 2 são exibidos os resultados obtidos pelos alunos que assistiram ao
menos uma disciplina em que pelo menos parte do conteúdo de programação foi minis-
trado incluindo conceitos de programação segura, versus os alunos que não tiveram. De
forma similar aos resultados obtidos na Tabela 2, as notas obtidas são similares, e um
Teste Mann-Whitney-Wilcoxon não identifica diferença significativa entre os grupos.

Teve disciplinas com programação segura?
Sim, ao menos algumas. Não.

Alunos 64 21
Nota Média (desvio) 6.52 (± 1.92) 6.62 (± 2.78)

Tabela 2. Desempenho dos alunos que tiveram ou não disciplinas com progra-
mação segura.

Vale citar que são considerados alunos que tiveram disciplinas com conceitos de
programação segura aqueles que, por exemplo, tiveram disciplinas introdutórias de pro-
gramação, onde aprenderam a programar juntamente com alguns conceitos básicos de
segurança como, por exemplo, validar se um ponteiro retornado pelo malloc é válido. O
resultado mostra esse tipo de estratégia para o ensino de programação segura pode não
ser suficiente [Lam et al. 2022].

Finalmente, na Figura 3 são exibidos os resultados médios dos alunos de acordo
com seus respectivos anos de ingresso. A expectativa é de que alunos que entraram em
anos anteriores, por terem passado mais semestres na universidade e serem mais experi-
entes, sejam mais competentes em responder às questões de programação segura em C.

Os resultados apresentados na Figura 3 mostram alguns comportamentos interes-
santes. Primeiro, como esperado, os alunos que entraram mais recentemente nos cursos
possuem uma grande variância nos seus resultados. A variância pode ser explicada pelo
fato de alguns alunos já entrarem no curso com algum conhecimento de programação.

No entanto, de forma contraintuitiva, alunos que ingressaram no curso no ano de
2023 ou anteriormente não apresentaram notas médias significativamente maiores que os

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1451

2020 2021 2022 2023 2024
Ano de Ingresso

0

2

4

6

8

10

No
ta

n=14 n=10 n=8
n=19

n=34

Figura 3. Distribuição das notas por ano de ingresso do aluno (questões de
múltipla escolha)

alunos mais recentes, apesar de terem variâncias menores. Era de se esperar que alunos
que cursaram mais disciplinas focadas em programação por estarem há mais tempo no
curso melhorassem suas notas, mas esse fato não é observado nos dados. Mais interes-
sante ainda são os resultados referentes ao ano de 2021, sendo esse o único ano em que
os resultados obtidos pelos alunos foram piores que os dos recém ingressantes. Apesar
de não estar no escopo deste trabalho, este pode ser um indicativo de que o período de
pandemia da COVID-19, juntamente com a abordagem de aulas remotas, pode ter afetado
negativamente o aprendizado dos alunos.

4.2. Questões Discursivas

Nesta Seção são apresentados os resultados considerando-se as questões discursivas.
Como discutido na Seção 3, apenas 39 alunos responderam às questões discursivas. Os
resultados das Tabelas 3 e 4 mostram, respectivamente, os resultados dos alunos de acordo
com suas autoavaliações, e de acordo com a presença ou não de conteúdos de programa-
ção segura ministrados durante as disciplinas de programação.

Julga que aprendeu conceitos de programação segura?
Sim, mesmo que parcialmente. Não aprendeu ou não lembra.

Alunos 23 16
Nota Média (desvio) 6.0 (± 2.9) 5.2 (± 2.1)

Tabela 3. Desempenho dos alunos de acordo com suas autoavaliações (questões
discursivas)

Os resultados das tabelas levam às mesmas conclusões das análises realizadas na
Seção 4.1, onde as diferenças entre os grupos de alunos foi relativamente pequena. Na
Tabela 3 foi possível observar que alunos que julgam ter aprendido conceitos de progra-
mação segura tiveram um desempenho ligeiramente melhor quando comparado aos que
não aprenderam ou não lembram, mas, ainda assim, essa diferença pode não ser signifi-
cativa.

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1452

Teve disciplinas com programação segura?
Sim, ao menos algumas. Não.

Alunos 30 9
Nota Média (desvio) 5.5 (± 2.6) 6.3 (± 2.5)

Tabela 4. Desempenho dos alunos que tiveram ou não disciplinas com progra-
mação segura (questões discursivas)

Um resultado particularmente intrigante emerge da Tabela 4, a qual evidencia que
os alunos que tiveram aulas juntamente com conceitos básicos de programação segura ob-
tiveram em média notas mais baixas quando comparados aos que não passaram por essa
formação. Porém, mais uma vez, os grupos não possuem diferenças significativas e as
diferenças nas notas provavelmente vieram do acaso. Além disso, devemos tomar esses
resultados com cuidado devido à baixa amostragem de alunos que não tiveram programa-
ção segura na Tabela 4.

4.3. Discussão

Os resultados mostram que o ensino de técnicas de programação segura, juntamente com
o ensino de técnicas de programação básica, como é o caso dos alunos que participaram
desta pesquisa, não é efetivo. Considerando as perguntas de pesquisa propostas no início
deste trabalho, obtemos as seguintes análises.

QP1: Há diferenças entre alunos que se consideram capazes de programar de
forma segura e aqueles que não se consideram?

R.: Não há diferença significativa nos resultados obtidos pelos alunos que julga-
vam conhecer, ao menos em partes, programação segura, versus os demais. Essa é uma
das principais descobertas deste trabalho, onde concluímos que os estudantes estão cri-
ando uma falsa percepção de que têm conhecimentos de programação segura, podendo os
levar a erros crassos devido ao excesso de confiança.

QP2: Os alunos que tiveram conceitos de programação segura enquanto apren-
diam a programar, programam de maneira mais segura do que os demais?

R.: Mais uma vez, não há diferença significativa entre os grupos. Essa descoberta
mostra que as formas de ensino de programação segura nos cursos são insuficientes ou
ineficazes para o aprendizado dos alunos.

QP3: Os alunos melhoram a segurança de suas programações conforme progri-
dem no curso, ou existe um plateau em que os alunos deixam de progredir?

R.: Os alunos melhoram a qualidade de suas programações (com relação à segu-
rança) entre seus primeiro e segundo anos nos cursos. No entanto, os alunos atingem um
plateau de conhecimento já no segundo ano nos cursos. Isso mostra, mais uma vez, que o
ensino de técnicas de programação segura não estão sendo suficientes nos cursos, e isso
persiste durante os vários semestres letivos que os alunos cursam.

Para mitigar esses problemas, recomenda-se que a criação de disciplinas focadas
apenas em programação segura, na qual alunos já com alguma experiência em progra-
mação podem se matricular. Dessa forma, os alunos podem focar apenas nos conceitos
de segurança, sem a carga cognitiva extra de, em paralelo, precisarem aprender a progra-

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1453

mar. Tal disciplina existe nos cursos analisados, no entanto, essa disciplina se encontra
no final do curso, e a vasta maioria dos alunos que responderam aos questionários não a
cursaram. Além disso, tal disciplina pode focar, por exemplo, na aprendizagem focada
em problemas, a fim de aumentar o engajamento dos alunos.

5. Conclusão e Trabalhos Futuros

Os resultados deste trabalho mostram que os alunos que tiveram conteúdos de progra-
mação segura em conjunto com conteúdos básicos de programação não foram capazes
de absorver os conteúdos corretamente, não sendo melhores do que seus pares que não
tiveram tais conteúdos de programação segura. Além disso, o fato de grupos de alunos
que se consideram capazes de programar seguramente não ser capaz de superar o grupo
que não se considera capaz de programar seguramente mostra que os alunos podem estar
criando uma falsa percepção sobre suas capacidades de criar softwares seguros.

Apesar de a literatura de codificação segura ter aproximadamente 25 anos, ainda se
vê a necessidade de integrar a programação segura nos currículos de computação, apresen-
tando estratégias pedagógicas baseadas em referências consolidadas, como os padrões do
CERT e obras clássicas de segurança de software. Sem essa mudança curricular e sem o
incentivo a se ter disciplinas específicas de segurança em todo o ciclo de desenvolvimento
de software, os cursos relacionados à computação continuarão a formar desenvolvedores
que, mesmo competentes tecnicamente, perpetuam vulnerabilidades evitáveis.

Vale notar alguns aspectos e limitações desta pesquisa, dentre eles: 1 – A grande
maioria dos alunos pesquisados não cursaram disciplinas focadas apenas em programa-
ção segura, pois não há oferta no currículo, dessa forma, a análise se limita aos alunos
que cursaram apenas disciplinas de programação básica onde alguns conceitos de progra-
mação segura são introduzidos em assuntos como alocação dinâmica de memória. 2 –
A análise foca em alunos de uma única instituição e; 3 – O fato de que poucos alunos
responderam às questões dissertativas pode ter gerado limitações nas análises.

Contudo, o presente trabalho mostra a importância de pesquisas sobre as habili-
dades de programação segura de alunos em cursos de computação em geral, a fim de se
identificar problemas e limitações em sua formação. As descobertas deste trabalho servi-
rão para discussões sobre a reorganização da grade curricular dos cursos de computação
a fim de, por exemplo, trazer mais conteúdos focados primariamente em programação
segura e o ciclo de desenvolvimento seguro de software, pensado para se adicionar segu-
rança desde o projeto de um software, bem como o de reorganizar disciplinas focadas em
segurança na matriz curricular a fim de que estas sejam absorvidas da melhor forma pos-
sível pelos estudantes. O objetivo principal de se dar ênfase para disciplinas específicas
em segurança é o de formar desenvolvedores capazes de revisar criticamente códigos e
evitar vulnerabilidades comuns.

Como trabalho futuro, pretende-se expandir a pesquisa para coletar mais dados
com participantes sobre programação segura tanto em C quanto em outras linguagens de
programação, na Universidade Federal do Paraná e em outras instituições colaboradoras
do Brasil ou do exterior, considerando-se também alunos de pós-graduação.

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1454

Referências
Barnum, S. and McGraw, G. (2005). Knowledge for software security. IEEE Security

and Privacy, 3(2):74–78.

CERT/SEI (2024). CERT secure coding standards. https://wiki.sei.cmu.edu/
confluence/display/seccode.

Chi, H., Jones, E. L., and Brown, J. (2013). Teaching secure coding practices to stem
students. In Proceedings of the 2013 on InfoSecCD ’13: Information Security Curri-
culum Development Conference, InfoSecCD ’13, page 42–48, New York, NY, USA.
Association for Computing Machinery.

Espinha Gasiba, T., Oguzhan, K., Kessba, I., Lechner, U., and Pinto-Albuquerque, M.
(2023). I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code: On ChatGPT, CyberSecu-
rity, and Secure Coding. In Peixoto de Queirós, R. A. and Teixeira Pinto, M. P., editors,
4th International Computer Programming Education Conference (ICPEC 2023), vo-
lume 112 of Open Access Series in Informatics (OASIcs), pages 2:1–2:12, Dagstuhl,
Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Evans, D. and Larochelle, D. (2002). Splint - annotation-assisted static program checker.
https://splint.org/.

Hong, H., Woo, S., and Lee, H. (2021). Dicos: Discovering insecure code snippets from
stack overflow posts by leveraging user discussions. In Proceedings of the 37th Annual
Computer Security Applications Conference, ACSAC ’21, page 194–206, New York,
NY, USA. Association for Computing Machinery.

Howard, M. and LeBlanc, D. (2003). Writing Secure Code. Microsoft Press, 2 edition.

Kruger, J. and Dunning, D. (1999). Unskilled and unaware of it: how difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. Journal of per-
sonality and social psychology, 77(6):1121.

Lam, J., Fang, E., Almansoori, M., Chatterjee, R., and Soosai Raj, A. G. (2022). Iden-
tifying gaps in the secure programming knowledge and skills of students. In Procee-
dings of the 53rd ACM Technical Symposium on Computer Science Education - Volume
1, SIGCSE 2022, page 703–709, New York, NY, USA. Association for Computing
Machinery.

McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley.

Pugh, B. and Loskutov, B. (2015). Findbugs - find bugs in java programs. https:
//findbugs.sourceforge.net/.

Rahman, A., Farhana, E., and Imtiaz, N. (2019). Snakes in paradise?: Insecure python-
related coding practices in stack overflow. In 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR), pages 200–204.

Seacord, R. C. (2013). Secure Coding in C and C++. Addison-Wesley, 2 edition.

Singleton, L., Zhao, R., Song, M., and Siy, H. (2020). Cryptotutor: Teaching secure
coding practices through misuse pattern detection. In Proceedings of the 21st Annual
Conference on Information Technology Education, SIGITE ’20, page 403–408, New
York, NY, USA. Association for Computing Machinery.

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1455

Taylor, B., Bishop, M., Hawthorne, E., and Nance, K. (2013). Teaching secure coding:
the myths and the realities. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, page 281–282, New York, NY, USA.
Association for Computing Machinery.

Viega, J. and McGraw, G. (2001). Building Secure Software. Addison-Wesley.

Votipka, D., Fulton, K. R., Parker, J., Hou, M., Mazurek, M. L., and Hicks, M. (2020).
Understanding security mistakes developers make: qualitative analysis from build it,
break it, fix it. In Proceedings of the 29th USENIX Conference on Security Symposium,
USA. USENIX Association.

XIV Congresso Brasileiro de Informática na Educação (CBIE 2025)

Anais do XXXVI Simpósio Brasileiro de Informática na Educação (SBIE 2025)

1456

