
Memoization of Mutable Objects

Caio Raposo
UFMG

Belo Horizonte, Brazil
caioraposo@dcc.ufmg.br

Fernando Magno Quintão Pereira
UFMG

Belo Horizonte, Brazil
fernando@dcc.ufmg.br

Abstract

Memoization is an optimization that consists of caching the
results of functions to avoid recomputations of repeated calls.
This technique is natively built into some programming lan-
guages and implemented as a design pattern in others. Yet,
in spite of its popularity, memoization has limitations. In
particular, mutable objects cannot be cached, because if a
memoized object is mutated, then this modification might
have an effect on all the memoized instances of it. This pa-
per presents a technique to address this constraint by using
shared-ownership pointers to distinguish between memo-
ized and non-memoized objects. If a memoized object is
modified, then this object is removed from the memoiza-
tion table, and all its aliases are updated through the shared
pointer. We have implemented this technique into the run-
time environment of the Hush programming language. Our
implementation incurs no penalty on non-memoized objects
and adds minimum overhead to cached ones. To demonstrate
the correctness of this approach, we have formalized it in the
Alloy modeling language. This specification certifies that a
memoized object remains so unless it is modified.

CCS Concepts: • Software and its engineering→ Com-

pilers.

Keywords: Memoization, Object-Oriented Programming, Func-
tion Caching.

1 Introduction

Memoization is a technique designed to optimize the exe-
cution of functions by caching their results [1, 8, 11]. This
optimization stores the results of function calls and returns
the cached result when the same inputs occur again, in-
stead of recomputing the result. This technique is available
in many different programming languages. As an exam-
ple, Python provides memoization via annotations such
as @functools.cache or @functools.lru_cache [18], and
Haskell achieves it through the memoFix function wrapper
from the Data.Function.Memoize library [5].

Mutability and Referential Transparency. Memoiza-
tion is typically applied onto functions that are referentially
transparent and that return immutable values. A function 𝑓 is
termed referentially transparent if two different invocations
of 𝑓 with the same input always yield the same output [15].
Referential transparency is a required property for memoiza-
tion because only the first activation of a memoized function

will happen during the execution of a program – further
invocations will be replaced with cached values.
The need for immutability appears because attempts to

modify a memoized value might impact every reference to
that cached value. As a consequence of this limitation, mem-
oization is seldom used in object-oriented programs. Objects
typically encode mutable state; hence, attempts to mutate
a memoized object might also mutate other instances of
that object created with the same parameters. As an illus-
tration, Section 2.3 provides an example of how memoiza-
tion of object constructors compromise the correctness of
Python programs. This paper describes a technique that
relaxes this second requirement—immutability; hence, allow-
ing the memoization of routines that create objects.

The Contributions of this Work. This paper describes
a methodology to implement memoization of routines that
return mutable values. This methodology consists of the
combination of shared-ownership pointers [19] and the copy-
on-write [4] policy. We postpone implementation details to
Section 3; however, in a nutshell, our implementation of
memoization brings the guarantees that we enumerate below,
where 𝑜 is an object, and 𝑟 is a reference that points to 𝑜 :

1. Every object 𝑜 is memoized upon creation.
2. If a pointer 𝑟 is used to give access to an operation that

mutates 𝑜 , then 𝑜 is no longer memoized.
3. If a pointer 𝑟 is not used to give access to an operation

that mutates 𝑜 , then 𝑜 remains memoized.
4. If 𝑜 is memoized, then any property in 𝑜 can be ac-

cessed through 𝑟 with two pointer dereferences.
5. If 𝑜 is not memoized, then accesses to 𝑜 via 𝑟 happens

without performance penalty, with one dereference.

Section 4 formalizes these guarantees on the Alloy [10]
specification language.

Summary of Results. We have implemented the pro-
posed methodology in the Hush programming language [2].
Hush is a scripting language, with syntax similar to Lua’s,
which Section 2.1 briefly reviews. We chose to work onHush
because it provides support to object-oriented programming
by creating objects as closures. Thus, by memoizing routines
that return such closures, we are effectively memoizing ob-
ject constructors. Experiments discussed in Section 5 show
that our implementation of memoization is only marginally
slower than the use of unsafe memoization (as implemented

https://orcid.org/0009-0009-9308-7064
https://orcid.org/0000-0002-0375-1657

SBLP’24, September 30 – October 04, 2024, Curitiba, PR Caio Raposo and Fernando MagnoQuintão Pereira

in Python, for instance, and explained in Section 2.3). Fur-
thermore, depending on the problem at hand, safe memoiza-
tion brings all the benefits of traditional memoization—of
immutable values—onto an object-oriented setting where
objects encode mutable state. More importantly, the addition
of safe memoization to routines that create objects brings in
a beautiful consequence: in practice, it makes the flyweight
design pattern [6] native in these languages.

2 Background

This section has three goals. First, Section 2.1 quickly de-
scribes the Hush programming language. Familiarity with
Hush is not required to understand the concepts presented
in this paper; therefore, we only introduce the minimal syn-
tax relevant to object creation. Section 2.2 explains how
memoization works. Although memoization is a well-known
and popular technique, we explain it to ensure that this ma-
terial is self-contained. Finally, Section 2.3 discusses why
memoizing mutable values is challenging, using, to this end,
examples written in the Python programming language.

2.1 The Hush Programming Language

Hush is a shell scripting language whose syntax is based on
Lua. As a shell language, it provides constructs for invok-
ing and interconnecting external programs. The language’s
runtime environment is implemented in Rust. In terms of
language design, Hush provides static scoping, strong dy-
namic typing, garbage collection and first class functions.
Example 2.1 shows how Hush implements objects.

Example 2.1. Hush does not provide users with builtin
syntax to create objects; rather, objects are modeled as dic-
tionaries: keys are field names, and values are attributes or
methods. Figure 1 shows a function that emulates a class. It
takes the argument n, and uses it to construct a new object.

let Counter = function(n)
 @[
 _start: n,

 get: function()
 self._start
 end,

 inc: function()
 self._start = self._start + 1
 end,
]
end

01
02
03
04
05
06
07
08
09
10
11
12
13

This is the syntax of a
dictionary. Function
Counter returns an
object as a dictionary.

The functions bound to
get and inc are closures.
They contain one free
variable, _start, which
refers to “n”, the
argument originally
passed to the function.

Figure 1. Function that fills the role of a class in Hush.

The approach seen in Example 2.1 to create objects is
not original: there are other programming languages that

create objects as closures. In particular, the implementation
of classes in Simula 67 followed a similar design: a class was
essentially a function that constructs and returns objects, as
Dahl and Nygaard [7] explain in Section 2.7 of their work.

2.2 Memoization

Memoization, a term potentially coined by Michie [13], is an
optimization technique that consists in caching the results
of referentially transparent function calls. By avoiding re-
computations, memoization is able to reduce the asymptotic
complexity of some algorithms, as Example 2.2 shows.

Example 2.2. Figure 2 shows implementations, in Hush
and Python, of an algorithm that solves the Knapsack Prob-
lem, which is stated as follows: “Given a set of items, each
with a weight (w) and a value (v), determine which items to
include in the collection so that the total weight is less than
or equal to a given limit and the total value is as large as
possible.” [9]. The Knapsack Problem is typically solved via
dynamic programming: solutions of smaller instances of the
problem are used towards solving larger instances. To this
end, a table is used to store intermediate solutions. Memo-
ization gives this table to the programmer for free. In Hush,
memoization is achieved via the memo qualifier (seen in Line
01 of the Hush implementation). Python provides multiple
alternatives to memoize functions. In Figure 2, we use the
@cache annotation, available in the functools library.

memo function ks(c, n)
 if c == 0 or n == 0 then
 0
 elseif w[n-1] > c then
 ks(c, n-1)
 else
 let r = ks(c-w[n-1], n-1)
 max(
 v[n-1] + r,
 ks(c, n-1)
)
 end
end

@cache
def ks(c, n):
 if c == 0 or n == 0:
 return 0
 elif w[n-1] > c:
 return ks(c, n-1)
 else:
 r = ks(c-w[n-1], n-1)
 return max(
 v[n-1] + r,
 ks(c, n-1)
)

01
02
03
04
05
06
07
08
09
10
11
12
13

01
02
03
04
05
06
07
08
09
10
11
12

HUSH PYTHON

Figure 2. A memoized solution to the Knapsack Problem,
implemented in Hush and in Python.

Memoization improves performance: caching the results
of function calls avoids the need to recompute them. Figure 3
highlights this benefit. That chart compares the time 𝑡 taken
to solve the Knapsack Problemwith the number𝑛 of different
objects that can be packed together. We have that 𝑡 = 𝑂 (2𝑛)
in general; however, for memoized functions several of the
calls to the ks routine, be it in Hush, be it in Python, can
be performed in constant time. The SOP (Shared-Ownership

Memoization of Mutable Objects SBLP’24, September 30 – October 04, 2024, Curitiba, PR

Pointer) memoization mentioned in Figure 3 is the approach
that Section 3 explains. Figure 3 shows that Python tends to
outperform Hush when memoization is not used. However,
our implementation of memoization, at least when applied
onto the routines in Figure 2, yields faster programs. This
last observation is a consequence of engineering: whereas
memoization in Python is implemented in the language
itself as a library, our SOP memoization is implemented in
Rust, as part of Hush runtime system.

Figure 3. Comparison between memoized and non-
memoized versions of the functions seen in Figure 2.

2.3 The Challenge of Mutability

The memoization of mutable values might lead to the design
of incorrect programs, because it creates unwanted aliases.
Aliasing is a feature of imperative programming languages
that allows multiple pointers refer to the same memory loca-
tion. In this context, Example 2.3 shows why the memoiza-
tion of mutable objects might lead to the implementation of
incorrect programs.

Example 2.3. Figure 4 shows a Python program that im-
plements bidimensional points. Points are instances of the
class Point. The annotation @cache forces the memoization
of the __init__ routine that creates objects. Thus, objects
created with the same initializing parameters will be memo-
ized. Consequently, references p0 and p1 point to the same
object allocated in the memoization table. Once a property
of p1 is modified, the same property of p0 is also affected.
However, this behavior is erroneous, because the program
does not contain any explicit copy operation (such as the
statement p0 = p1) that causes these objects to alias.

3 Shared Ownership of Memoized Values

This section explains how we implement memoization of
mutable values. Throughout this explanation, the reader

from functools import cache

@cache
class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

Memoize:
p0 = Point(1, 1)
p1 = Point(1, 1)
Mutate
p1.x = 2
Pass…
assert(p1.x == 2)
Fail!
assert(p0.x == 1)

01
02
03
04
05
06
07

08
09
10
11
12
13
14
15
16

Figure 4. Example where the memoization of a routine that
creates mutable values causes the program to be incorrect.

should keep in mind that our approach asks for modifications
in the language runtime system—it cannot be implemented
as a library. This last observation comes from the fact that we
change how properties of memoized objects are accessed: in
our approach, accesses require one extra pointer dereference,
in addition to the normal search for the property.

3.1 Shared-Ownership Pointers

Shared-ownership pointers are a concept often used in pro-
gramming languages like C++ and Rust, as Example 3.1
explains. This abstraction prevents memory leaks. A shared-
ownership pointer is a pointer that keeps track of how many
references (or “owners”) there are to a particular object.

Example 3.1. In C++, std::shared_ptr is a commonly
used shared-ownership pointer implementation provided by
the standard library. In Rust, an equivalent abstraction could
be achieved using the Rc<T> (Reference Counted) smart
pointer provided by the standard library. Rc<T> is used for
immutable data. To share ownership of mutable values, Rust
programmers can use Arc<T> (Atomic Reference Counted),
which is the thread-safe version of Rc<T>.

In this paper, shared-ownership pointers are not a resource
to avoid memory leaks. Rather, they are a means to imple-
ment the “copy-on-write” policy of memoized objects. We
have modified the Hush runtime environment to only refer
to memoized objects through shared pointers. However, non-
memoized objects are still accessed through plain references.
Figure 5 illustrates the three key operations that our runtime
environment performs on objects. In what follows, these
operations refer to one of the two programs in Figure 5 (a):
• As seen in Figure 5 (b), if c0 = 𝑓 () is a reference to an
object 𝑜 allocated by function 𝑓 , then c0 points to 𝑜
on the heap, but outside the memoization table.
• As seen in Figure 5 (c), if p0 = 𝑔() is a reference to
an object 𝑜 created by a memoized function 𝑔, then
p0 holds the address of a shared pointer sop0, and
sop0 holds the address of 𝑜 , which is stored in the
memoization table.
• As seen in Figure 5 (d), if p0 = sop is a reference to an
object 𝑜 , and 𝑜 is updated, then 𝑜 is copied into a new

SBLP’24, September 30 – October 04, 2024, Curitiba, PR Caio Raposo and Fernando MagnoQuintão Pereira

object 𝑜 ′, which is outside the memoization table. The
shared reference sop is updated to point to 𝑜 ′.

p0
Color

255, 0, 128
let c0 = Color(255, 0, 128)

(b) If an object is created without memoization,
then it is referred to via a normal pointer

let Color = function(red, green, blue)
 @[r: red, g: green, b: blue,]
end

let Point = memo function(dim_x, dim_y)
 @[x: dim_x, y: dim_y,]
end

01
02
03
04
05
06
07

(a)

c0

let p0 = Point(1, 1)

(c) Memoized object is stored in the memoization
table and is accessed through a shared-ownership
pointer

p0 sop0

Point

1, 1

...

...

p0.x = 2

(d) If a memoized object is modified, then a copy
of it is created outside the memo table, and the
shared pointer is updated to refer to the copy

p0 sop0

Point

2, 1

Figure 5.Distinction between non-memoized andmemoized
objects. The latter are accessed through a shared pointer, and
stored in the memoization table unless modified.

If two pointers refer to the same memory location, then
we say that they are aliases. In this paper, we use shared-
ownership pointers with the purpose of distinguishing be-
tween three kinds of aliases:

True: These are the typical aliases created through as-
signment between non-memoized objects. If 𝑟0 is a
reference to a non-memoized object 𝑜 , then an assign-
ment such as 𝑟1 = 𝑟0 forces 𝑟1 to be an alias of 𝑟0,
meaning that these two references hold the same ad-
dress; namely, the address of 𝑜 in memory.

Logical: These are aliases created through assignments
where the right side is a memoized object. If 𝑟0 is a
reference to a memoized object 𝑜 , then an assignment
such as 𝑟1 = 𝑟0 forces 𝑟1 to be an alias of 𝑟0. In this
case the value of 𝑟0 equals the value of 𝑟1, which is the
shared-ownership pointer originally pointed to by 𝑟0.

Memoized: These are “unintentional” aliases created
due to memoization. Let 𝑟0 = 𝑓 (𝑖) and 𝑟1 = 𝑓 (𝑖) be
two references to an object created by two calls of
the memoized function 𝑓 , with the same argument 𝑖 .
References 𝑟0 and 𝑟1 refer to the samememory location,
which exists within the memoization table; thus, they
are aliases. However, 𝑟0 ≠ 𝑟1, as they point to different
shared-ownership pointers.

p0 sop0
Point

1, 1

reference
shared-

ownership
pointer

memoization
table

...

...

p0 sop0 Point

1, 1

...

...p1 sop1

p0

sop0
Point

1, 1

...

...p1

sop1
p2

p0
sop0

Point

1, 1

...

...p1
sop1

p2
object is now
outside the
memo table

let p0 = Point(1, 1)

let p1 = Point(1, 1)

let p2 = p0

p0.x = 2

Point

2, 1

(a)

(b)

(c)

(d)

Figure 6. (a) Creation of memoized object. (b) Memoized
aliases. (c) Logical aliases. (d) Copy-on-write semantics.

Notice that in true and logical aliasing, the values of the ref-
erences 𝑟0 and 𝑟1 are the same. However, in the former case,
they point directly to the object 𝑜 , whereas in the latter, they
point to a shared pointer. In contrast, in the case of memo-
iazed aliases, the values in the references differ: they point
to different shared pointers, but these shared pointers refer
to the same object in the memoization table. Example 3.2
shall make this distinction clearer.

Example 3.2. Figure 6 shows some operations performed
onto memoized instances of function Point (seen in Fig-
ure 5). As seen in Figure 6 (a), memoized objects are accessed
via shared pointers. Figure 6 (b) shows that the construction
of two instances of the same memoized object leads to the
creation of two distinct shared pointers. In this case, p0 and
p1 are memoization aliases. Notice that p0 and p1 are not
aliases in the strict sense: they refer to different shared point-
ers; hence, p0 ≠ p1. However, assignments, such as the one
shown in Figure 6 (c) lead to the creation of logical aliases.
These assignments do not create new shared pointers: the
aliases point to the same shared-ownership reference; thus,
they contain the same address, e.g.: p0 = p1. Therefore, if
any of these aliases is used to modify an object, they all are
automatically updated, once the shared pointer is reassigned
to a copy of the modified object, as Figure 6 (d) shows.

Memoization of Mutable Objects SBLP’24, September 30 – October 04, 2024, Curitiba, PR

3.2 Object Creation

Our implementation of Hush creates objects in one of three
ways, which Figure 7 subsumes via a simplified set of op-
erational rules. The first rule shows the creation of non-
memoized objects. In this case, objects are created as in other
languages: self← new(𝑖) allocates memory to a new object,
making self a pointer to this newly created location.

env self ← memo new(i) is env[self] ← s and env[s] ← o

t = env[memo] t[i] = o

s = fresh

env self ← memo new(i) is env[self] ← s

t = env[memo] t[i] = ⊥ o = new(i)

and env[s] ← o and t[i] = o
and memo ⊃ {self}

s = fresh

env self ← new(i) is env[self] ← o

o = new(i)

and memo ⊃ {self}

Figure 7. Rules for creating objects. The environment “env”
associates variable names with values.

Creation of objects via memoized functions, e.g., as due to
self← memo new(𝑖), always leads to the creation of a fresh
shared pointer 𝑠 . However, from this point on, object creation
follows one of two possibilities. If the memoization table 𝑡
does not contains an entry for 𝑖 , then a new block of memory
𝑜 is allocated and stored in 𝑡 , as seen in the second rule of
Figure 7. Otherwise, the object 𝑜 stored at 𝑡 [𝑖] is returned.
In both cases, the new shared pointer 𝑠 will refer to 𝑜 .

3.3 Property Accesses

Our implementation of Hush’s code generator performs
object access in two different ways, as Figure 8 shows. Prop-
erties of non-memoized objects are retrieved via a search
in the object table, just like in other dynamically-typed pro-
gramming languages such as Python or Ruby. The first rule
in Figure 8 shows this operation.

env self.m(i) is f(self, i)

o = env[self] f = o[m]
self ∉ memo

env self.m(i) is f(self, i)

s = env[self] o = env[s]
self ∈ memo

f = o[m]

Figure 8. Rules to access object properties.

Properties of objects created by memoized functions are
accessed through the shared pointer, as seen in the second

Rule of Figure 8. Notice that, as per these two rules, differ-
ent sets of instructions are generated to implement objects,
depending on how they were created—if via memoization or
not. Figure 7 show these code generation rules.

3.4 The Copy-On-Write Semantics

According to the first rule in Figure 9, the modification of
non-memoized objects happens as in any other dynamically
typed language. In this case, the memory 𝑜 pointed out by a
reference self is retrieved from the environment, and the
property of interest within 𝑜 is updated.

env self.p ← x is o[p] ← x

o = env[self]
self ∉ memo

env self.p ← x is o’[p] ← x and env[s] ← o’

s = env[self] o = env[s] o’ = copy[m]
self ∈ memo

Figure 9. Rules to modify object properties.

However, the modification of a memoized object 𝑜 causes
a copy 𝑜 ′ of this object to be created. This process is rep-
resented by the second rule in Figure 9. There are three
important facts that must be mentioned:
• The copy 𝑜 ′ is not stored in the memoization table.
• The original version of object 𝑜 is not removed from
the memoization table; thus, remaining memoized and
reachable from the table.
• The new copy 𝑜 ′ remains accessed via the old shared-
ownership pointer 𝑠 ; hence, logical aliases of the mod-
ified pointer self do not need to be updated.

4 Formal Properties

TheHush programming language features amark-and-sweep
garbage collector. We have formalized, in the Alloy specifi-
cation language, some properties that arise from the interac-
tion of memoization and garbage collection. Figure 10 states
these properties. For the sake of space, this paper omits the
demonstration of the properties that Figure 10 enumerates.
However, the extended version of this document1 contains
a full demonstration of each one of them. We use Alloy’s
SAT solver to validate the proofs. The rest of this section
provides an informal overview of this process.

Alloy models sets of states and transitions between these
states. Temporal logic statements are validated upon traces:
exhaustive sequences of states that fully describe the behav-
ior of the system. In our model, transitions between states
are provoked by one of the following operations:

Read: read the state of an object via a simple reference
or a shared-ownership pointer.

1Removed to ensure anonymity

SBLP’24, September 30 – October 04, 2024, Curitiba, PR Caio Raposo and Fernando MagnoQuintão Pereira

P1: Shared pointers can only point to reachable objects
pred p1[] {
 all s: Shared | one s.points => s.points.status = Reachable
}

P2: Objects stored in the memoization table are always reachable
pred p2 [] {
 all o: univ.(memo) | always o.status = Reachable
}

P3: Two objects created via a memoized function with the same
parameters are the same, until one of them is modified
pred p3 [] {
 some s0, s1: Shared | some p: Params | some o0, o1: Object | {
 new[s0, p, o0] and
 (not write[s0, o0] until new[s1, p, o1]) => o0 = o1 }
}

P4: Two objects created via a memoized function with the same
parameters remain the same if one of them suffers an unsafe write
pred p4 [] {
 some s0, s1: Shared | some p: Params | some o0, o1: Object | {
 new[s0, p, o0] and write[s0, o0] and new[s1, p, o1] => o0 = o1 }
}

P5: Two objects created via a memoized function with the same
parameters are not the same after one of them suffers a copy-on-write
pred p5 [] {
 some s0, s1: Shared | some p: Params | some o0, o1: Object | {
 new[s0, p, o0] and copy_on_write[s0, o0]
 and new[s1, p, o1] => o0' != o1' }
}

P6: Every unreachable object will be eventually collected
pred p6 [] {
 all o: Object | o.status = Unreachable => eventually collect[] and
 o.status' = none
}

Figure 10. Properties verified via Alloy.

Write: modify the state of an object following the first
rule in Figure 9. This operation is unsafe if performed
upon memoized objects, as seen in section 2.3. This
operation modifies logical and memoized aliases, as
hinted by Property P4 in Figure 10.

Drop: removes a pointer from scope. The pointed-to
object might become unreachable. It will be eventually
collected, as per Property P6 in Figure 10.

Copy-on-Write: copy and modify the state of an object,
following the second rule in Figure 9. This operation
breaks memoized aliasing relations, as hinted by Prop-
erty P5 in Figure 10.

Alias: creates an aliasing relation between two pointers,
due to an assignment such as 𝑟0 = 𝑟1. If the objects are
memoized, then a logical aliasing relation is created;
otherwise, a true relation is created.

In our model, the only operations that provoke effects upon
objects areWrite andCopy-on-Write. This effect is a unique
“modified” next state, which, given the limited scope, is re-
stricted enough to ensure termination of our Alloy demon-
strations.

5 Empirical Evaluation

The goal of this section is to evaluate our implementation of
memoization in Hush. To this end, we shall provide answers
to two research questions:

RQ1: What is the impact of memoization of mutable
objects on the running time of programs?

RQ2: What is the impact of hashing on the implementa-
tion of memoization.

Benchmarks. There is no standard benchmark suite for
Hush; therefore, we evaluate memoization on six programs
of our own craft:

Eval: an evaluator of arithmetic expressions. Expres-
sions are either numbers, or the composition of other
expressions, such as addition, multiplication or divi-
sion of subexpressions.

Figures: an application that represents figures as either
primitive shapes (circles, triangles, rectangles, etc), or
the union, intersection or difference of other figures.
Given a set of points and figures, it finds which figures
contain which points.

Lines: a classic hash-based solution to the problem of
finding three colinear points within a set of 3D points.

Polygons: a simple drawing application that represents
polygons as the hull of sequences of points. Again, for
a set of points and polygons, it finds which polygons
contains which points.

Submarine: a solution to the first three problems of
the “Advent of Code 2021”, which involve controlling
a list of “submarines”. Each submarine can have its
state altered by some displacement operation such as
“forward” or “submerge”.

Treesort: a sorting algorithm that arranges objects in
a tree. Trees are either leaf nodes, or internal nodes
formed by an element and two subtrees.

Experimental Setup. Our evaluation runs on Void Linux
(Kernel 6.5.8, musl libc 1.1.24) featuring an AMD Ryzen 7
5700X 8-Core processor and 16GiB of DDR4 memory.RHush
is implemented on Rust v1.77. Running time numbers are
the arithmetic measurement of three samples.

Memoization Approaches. We evaluate five implemen-
tations of Hush. One of them, called Sop (short for “Memo-
ization via Shared-Ownership Pointers”), contains the ideas
described in this paper. The other approaches are:

Original: the default distribution of Hush, which does
not support built-in memoization. This version works
as a baseline for runtime speed.

Unsafe: a standard implementation of memoization. It
might produce wrong programs due to memoization
aliasing, as Section 2.3 explains.

Guarded: an implementation ofmemoization that guards
memoized objects against mutation. An attempt to

Memoization of Mutable Objects SBLP’24, September 30 – October 04, 2024, Curitiba, PR

Figures Eval Lines

Polygons Submarine Treesort

Figure 11. Running time and collision rate of different memoized functions.

update a property of a memoized object triggers an
exception and aborts the program.

Alias Sets: a simulation of shared-ownership pointers
outside Hush’s runtime environment. This implemen-
tation, available as a library, represents shared pointers
as sets containing logical aliases.

5.1 Running Time Impact

Figure 11 shows the running time and collision rate of memo-
ized objects for each benchmark. Memoization proves benefi-
cial in three benchmarks: Figures, Lines, and Submarines.

In the case of Submarines, memoization is effective because
the rate of reused objects is high. Due to the nature of the
problem, there are only a limited number of different “Move-
ments” a submarine can use. These movements, being mem-
oized objects, are frequently reused from the memoization
table. While submarines themselves are also memoized, they
are quickly removed from the memoization table because of
the copy-on-write semantics explained in Section 3.4. In the
case of Figures and Lines, memoization is advantageous
because the functions that construct objects are relatively
costly. These constructors take points as parameters and use

SBLP’24, September 30 – October 04, 2024, Curitiba, PR Caio Raposo and Fernando MagnoQuintão Pereira

them to create complex objects, such as shapes and three-
dimensional lines. Since objects are not modified during the
execution of the benchmarks, they remain in the memoiza-
tion table.
Nevertheless, all the benchmarks show a similar trend:

the cost of our safe approach to memoization is not higher
than the cost to implement unsafe memoization. The differ-
ence between Sop and Unsafe memoization is often non-
statistically significant. Furthermore, there are at least one
benchmark: Polygons, where Sop memoization leads to
faster codes (confidence level of 0.95%).

5.2 The Impact of Hashing

In our experience, the main challenge when memoizing ob-
jects was the impact of deep hashing. Comparing memoized
objects requires traversing the graph of values reachable
from those objects. In practice, this traversal involves com-
puting deep hashes for objects. In other words, the hash code
of an object 𝑜 is determined by 𝑜’s internal state and by the
hashes of the objects that 𝑜 contains. This recursive nature
of the hashing operation can place a heavy burden on the
memoization system, as Example 5.1 illustrates.

Example 5.1. The program in Figure 12 creates arithmetic
expressions whose size grows exponentially with the value
of the input len. The time to hash an object is proportional
to the size of that object. The size of an object, in turn, is the
size of its primitive attributes, plus the size of the objects
it contains. Memoizing an object involves computing its
hash code. The chart in Figure 12 demonstrates that, in this
example, memoization time grows exponentially with len—a
direct consequence of the exponential growth of objects.

function gen(n)
 if n == 1 then
 Num(0)
 else
 let T = gen(n-1)
 Add(T, T)
 end
end
len = std.read()
gen(len)

01
02
03
04
05
06
07
08
09
10 0 5 10 15 20 25

0

100

200

300

400 Original program
SOP memoization

Tim
e (sec)

Figure 12. Example that illustrates the heavy impact of deep
hashing on the memoization of complex objects.

We have evaluated five different hash functions while
implementing memoization in Hush. Figure 13 shows the
result of these studies on the Figures benchmark. Our best
results were observed with the implementation of SipHash
that is available in the Rust Standard Library.

0 20K 40K 60K 80K 100K

aHash
FxHash
SeaHash
SipHash 1-3
FnvHash

0

1

2

3

4

Number of figures constructed

Tim
e (sec)

Figure 13. The impact of different hash functions on the
running time of the Figures benchmark.

6 Related Work

Memoization has been already present in programming lan-
guages as early as in 1967 [12]. Indeed, a survey from 1980
shows that memoizing costly function calls has been com-
mon practice for most of the seventies [3]. The subject of au-
tomatic memoization is more recent. We believe that interest
on this topic emerged mostly during the nineties [1, 8, 11, 14].
However, in contrast to this paper, those early studies fo-
cused on functions that returned immutable data. To support
this statement, we quote Stoffers et al. [17], who in 2016 said
that “till today there is no approach to automated memoization
for impure functions”.
The only study of memoization in the context of imper-

ative languages that we know about is due to the work of
Stoffers et al. [16, 17]. In their words: “we conclude that au-
tomated memoization with fully unrestricted pointer usage is
infeasible as the runtime overhead associated with a dynamic
approach would be overwhelming.” This paper, in contrast,
goes one step further: we do allow aliasing of memoized ob-
jects, only aborting memoization once mutation is detected.

7 Conclusion

This paper has presented a new technique to memoize func-
tions that return mutable objects. Said technique consists in
funneling references to the same object into shared point-
ers. In this way, we can adjust all the references to a given
object with a single update operation, in case it is neces-
sary to remove said object from the memoization table due
to mutations. We have implemented our ideas in the Hush
programming language; however, we believe that the gen-
eral approach advocated in this paper can be adapted to any
other programming language that features mutable state.
Our version of Hush is publicly available2, and although
it still offers room for improvement, we believe that it can
be used as a first proof of concept of the memoization of
mutable objects.
2https://github.com/caioraposo/hush

Memoization of Mutable Objects SBLP’24, September 30 – October 04, 2024, Curitiba, PR

References

[1] Umut A Acar, Guy E Blelloch, and Robert Harper. 2003. Selective
memoization. ACM SIGPLAN Notices 38, 1 (2003), 14–25.

[2] Gabriel Bastos. 2021. The Hush Programming Manual. https://hush-
shell.github.io/. Accessed: 2024-04-25.

[3] R. S. Bird. 1980. Tabulation Techniques for Recursive Programs. ACM
Comput. Surv. 12, 4 (dec 1980), 403–417. https://doi.org/10.1145/356827.
356831

[4] Daniel Bovet and Marco Cesati. 2005. Understanding The Linux Kernel.
Oreilly & Associates Inc.

[5] Daniel Brown andWilliam R Cook. 2007. Monadic memoization mixins.
Citeseer.

[6] Paul R. Calder and Mark A. Linton. 1990. Glyphs: flyweight objects
for user interfaces. In UIST (Snowbird, Utah, USA). Association for
Computing Machinery, New York, NY, USA, 92–101. https://doi.org/
10.1145/97924.97935

[7] Ole-Johan Dahl and Kristen Nygaard. 1966. SIMULA: an ALGOL-
based simulation language. Commun. ACM 9, 9 (sep 1966), 671–678.
https://doi.org/10.1145/365813.365819

[8] Marty Hall and J Paul McNamee. 1997. Improving software perfor-
mance with automatic memoization. Johns Hopkins APL Technical
Digest 18, 2 (1997), 255.

[9] Ellis Horowitz and Sartaj Sahni. 1974. Computing Partitions with
Applications to the Knapsack Problem. J. ACM 21, 2 (apr 1974), 277–292.
https://doi.org/10.1145/321812.321823

[10] Daniel Jackson. 2019. Alloy: a language and tool for exploring software
designs. Commun. ACM 62, 9 (aug 2019), 66–76. https://doi.org/10.

1145/3338843
[11] James Mayfield, Tim Finin, and Marty Hall. 1995. Using automatic

memoization as a software engineering tool in real-world AI systems.
In AIAI. IEEE, 87–93.

[12] Donald Michie. 1967. Memo Functions and the POP-2 Language. Tech-
nical Report. Stanford.

[13] Donald Michie. 1968. Memo Functions and Machine Learning. Nature
218, 5136 (1968), 19–22.

[14] Peter Norvig. 1991. Techniques for automatic memoization with ap-
plications to context-free parsing. Comput. Linguist. 17, 1 (mar 1991),
91–98.

[15] Harald Søndergaard and Peter Sestoft. 1990. Referential transparency,
definiteness and unfoldability. Acta Informatica 27 (1990), 505–517.

[16] Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, and Klaus
Wehrle. 2018. On Automated Memoization in the Field of Simulation
Parameter Studies. ACM Trans. Model. Comput. Simul. 28, 4, Article 26
(sep 2018), 25 pages. https://doi.org/10.1145/3186316

[17] Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, and Klaus
Wehrle. 2016. Automated Memoization for Parameter Studies Imple-
mented in Impure Languages. In SIGSIM-PADS (Banff, Alberta, Canada).
Association for Computing Machinery, New York, NY, USA, 221–232.
https://doi.org/10.1145/2901378.2901386

[18] Gurram Sunitha, Arman Abouali, Mohammad Gouse Galety, and AV
Sriharsha. 2023. Dynamic Programming With Python. In Advanced
Applications of Python Data Structures and Algorithms. IGI Global,
102–122.

[19] David Svoboda and Lutz Wrage. 2014. Pointer ownership model. In
HICSS. IEEE, 5090–5099.

https://hush-shell.github.io/
https://hush-shell.github.io/
https://doi.org/10.1145/356827.356831
https://doi.org/10.1145/356827.356831
https://doi.org/10.1145/97924.97935
https://doi.org/10.1145/97924.97935
https://doi.org/10.1145/365813.365819
https://doi.org/10.1145/321812.321823
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3186316
https://doi.org/10.1145/2901378.2901386

	Abstract
	1 Introduction
	2 Background
	2.1 The Hush Programming Language
	2.2 Memoization
	2.3 The Challenge of Mutability

	3 Shared Ownership of Memoized Values
	3.1 Shared-Ownership Pointers
	3.2 Object Creation
	3.3 Property Accesses
	3.4 The Copy-On-Write Semantics

	4 Formal Properties
	5 Empirical Evaluation
	5.1 Running Time Impact
	5.2 The Impact of Hashing

	6 Related Work
	7 Conclusion
	References

