
Compact Representations for Arrays in Lua
Roberto Ierusalimschy

Noemi Rodriguez
roberto@inf.puc-rio.br
noemi@inf.puc-rio.br

Departamento de Informática
Catholic University of Rio de Janeiro — PUC-Rio

Rio de Janeiro, Brazil

Abstract
Several languages use a tagged representation for values, so
that each value carries its own type during runtime. Lua,
in particular, represents each value by a structure with two
fields: A union for the values themselves and a byte with
the tag. Despite its simplicity, this representation has a big
drawback: Due to alignment restrictions, it typically wastes
more than 40% of memory in padding. This waste is specially
expensive for large arrays. In this work, we discuss alterna-
tive implementations for Lua arrays that eliminate this waste
and evaluate them regarding performance, with a special
focus on code overhead and memory locality. The presented
data structures are quite generic, and can be used not only
in the Lua interpreter, but in any program that needs arrays
of tagged values.

CCS Concepts: • Software and its engineering → In-
terpreters; Runtime environments; Software perfor-
mance.

Keywords: array representation, language implementation,
Lua, memory layout

1 Introduction
Most languages with dynamic typing—and some with static
typing, too—use a tagged representation for values, so that
each value carries its own “type” (actually a tag) during
runtime.

Some languages pack the tag information inside the value,
often sacrificing some values. For instance, OCaml typically
has 31 bits in its int type [7], while Haskell ensures only
30 bits for its Int type [2]. Lua uses a representation for
values with explicit tags; we will call a value with this rep-
resentation a t-value. Each t-value is represented by a C
structure TValue with two fields, a union for the value itself
and a byte with the explicit tag; see Figure 1. T-values live in
the interpreter’s stacks, tables, closures, etc. More often than
not, Lua code passes around pointers to these structures, to
avoid copying them.

This representation has several advantages: It allows a di-
rect representation for numbers—both integers and floating-
points—without using dynamic memory; it is simple and
portable; and it is reasonably efficient. Its main negative point

Value
tag

Figure 1. Layout of a TValue in a 64-bit memory

is memory waste: As we can see in Figure 1, a TValue struc-
ture typically wastes around 40% of its memory in padding
due to alignment requirements.
For objects with a few t-values, that waste is usually not

relevant. For instance, in a stack with 200 elements in a
64-bit system, it adds up to 1400 bytes. However, for tables
representing arrays with a myriad of elements, that waste
may translate to an increase of 40% in the total memory
used by an application. A representation of arrays that could
avoid that waste would bring a significant improvement in
Lua’s memory efficiency.

In this paper, we consider a few alternatives for the repre-
sentation of arrays in Lua and evaluate them. For the evalu-
ation, we focus on the following aspects:

Memory : The main goal of all alternatives is to reduce
memory use. All alternatives we consider in this work
eliminate all padding in the representation of arrays.
However, as we will see, some of them add a little
overhead, particularly for small arrays.

Performance : That is the second main goal: Ideally, an
alternative implementation should add no CPU over-
head compared to the current implementation.
Although what matters in the end is overall perfor-
mance, it is instructive to better understand what
causes the differences in performance among the alter-
native implementations. To this end, we also consider
the next aspects in our evaluation.

Code overhead : As we mentioned, one of the advan-
tages of the current implementation is its simplic-
ity. We can access a value with an expression like
a[i].val and a tag with a[i].tag. Alternative rep-
resentations may need more complex expressions to
access the same information.

Memory locality : The current implementation has
pros and cons regarding locality: On the good side,
each tag is always next to the corresponding value.
On the bad side, the extra space wasted on padding

https://orcid.org/0000-0003-2263-4955
https://orcid.org/0000-0003-3956-2943


SBLP ’24, Curitiba, PR, Brazil,
Ierusalimschy & Rodriguez

spreads sequential elements. As we will see, the alter-
native implementations do not store tags and values
together; on the other hand, they reduce the spreading
by eliminating the wasted space.

All our alternative implementations are reasonably simple,
but we have not seen any of them described in the litera-
ture before. All code described in this paper works for any
architecture, given an ISO-C compliant compiler; our code
works even for a machine with 5-byte pointers. Lua’s code-
base is very strict about its use of C [5]. The discussions,
however, assume a “reasonable” architecture. A reasonable
architecture for us is one where the size of pointers, floats,
and integers is a power of two, typically 4 or 8 bytes. To
simplify the exposition, we will assume a 64-bit architecture
from now on.
The rest of this paper is organized as follows. The next

section discusses related work. Section 3 reviews the im-
plementation of arrays (actually tables) in Lua. Section 4
presents our three alternative implementations. Section 5
evaluates them. Finally, Section 6 draws some conclusions.

2 Related Work
Hugo Gualandi reported1 that just adding the gcc attribute
__attribute__((packed)) to the definition of the struc-
ture TValue reduces its size from 16 to 9 bytes, without any
sensible difference in performance. However, this attribute is
a gcc extension not present in ISO C. Moreover, even in gcc
it is not guaranteed to work [3]. As portability is a hallmark
of Lua, this almost magical solution is a no-go.
As we have already mentioned, some languages like

OCaml and Haskell sacrifice some bits in their native integer
types to allow an unboxed representation for them. Because
most machines align pointers to heap-allocated memory in
word boundaries, the code can assume that any pointer to
an object ends with two or three zeros. Any other value in
these bits means something that is not a pointer, such as a
primitive integer. This approach has the drawback of not
representing faithfully C integers. For Lua, which is typi-
cally used in close integration with C code, this seems a
grave issue. A second drawback is that this kind of bitwise
manipulation of pointers is not expressible in ISO C [6].
Another technique to avoid explicit tags is the so called

NaN boxing [8]. This technique assumes a double floating-
point number as its basic type, and packs all other values
in the 51 bits of payload of Not-a-Number (NaN) doubles. It
is particularly well suited for JavaScript and older versions
of Lua, where the only numeric type is a double. (LuaJIT, in
particular, uses this technique.) But it makes little sense for
a language with 64-bit integers. Moreover, it cannot directly
represent pointers in 64-bit machines. (LuaJIT, for instance,
limits its memory allocation to 1 GB.)

1Personal communication

N

Array part

Header

Hash part

Figure 2. The structure of a table in Lua

Some dynamic language implementations have the con-
cept of homogeneous arrays, arrays where all the elements
have the same type. An homogeneous array needs to store
just one tag for the whole array, instead of one tag per entry.
NumPy, a Python library for multi-dimensional arrays, uses
this concept, but the programmer must explicitly provide
the type of an array when creating it. (This slightly betrays
the character of a dynamic language.) To do that dynami-
cally, the interpreter must type-check all assignments to the
array and automatically deoptimize the array in case of an
assignment with a value with a different type. For instance,
a single integer may spoil the optimization of an array of
floats. That seems too subtle for a language that is aimed
at end-user programmers, which are often non-professional
programmers [5].

3 Tables in Lua
In Lua, a table is an associative array that accepts keys and
values of any type. Tables are the only data structure in Lua.
Lua programs implement arrays simply by using a table with
integer keys.
Since version 5.0, Lua implements tables with two data

structures: A hash table and an array. Figure 2 shows this
arrangement. Each table has an array size 𝑁 : All positive
integer keys up to 𝑁 are stored in the array part; all other
keys are stored in the hash part. The array size for each table
is recomputed every time the table is resized and there is a
rehash [4]. This dual data structure is completely transparent
to programmers, except for performance. There is no way a
program can detect whether a key is stored in the hash part
or the array part of a table.

All entries in the hash part of a table are kept in a single ar-
ray. Each element in this array stores a key, its corresponding
value, and a next field, which is an integer used for collision
resolution. Since version 5.4, Lua packs this structure by
separating the key’s components, as we can see in Figure 3.
Unlike the key, the t-value in each entry is stored whole—a
value followed by its tag; the field i_val in the union allows
the code to access it as a proper TValue. Figure 4 shows the
memory layout of this structure for a 64-bit architecture. As



Compact Representations for Arrays in Lua
SBLP ’24, Curitiba, PR, Brazil,

typedef union Node {
struct NodeKey {
Value value_; /* value of the value */
unsigned char tt_; /* tag of the value */
unsigned char key_tt; /* taf of the key */
int next; /* for chaining */
Value key_val; /* value of the key */

} u;
TValue i_val; /* value as a 'TValue' */

} Node;

Figure 3. Type for the elements in the hash part of a table.

Key value

nexttag tag

TValue’s value

Figure 4. Layout of an element in the hash part of a table

we can see, it wastes only 2/24 in padding, so it is already
reasonably efficient regarding memory.

The array part of a table, however, is stored directly as an
array of TValue. As arrays can be quite large, the padding in
TValue can result in significant memory waste for the whole
program. So, it is worth considering alternative representa-
tions for this array. In the next section, we will explore some
alternatives.

4 Alternative Implementations
In this section, we will consider three alternative implemen-
tations for the array part of a table. For each alternative, we
will discuss its pros and cons, but we will postpone a direct
comparison among them to the following section.

4.1 Reflected Arrays
A common technique to avoid padding in arrays is the use
of parallel arrays [1]: Instead of a single array of structures,
we use one individual array for each field in that structure.
Figure 5 illustrates this technique.
A major drawback of parallel arrays for Lua is that it

needs two pointers in the table header, instead of one. For
large arrays, this overhead is irrelevant, but for programs
that create a myriad of small arrays—or even tables with
no array part—this increase in the base size of a table can
be significant. Moreover, each access to an entry needs one
extra memory access, to retrieve this extra array pointer.

To avoid these drawbacks, we propose an implementation
that we call reflected arrays. The idea is to represent the
array of TValue by an inverted array of values followed by
an array of tags: Figure 6 clarifies this idea. A single pointer
pointing to the junction of the two arrays allows the code

tag 
1

tag 
4 …tag 

2
tag 
3

…

Value 1

Value 2

Value 3

Value 4

…

N

Header

Hash part

Figure 5. Use of parallel arrays to avoid padding

…

tag 
1

tag 
4 …tag 

2
tag 
3

Value 4

Value 3

Value 2

Value 1

…

Figure 6. A reflected array

to access both, the tags with non-negative indices and the
values with negative indices.

This layout completely eliminates padding without intro-
ducing any extra memory overhead, even for small arrays:
An array of size 1 uses the same two words as the basic
implementation; an array of size 2 already saves one word.
Also, the code to access elements is quite simple. If we de-
clare the array as a pointer to values, then the expression
arr[-idx - 1] accesses the value at index idx, while the
expression ((char*)arr)[idx] accesses its corresponding
tag.
A drawback of this layout is its bad locality for random

access, as each value is stored quite apart from its respective
tag. Another drawback concerns resizes. Unlike a regular
array, we cannot simply reallocate a reflected array to resize
it. If the array grows, we need to move up its elements to
keep them centralized. If the array shrinks, we cannot use
a reallocation at all, since it will always erase some data
that should be kept in the final array. Instead, we must first
allocate a new array, move the data to its new location, and
then free the original.
Another peculiarity of this structure is its use of interior

pointers, that is, pointers to the middle of heap-allocated
blocks. That is correct regarding ISO-C, but it can be prob-
lematic for some tools, such as conservative garbage collec-
tors and Valgrind. (If such a block is not deallocated, Valgrind
may report it as a “possibly lost” block.)



SBLP ’24, Curitiba, PR, Brazil,
Ierusalimschy & Rodriguez

tag 
1

tag 
4

tag 
5

tag
6

tag
7

tag 
2

tag 
3

Value 7

Value 8

Value1

Value 2

Value 3

tag 
1

tag
4

tag 
2

tag 
3

Value 1

tag
8

Value 2

Value 3

Value 4

Value 5

Value 6

Value 4

cell

cell

Figure 7. Cells in an array of cells

4.2 Cells
Our next implementation tries to avoid the drawbacks of
reflected arrays. To improve locality, it interpolates the array
of tags into the array of values. More specifically, for each
block of NM values, where NM is the size of a value, it inserts
a word with NM tags. Figure 7 shows this arrangement. (As
we discussed, the figures assume that values have 8 bytes
[64 bits], to simplify the exposition.) The block of tags can
be inserted anywhere in the cell; different positions bring
different costs, as we will discuss later.

To implement this structure in C, we declare the array as
being composed by unions of values and arrays of tags:
union ArrayCell {

char tag[NM];
Value value;

};

We also define a constant NMTag, which can be any value
between 0 and NM (both inclusive), to be the position in the
cell where to insert the block of tags. Figure 7 uses NMTag=4.

To address the value at index idx, we can use the following
expression:
arr[idx + ((idx + (NM - NMTag))/NM)].value

The first summand is the number of values before the one we
are indexing, while the second is the number of tag words. If
we simply divide idx/NM, that gives the number of complete
cells behind idx; that is also the number of blocks of tags
behind idx when idx is in the first part of a cell. However, if
idx is in the second part—that is, after the block of tags of its
own cell—we need to skip one more word. The addition of
(NM - NMTag) to idx in the dividend does that correction.

Let us see some examples to make things clearer. We will
assume that NMTag is 4. Suppose we want to access the value
at index 10. That value lies in the first part of the second cell.
("First part" are the values before the block of tags.) Its index
in the array is 11, as it lies in the third slot of the second cell.

Note, in the second summand, how the dividend (10 + 4)
does not add to 16, and so the division rounds to 1. Overall,
we skip 10 values plus 1 block of tags to arrive at index 11.

Suppose now we want to access the value at index 22.
That one lies in the second part of the third cell. Now we
have to skip 22 values plus 3 blocks of tags. The division
(22 + 4)/8 correctly rounds to 3, thanks to the addition of
4 (NM - NMTag).

To address the tag of the value at index idx, we need a
little more work. The following expression does the trick:
arr[(idx/NM * (NM + 1)) + NMTag].tag[idx%NM]

The division gives the cell where the value lives; the product
translates that to array indices, as NM+1 is the number of
elements in each cell. The addition of NMTagmoves the index
from the beginning of a cell to the block of tags inside the
cell. Once the correct block is selected, the remainder gets
the specific tag inside the block.

In “reasonable” architectures, where NM is a power of two,
all operations in both expressions are cheap: The divisions
become shifts, the remainder becomes a bitwise-and, and the
product becomes a shift followed by an add. Nevertheless,
each access involves several more cheap instructions than
were needed in the previous implementations.

If the size of the array is not a multiple of NM, the last cell
in an array will be incomplete. In that case, we do not need
to allocate the whole cell. However, we still need to allocate
its block of tags. Therefore, the value of NMTag limits the
minimum size for an incomplete cell. If we consider only
locality, the ideal value for NMTag would be 4, putting the tag
block right in the middle of its respective values. However,
that value implies that an array of one or two elements
would still need five entries. To avoid any waste in small
arrays, NMTag should be at most one. That of course decreases
locality: In the worst case, with NMTag equal to zero, a value
can be 56 bytes (7 words) apart from its tag.

4.3 Cell-0
If we follow the route of avoiding memory waste, it is worth
considering the special case of NMTag equal to zero, that is,
the layout where each block of tags immediately precedes
its corresponding values.

It seems reasonable to expect this special case to be some-
what simpler than the general case. In fact, this layout allows
a simpler and, in our view, more elegant implementation.
Regarding the C code, we can implement the entire cell as a
single C structure:
struct ArrayCell {

lu_byte tag[NM];
Value value[NM];

};

Now, the array part is an array of ArrayCell. To address
the tag of the value at index idx, we can use the following
expression:



Compact Representations for Arrays in Lua
SBLP ’24, Curitiba, PR, Brazil,

size basic refl. cells cell-0
8M 132M 75M 75M 75M
64M 1050M 591M 591M 591M
256M 4.19G 2.36G 2.36G 2.36G

Table 1. Memory use for arrays

array[idx / NM].tag[idx % NM]

The access to a value is similar, only changing the field name
from tag to value. Once again, in “reasonable” architectures,
the division becomes a shift and the remainder becomes a
bitwise-and.

The memory layout is exactly the same as for generic cells
when NMTag is zero, despite the differences in the C code.
Each access still involves a multiplication by NM+1, but it
is produced by the compiler, as this is the size (in words)
of each array element. As we already mentioned, the main
gains from this implementation are simplicity and elegance.
A by-product of the simplicity is the easiness of verifying
the correctness of the implementation.

As the reflected-array structure, this data structure never
uses more memory than the basic implementation: An array
of size 1 uses the same 2 words; an array of size 2 already
saves one word.

5 Evaluation
In this section, we evaluate the different alternatives regard-
ing the criteria presented in the introduction. We evaluate
four implementation: the basic one, using an array of TValue,
reflected arrays, cells, and cell-0.

For the evaluation, we implemented two very simple C pro-
grams, one that creates an array of a given size and then
traverses it linearly, and another that creates an array and
then does a long sequence of (pseudo)random accesses. These
two tests present quite different behaviors regarding locality.
We also modified a Lua interpreter to use each of the pre-
sented data structures, and tested each resulting interpreter
in five standard Lua benchmarks.
The entire code used in these tests is available at the fol-

lowing link: www.inf.puc-rio.br/~roberto/docs/array24.zip.

5.1 C benchmarks
We ran the C tests in an Ubuntu machine with kernel 5.4.0-
182-generic and an Intel Core i7-4790 CPU @ 3.60GHz, 8 GB,
compiled with gcc 9.4.0, optimized with -O2.

Table 1 shows thememory use for the C tests, while Table 2
shows their run-times. Memory use is the maximum resident
set size of the process, as reported by time. The times were
collected with perf, with 10 repetitions for times bellow
1 sec. and 5 repetitions for longer runs. (The variance is
given by the number of significant digits.)
The memory results only corroborate our analysis: All

alternatives use approximately 9/16 bytes of the current

implementation. The time results, on the other hand, reflect
the tradeoffs between locality and simplicity of the various
implementations.
For linear accesses, all alternative implementations out-

perform the current one, with the reverse array being a clear
winner. When traversing the array linearly, the reverse array
has two points of high locality, one traversing the values
and the other traversing the tags. It has a small footprint,
compared to the basic implementation, and a simple access
code, compared both to cells and cell-0.
For random accesses, the performance of the reflected-

array implementation worsens for large array sizes, but ex-
cept for one point all alternative implementations still are
on par or better than the basic one. (Differences up to 5% are
inside the margin of error of our measures.)

To shed more light on these times, we used perf to count
other events. Table 3 shows these counters for the linear-
access benchmark, and Table 4 shows them for the random-
access benchmark. For both benchmarks, we used a fixed size
of 64M. The collected events are CPU cycles, instructions,
page faults, cache references, and cache misses. CPU cycles
and instructions allow us to evalute the code overhead of the
alternatives; page faults, cache references, and cache misses
allow us to evaluate the memory locality of the alternatives.

From the linear benchmark, we can see that both cells and
cell-0 execute almost twice as instructions as the basic and
the reflected implementations. In the random-access bench-
mark, this difference of ~1G instructions is still there, but di-
luted by the extra instructions from the pseudo-random gen-
erator. The page-fault counter shows the weight of memory
spreading in the basic implementation, while cache misses
shows its weight in the reflected-array implementation doing
random accesses.
In a direct comparison between cells and cell-0, we can

see that cell-0 is simpler—less instructions—but it also has
worse locality—more cache misses.

5.2 Lua benchmarks
Now let us see some results for our alternative data structures
applied to the Lua interpreter.
We compiled four Lua interpreters: One with the basic

representation as an array of TValue, and one for each al-
ternative data structure: reflected arrays, cells, and cell-0.
The four interpreters were based on Lua commit 5edacafcf,
available on GitHub. The changes we made to that code were
extremely localized. More exactly, we changed the following
macros/functions:

• Macro getArrTag: This macro is used in all accesses
to the tag of a t-value in the array part of a table. Each
macro was replaced by the corresponding code frag-
ment we presented in the text.

• Macro getArrVar: This macro is used in all accesses
to the value of a t-value in the array part of a table.

www.inf.puc-rio.br/~roberto/docs/array24.zip


SBLP ’24, Curitiba, PR, Brazil,
Ierusalimschy & Rodriguez

basic refl. cells cell-0

linear 8M 0.061 (100%) 0.038 (62%) 0.045 (74%) 0.042 (69%)
64M 0.46 (100%) 0.28 (61%) 0.35 (76%) 0.32 (69%)
256M 1.8 (100%) 1.1 (62%) 1.4 (78%) 1.3 (72%)

random 1M 0.032 (100%) 0.023 (72%) 0.025 (78%) 0.025 (78%)
8M 0.30 (100%) 0.31 (103%) 0.29 (97%) 0.30 (100%)
64M 2.5 (100%) 2.9 (116%) 2.5 (100%) 2.6 (104%)
256M 13 (100%) 13 (100%) 11 (84%) 11 (84%)

Table 2. Runtime (in seconds and fraction of basic time) for array accesses

impl. cycles instr. page-faults cache-ref. cache-mis.
basic 0.79G 1.1G 262K 17M 7.8M
refl. 0.53G 1.1G 147K 7.5M 3.3M
cells 0.78G 2.5G 147K 2.3M 0.89M
cell-0 0.68G 2.1G 147K 3.7M 1.4M

Table 3. perf results for linear access, size 64M

impl. cycles instr. page-faults cache-ref. cache-mis.
basic 8.9G 5.6G 262K 131M 67M
refl. 10.9G 5.6G 147K 237M 131M
cells 9.4G 6.8G 147K 149M 87M
cell-0 9.6G 6.3G 147K 166M 103M

Table 4. perf results for random access, size 64M

Again, each macro was replaced by the corresponding
code fragment we presented in the text.

• Function resizearray: This function resizes the array
part of a table, including resizes from and to size zero,
that is, creation and deletion of the array.
In the basic (original) implementation, this function
has only 4 lines of code.
Its size grows to 16 lines, excluding comments, in the
cells implementation and to 14 lines in the cell-0 im-
plementation. In both cases, the extra complexity is
due to the code for computing the size in bytes for the
new array.
In the reflected-array implementation, that function
has 36 lines. As we already discussed, we cannot use
realloc when shrinking an array; so, we opted to
always allocate a new block and move the old contents
to its correct place in the new block.

All interpreters were compiled with the makefile provided
in the commit, using gcc 9.4.0.

With these four interpreters, we ran five benchmarks:

matrix does a matrix multiplication of two matrices
600x600.

binsearch does 107 binary searches over an array with
106 random integers.

heapsort sorts an array of 106 random numbers in the
interval [0, 1), using the heapsort algorithm, and then
checks that the sort is correct. This workload is re-
peated five times.

sieve implements the Sieve of Eratosthenes, finding all
primes up to 5x107.

n-body is an instance of the n-body problem. It does
not use arrays at all. We included it here as a “control
group”.

These benchmarks were selected for their simplicity, empha-
sis on array accesses (except for the “control group”), and
different patterns of accesses.
Tables 5 and 6 show the benchmark results for the four

versions of the Lua interpreters over these five programs.
We run each test 20 times in an Ubuntu machine with ker-
nel 5.15.0-117-generic with an Intel Core i7-1065G7 CPU @
1.30GHz, 16 GB. Memory use is the maximum resident set
size of the process, time is the number of CPU-seconds used
directly by the process, both as reported by time.

The first thing we can check from the tables is our sanity
check: As expected, the different interpreters show no sig-
nificative differences, both in memory and in time, for the
n-body benchmark.

The second important take is that, again not surprisingly,
all alternatives bring ~40% reduction in the memory used by



Compact Representations for Arrays in Lua
SBLP ’24, Curitiba, PR, Brazil,

impl. matrix binsearch heapsort sieve n-body
basic 32M 19M 19M 1.0G 2.7M
refl. 19M 12M 12M 0.59G 2.7M
cells 19M 12M 12M 0.59G 2.7M
cell-0 19M 12M 12M 0.59G 2.7M

Table 5. Memory use for Lua interpreters

impl. matrix binsearch heapsort sieve n-body
basic 5.8 (100%) 5.4 (100%) 5.8 (100%) 4.7 (100%) 2.2 (100%)
refl. 5.6 (97%) 5.4 (100%) 5.4 (93%) 3.6 (77%) 2.2 (100%)
cells 5.3 (91%) 5.7 (1.06%) 5.8 (100%) 4.7 (100%) 2.2 (100%)
cell-0 5.4 (93%) 5.5 (1.02%) 5.8 (100%) 4.6 (98%) 2.2 (100%)

Table 6. Time (in seconds and fraction of basic time) for Lua interpreters

each of the other benchmarks. Note that these benchmarks
make heavy use of arrays. Programs with other characteris-
tics may not show those gains.

The numbers presented by Table 6 are more nuanced. The
first observation is that the overhead of Lua dilutes the larger
differences we saw on the C benchmarks. There are some
fluctuations, but in general the alternatives are not slower
than the original implementation. The only exceptions are
for cells and cell-0 in the binsearch benchmark. This bench-
mark is the one that exibits more randomness in its array
accesses, due to the nature of the binary-search algorithm.
Nevertheless, the overheads may be a small price—negligible
for cell-0 (2%) and 6% for cells—for the savings in memory.

6 Conclusions
We have proposed three novel, simple data structures to
improve the memory efficiency of arrays in Lua. According
to our evaluations, all three options can reduce by ~40%
the memory use of large arrays in the language, without
significant impact on performance.
Among the alternatives, the extra complexity of cells

seems to outweigh its slightly better locality when com-
pared to cell-0. Similarly, the simplicity of reflected arrays
seem to compensate for its worse locality, when used in the
Lua interpreter. Other applications, and other benchmarks,
may lead to different conclusions.
For the reflected-array structure, two peculiarities are

worth noting: The first is its use of interior pointers. That is
not an issue for Lua or other ISO-C code, but can be an issue
for some tools, such as conservative garbage collectors or
Valgrind. The second, a consequence of the first, is its extra
complexity for resizing a block. Although Lua does resize
its tables on demand, in most programs that operation is
sparse. (Note that resizing is already a heavy operation in
Lua, because of the computation of the array size.) Moreover,
the two-step reallocation (using malloc–free, instead of

realloc) is only necessary when shrinking an array, a rare
event.

There is nothing particular about Lua in these data struc-
tures. Arrays of tagged unions are a quite common structure
not only in interpreted languages, but in several other ar-
eas. The proposed data structures seem a good addition to
the toolbox of any programmer, to be considered whenever
alignment becomes a problem.

Acknowledgments
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—
Finance Code 001.

References
[1] Wikipedia contributors. 2022. Parallel array. https://en.wikipedia.

org/w/index.php?title=Parallel_array&oldid=1109345767 [9 September
2022 09:40 UTC].

[2] Simon Marlow (editor). 2010. Haskell 2010 Language Report.
[3] Free Software Foundation [n.d.]. GNU C Language Manual. 15.6 Packed

Structures. Free Software Foundation. https://www.gnu.org/software/c-
intro-and-ref/manual/html_node/Packed-Structures.html

[4] Roberto Ierusalimschy, Luiz H. de Figueiredo, andWaldemar Celes. 2005.
The Implementation of Lua 5.0. Journal of Universal Computer Science 11,
7 (2005), 1159–1176. https://doi.org/10.3217/jucs-011-07-1159 (SBLP
2005).

[5] Roberto Ierusalimschy, Luiz H. de Figueiredo, andWaldemar Celes. 2007.
The Evolution of Lua. InHOPL III: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages (San Diego, CA). ACM,
New York, NY, 2.1–2.26. https://doi.org/10.1145/1238844.1238846

[6] ISO 2000. International Standard: Programming languages — C. ISO.
ISO/IEC 9899:1999(E).

[7] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, KC Sivaramakrishnan, and Jérôme Vouillon. 2023. The OCaml
System, release 5.1. INRIA.

[8] Robert Nystrom. 2021. Crafting Interpreters. Genever Benning, Chapter
§ 30.3 NaN Boxing, 590–601. ISBN 978-0-9905829-3-9.

https://en.wikipedia.org/w/index.php?title=Parallel_array&oldid=1109345767
https://en.wikipedia.org/w/index.php?title=Parallel_array&oldid=1109345767
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Packed-Structures.html
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Packed-Structures.html
https://doi.org/10.3217/jucs-011-07-1159
https://doi.org/10.1145/1238844.1238846

	Abstract
	1 Introduction
	2 Related Work
	3 Tables in Lua
	4 Alternative Implementations
	4.1 Reflected Arrays
	4.2 Cells
	4.3 Cell-0

	5 Evaluation
	5.1 C benchmarks
	5.2 Lua benchmarks

	6 Conclusions
	References

