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Abstract. Teaching programming to beginner students remains a significant chal-
lenge, as it requires the development of complex cognitive skills. Given this, this
article presents CoderBot 2.0, an evolution of a pedagogical agent designed
for introductory programming instruction based on Example-Based Learning
(EBL). The new version integrates Large Language Models (LLMs) and prompt
engineering techniques to generate both correct and erroneous examples on de-
mand, as well as code explanations and progressive feedback, without relying
on fine-tuning. Aligned with Cognitive Load Theory, its architecture promotes
metacognitive strategies such as self-explanation, fading, and contextual vari-
ation. The system offers adaptive support, adjusting to the student’s level and
encouraging engagement, autonomy, and reflection.

1. Introduction

Teaching programming is widely recognized as a multifaceted, didactic, and cognitive
challenge. Beyond syntax, students need to develop skills in mental modeling of exe-
cution flow, incremental debugging, and creative problem solving (Robins et al., 2003)).
Learning strategies as Worked Examples (WE) (Sweller et al., 2011), which make the
underlying reasoning behind problem-solving explicit (Sweller et al., [2011); Socratic
questioning (Fakour et al., [2025)), which encourages self-reflection and critical thinking
(Fakour et al., 2025)); and gradual feedback (Hattie and Timperley, 2007)), which guides
learning through progressive hints without directly providing the final solution (Hattie
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and Timperley, 2007), have proven effective in supporting structured and metacognitive
learning.

Example-Based Learning (EBL) consolidates these instructional strategies in light
of Cognitive Load Theory (Sweller et al.,[2011; Adams et al., 2014), promoting the inter-
nalization of strategies through exposure to worked examples—both correct and/or erro-
neous. These examples are designed to foster meaningful learning by combining struc-
tured solution presentations with metacognitive mechanisms such as self-explanations,
fading, and context variation (Renkl, 2014a; |Kopp et al., 2008]). Worked examples are
cognitive representations guided by evidence, making expert thinking accessible and un-
derstandable to novice learners Renkl (2014b), [2017).

In this context, the advancement of Large Language Models (LLMs), such as
GPT-4, introduces new possibilities for generating scalable, personalized, responsive, and
interactive instructional content. Recent studies show that, when guided by appropriate
prompt engineering strategies—such as chaining, persona prompting, and few-shot learn-
ing Jury et al.| (2024)—LLMs are capable of generating pedagogically plausible worked
examples, as well as supporting dialogical and contextual interactions with students (Jury
et al., |2024). However, despite their potential, there is still a lack of approaches that in-
tegrate these resources into cohesive and robust pedagogical frameworks, aligned with
learning theories and validated empirically (Pirzado et al.| (2024); Puech et al.| (2025);
Jury et al.| (2024)).

This paper introduces CoderBot 2.0, an evolution of the original pedagogical
agent, now enhanced with LLMs and pedagogical prompt engineering. The new version
enables the dynamic generation of examples tailored to the student’s profile, combining
contextualized explanations with an integrated educational environment that focuses on
personalizing the learning experience.

2. Theoretical Background and Related Work

2.1. Cognitive Load Theory and Example-Based Learning

Cognitive Load Theory provides an essential framework for instructional design in com-
plex domains, such as programming, emphasizing the limits of working memory and the
need to balance different types of cognitive load (Baddeleyl 1992} |Shafter et al., |2003;
Sands, 2019). This theory distinguishes three components: (i) intrinsic load, related to
the complexity of the content; (ii) extraneous load, associated with the way informa-
tion is presented; and (iii) germane load, related to the effort dedicated to meaningful
learning. To promote learning, it is necessary to minimize extraneous load and maxi-
mize germane load, particularly in the early stages of learning. Strategies such as task
segmentation, combined use of visual and verbal resources, and clear instructions are rec-
ommended (Sands, 2019). In this scenario, worked examples stand out as one of the most
effective approaches, as highlighted by EBL (Renkl, 2014b, [2017)). By presenting step-
by-step solutions—either correct or erroneous—these examples facilitate the construc-
tion of mental schemas, fostering conceptual understanding and critical thinking (Sweller
et al., 2011} Atkinson et al., 2000; Beege et al., 2021} Chiarelli et al.| 2022).

1498



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

2.2. Related Work

Technology-assisted programming education has been addressed from different perspec-
tives. Classical tutor systems, such as Cognitive Tutors (Anderson et al., 1995]) and
student-centered models (Woolf, 2009), have shown consistent gains but face high author-
ing costs (Keuning et al., [2018). More recent research explores the automatic generation
of examples (Barros et al., 2021)) and questions (Sychev et al., [2021), but it still relies on
explicit rules or restricted statistical models, which limit scalability.

The advancement of LLLMs has introduced new possibilities for personalized tutor-
ing. Models such as GPT-3.5 and GPT-4 have already demonstrated potential to provide
relevant feedback and mediate instructional interactions (Dai et al., 2023; Zhang et al.,
2024). Among the initiatives, WorkedGen (Jury et al., [2024) stands out, utilizing prompt
chaining and one-shot learning to generate interactive examples, although with conceptual
limitations. Another example is AIIA (Artificial Intelligence-Enabled Intelligent Assis-
tant) (Sajja and Ramesh, 2023)), which integrates quizzes, flashcards, code execution, and
summaries, but lacks alignment with well-established pedagogical theories.

CoderBot 1.0 was developed in this context as an educational agent based on
EBL, offering correct and erroneous examples in a web environment, with distinct pro-
files for students and instructors (Garcia et al., 2025; Mendes et al., 2024). Although
it showed initial gains in understanding and self-confidence, it had limitations in terms
of flexibility and adaptation to users’ proficiency levels (Villa et al., 2024). These find-
ings motivated the creation of CoderBot 2.0, which incorporates LLMs and pedagogical
prompt engineering strategies to provide more personalized, responsive, and integrated
tutoring.

3. CoderBot 2.0: An Integrated Pedagogical Environment

The CoderBot 2.0 was conceived as an evolution of its predecessor, overcoming the lim-
itations of agents focused solely on static examples. It aims to position itself as an in-
tegrated pedagogical platform, grounded in established cognitive theories and enriched
by LLM-based technologies. Unlike the first version, which focused on displaying pre-
defined examples (Garcia et al., 2025; Mendes et al., 2024), CoderBot 2.0 offers an adap-
tive experience, tailored to the needs of each student.

The innovation in this version is anchored in the incorporation of a structured
pedagogical template for worked examples (Renkl, 2014b), along with the addition of
an interactive board for externalizing reasoning. The template organizes essential ele-
ments, including problem description, step-by-step solution, correct and incorrect exam-
ples, and reflective activities, promoting clarity and instructional consistency. The board,
inspired by the principles of distributed cognition (Hutchins, [1995), acts as a visual space
that expands the capacity to represent and manipulate concepts. This combination ad-
dresses recurring challenges in programming education, such as high cognitive load and
the difficulty of abstracting complex structures (Hundhausen et al., |2002]).

The new version is designed around three central pedagogical pillars: worked
examples (the main focus of this research), Socratic dialogue, and feedback in stages.
While all three pillars form the instructional design of the platform, this study primarily
focuses on worked examples, investigating how their integration with LLMs and prompt

1499



X1V Congresso Brasileiro de Informética na Educacdo (CBIE 2025)
Anaisdo XXXVI Simpoésio Brasileiro de Informética na Educacdo (SBIE 2025)

engineering can reduce cognitive load and foster structured learning in programming ed-
ucation. The pillars do not operate in isolation but are dynamically triggered through
a catalog of configurable prompts. This instructional design strikes a balance between
demonstration, questioning, and guidance, creating learning conditions that favor both in-
structional clarity and the development of critical thinking and student autonomy (Fakour
et al.| [2025]; |Atkinson et al., [2000).

CoderBot 2.0 represents a pedagogical reconfiguration grounded in Cognitive Load
Theory (CLT) (Sweller et al., 2011)) and Example-Based Learning (Renkl, 2014b)). It is
a modular architecture consists of three complementary modules: (i) a conversational in-
telligent tutor based on pedagogical prompt engineering; (ii) an interactive board that
functions as a cognitive extension; and (iii) a coding environment, currently in develop-
ment, integrated with Continue, aimed at reducing the effect of split attention.

Figure [I] summarizes this architecture, highlighting how the modules work to-
gether to provide a continuous, personalized, and adaptive learning journey. This integra-
tion differentiates CoderBot 2.0 from currently available fragmented solutions, position-
ing it as a systemic approach to programming education.
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Figure 1. Overview of the CoderBot 2.0 architecture.

3.1. Module 1: Chat-based Tutoring with Pedagogical Prompt Engineering

This module of CoderBot 2.0 introduces an intelligent conversational tutor that overcomes
the rule-based approach of the previous version by employing Prompt Engineering tech-
niques to generate didactically structured responses via LLMs. Based on the intersection
of cognitive science and educational technology, CoderBot 2.0 can be enhanced with
Retrieval-Augmented Generation (RAG) (L1 et al., [2023), connecting prompts to spe-
cific knowledge bases such as teaching materials or examples personalized by instructors.
This combination ensures that interactions are technically correct, contextually relevant,
and pedagogically effective.

3.1.1. Interface, Pedagogical Configuration, and Interaction Flow

The architecture of CoderBot 2.0 combines a pedagogical configuration panel with a re-
sponsive interaction flow, providing a learning experience adapted to the cognitive profile
and needs of each student. The interface, illustrated in Figure[2] allows for the customiza-
tion of the tutor based on three central axes: LLM Model, where the educator can select
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from different language models (e.g., GPT-3.5, GPT-4, or Claude), considering techni-
cal and budgetary aspects; Pedagogical Methodology, where evidence-based approaches
such as worked examples, Socratic dialogue, and feedback in stages can be activated; Pre-
sentation Strategy, where the system enables the use of didactic analogies to facilitate
the connection between prior knowledge and new content.

These options form the core of adaptive pedagogical personalization, where not
only the content but also its presentation is adjusted according to the cognitive character-
istics and learning styles of the students. To illustrate the interface’s structure, Figure [2]
presents the chat module, highlighting its key functional elements with yellow visual
cues. The interaction flow depicted is structured to enhance the pedagogical value of the
chatbot’s responses. This process unfolds through the following sequence:

1. Contextual Initialization, introducing the session with guidance and encourage-
ment for active learning;

2. Contextualized Query Processing, considering the conversation history, peda-
gogical choices, and disciplinary context;

3. Dynamic Prompt Construction, integrating all didactic variables to form a com-
mand directed to the LLM;

4. Pedagogically Structured Response Generation, where the generated content
follows the chosen instructional method, promoting progression in learning.

This operational flow is a direct application of the principles of Cognitive Load Theory,
seeking to minimize extraneous load and optimize working memory resources. In doing
so, it favors the construction of durable mental schemas and meaningful learning.

Figure 2. Main interface of the CoderBot 2.0 module: integrated chat area with
input field and customizable pedagogical settings in the top header.

3.2. Module 2: Interactive Board for Externalizing Reasoning

The second module of CoderBot 2.0 adds a visual dimension to the learning process with
an interactive board, based on the open-source platform Excalidraw. More than just a
drawing tool, this board functions as a cognitive space extension, allowing the external-
ization of reasoning and mental structures—a practice known as cognitive offloading.
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Inspired by the theory of distributed cognition (Hutchins, 1995), the module enhances
the ability to manipulate complex concepts through visual representations, facilitating the
understanding of data structures, execution flows, and algorithmic logic.

3.3. Module 3: Integration with the Development Environment (In Planning)

The third module proposes direct integration with real development environments such as
Visual Studio Code, via the extension This module seeks to shift pedagogi-
cal support to the authentic context of professional practice, overcoming the limitations
of approaches based solely on simulated environments or decontextualized instructional
resources. This approach aims to provide contextualized pedagogical support, fostering
learning within the actual environment of practice, in alignment with the principles of Sit-
uated Learning (Lave and Wenger, |1991)). According to this theory, knowledge acquired
in authentic practice contexts tends to be more transferable and meaningful. At the same
time, the integration helps eliminate the so-called split-attention effect (Sweller et al.,
2011)), which occurs when students must constantly switch between tutorials and the code
editor. By centralizing support, practice, and feedback within the same environment, we
aim to optimize cognitive processing and promote fluency in problem-solving.

4. Pilot Study

This study adopted a qualitative and exploratory approach to evaluate the pedagogical
potential of Worked Examples generated by a subject-matter expert and by CoderBot 2.0.
The aim was not to statistically validate the tool’s effectiveness, but to initially observe
how the system can reproduce the structure of instructional examples and what nuances
emerge from this comparison. The methodology was structured in four main stages:

* Definition of Evaluation Criteria: Based on Cognitive Load Theory and guide-
lines for effective design of WEs, a set of four criteria adapted from Renkl (2014b))
was adopted: (i) clarity and segmentation; (ii) quality of explanations; (iii) sup-
port for rule automation (examples that facilitate pattern recognition); and (iv)
support for generative activity (stimulating reflection and active explanation by
the student).

* Example Creation by the Instructor: A PhD-level instructor with experience
in programming education manually created a worked example on the Bubble
Sort algorithm using a previously validated instructional template. The example
included: problem description, solution steps, correct code, erroneous example,
and a reflective exercise aimed at consolidating learning.

* Example Generation by AI: The textual input from the “Reflective Exercise”
field created by the instructor was used as a prompt in CoderBot 2.0 (03-mini
model). The agent automatically generated a complete example with a structure
similar to the template used by the instructor: introductory explanation, correct
code, diagnostic exercise with alternatives, and justifications.

* Comparative Analysis: The two examples were organized side by side in an
analytical matrix (Table [I)), allowing a thorough comparison of each component
(problem, steps, code, error, generative activity, and complementary material).
The analysis sought to identify similarities and differences in terms of pedagogical
structure, language, clarity, interactivity, and potential student engagement.
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Although limited to a single instructor and a specific case (Bubble Sort), this ex-
ploratory pilot provides initial insights into the alignment between content generated by
CoderBot 2.0 and best practices in creating pedagogical examples. It also allowed the
observation of relevant qualitative aspects, such as the discursive style, conceptual depth,
and level of cognitive support offered by each approach. Thus, the results should be un-
derstood as preliminary evidence, guiding subsequent validation stages with expanded
samples of students and instructors.

5. Preliminary Results

Table [I] presents the main instructional blocks of the example created by a teacher and
the response generated by CoderBot 2.0. This organization facilitates a qualitative com-
parison between the approaches, highlighting differences and convergences in terms of

instructional structure, clarity, and engagement strategies.

Table 1. Instructor’s example and the one provided by CoderBot 2.0

Section/Block

Instructor’s Template

AI’s Response

Problem Description

Implement a bubble sort algorithm to sort the val-
ues of a fixed-size integer array of 10 elements.

Explanation of the problem, algorithm context,
and the goal of sorting a 10-element array.

Solution Steps Detailed listing of the steps (numbered) to imple- | Step-by-step explanation with accessible lan-
ment the algorithm, focusing on clarity and seg- | guage, bullet points, and emojis for enhanced
mentation. engagement.

Correct Code Complete Java code, structured according to best | Correct Java code, presented in a block, with

practices, with comments focusing on clarity.

explanation of reasoning and suggestions for
variation.

Erroneous Example

Java code with an intentional error (lack of an
auxiliary variable), followed by an open question
for the student.

Java code with a common error, accompanied
by response alternatives for diagnosis and re-
flection.

Generative Activity

Open-ended question: "Can you identify the er-

Multiple-choice quiz: alternatives for the stu-

ror? Indicate the line where it occurs." dent to identify the error, promoting self-

explanation.

Supplementary Material | Recommendation of an illustrative video (bubble

sort dance) and additional context.

Suggestion for a video and encouragement to
experiment with different inputs.

The comparative analysis between the example created by the instructor and the
response generated by CoderBot 2.0 follows a qualitative approach that seeks to identify
differences and similarities in the pedagogical dimensions that impact student learning.
The central goal is to evaluate how the WEs generated by a subject-matter expert compare
to those produced by our agent, in terms of clarity, explanatory quality, support for rule
automation, and stimulus for generative activity. The analysis structure is based on key
dimensions for the pedagogical effectiveness of worked examples, as proposed by Renkl
(2014b)). The qualitative comparison was conducted in the following categories:

Regarding Clarity and Segmentation, the instructor’s example was structured
with a clear and sequential organization, facilitating the student’s understanding of the
algorithm’s steps. Information segmentation is crucial to avoid overloading the student’s
cognitive load. The example generated by the Al, while accessible and well-structured,
incorporated engagement elements such as emojis and a more informal style, which may
have both positive and negative impacts on clarity depending on the student’s profile. In
terms of Quality of Explanation, the instructor provided a more detailed explanation,
focusing on the rules and underlying concepts of the algorithm, to promote a deep un-
derstanding. The Al provided a similar explanation but with less emphasis on conceptual
connections, instead focusing more on the immediate execution of the code. This ap-
proach may be useful for a more superficial or pragmatic understanding of the problem,
but may not foster a deep understanding.
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Regarding Support for Rule Automation, the instructor integrated comments di-
rectly into the code, explaining the reasons and principles behind the choices made in the
algorithm. This provides a solid foundation for automating rules and internalizing the pro-
cess. On the other hand, the Al provided a valid explanation, but with less emphasis on the
rationale behind the code’s steps, which limits support for more robust rule automation.
Finally, regarding Generative Activity, the instructor employed an open-ended approach,
asking the student to identify a specific error in the code, thereby promoting active learn-
ing and problem-solving. The AI generated a multiple-choice quiz to test the student’s
understanding, which may be effective for quick assessments but may not stimulate as
much deep reflection and self-explanation as the open task proposed by the instructor.

We observe that while the Al can provide quick and functional worked examples,
the pedagogical interaction provided by the instructor offers a richer experience in terms
of conceptual explanations and stimulation for deep reflection. While the Al can replicate
the basic structure of a worked example, the pedagogical skills and fine-tuning necessary
for more effective teaching are still dominated by human presence. This comparison high-
lights the potential and limitations of using Al in programming education environments.
Al can be an effective tool to support teaching, but it does not replace the instructor’s abil-
ity to adapt instruction to engage students and promote a deep understanding of concepts.

6. Conclusion

This work presented CoderBot 2.0, a significant evolution of a pedagogical agent for
teaching programming, now incorporating the potential of LLMs and advanced pedagog-
ical prompt engineering techniques. Unlike the previous version, which focused on static
examples, CoderBot 2.0 offers a responsive and adaptive approach, capable of generat-
ing on-demand correct and erroneous examples, code explanations, and recommendations
aligned with best development practices. The new system architecture enables the adap-
tation of content to meet the needs and proficiency levels of each student, promoting a
more personalized, reflective, and continuous learning experience. Grounded in Example-
Based Learning (EBL) and Cognitive Load Theory, CoderBot 2.0 explores metacognitive
strategies such as self-explanation, fading, and contextual variation, establishing itself as
a dynamic educational environment that goes beyond simple automated tutoring.

The comparative analysis conducted in this exploratory study indicates that the
system is capable of producing well-structured and functionally useful instructional arti-
facts, approaching the quality of examples developed by human experts in some aspects.
However, it was observed that the conceptual depth and pedagogical richness remain su-
perior in the examples crafted by instructors, reinforcing the irreplaceable role of the
teacher as the curator and configurator of interactions with the Al. Thus, CoderBot 2.0
should be understood as a supportive technology, capable of scaling and personalizing
teaching, but still dependent on teacher mediation to ensure pedagogical consistency and
depth. As future perspectives, the need to expand empirical validation with students in
real learning situations is highlighted, exploring multiple content areas and contexts, as
well as comparing different pedagogical strategies (worked examples, Socratic dialogue,
gradual feedback) mediated by the system. Additionally, the improvement of the modules
still under development aims to consolidate CoderBot 2.0 as a central part of an intelli-
gent learning hub, focused on fostering critical, autonomous, and practical training for
new programmers.
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