
Converting Combinatory Logic
to and from Concatenative Calculus

Daniel Kiyoshi Hashimoto Vouzella de Andrade

Universidade Federal do Rio de Janeiro

Instituto de Computação

Rio de Janeiro, RJ, Brazil

dkhashimoto@ic.ufrj.br

Hugo Musso Gualandi

Universidade Federal do Rio de Janeiro

Instituto de Computação

Rio de Janeiro, RJ, Brazil

hugomg@ic.ufrj.br

Abstract
Combinatory logic and its combinators BCKWI are a founda-

tion for tacit (point-free) programming. But what does each

letter mean? Informally, B stands for composing, C for swap-

ping, K for discarding,W for duplicating and I is the identity

function. However, B does more than that: depending on

where it appears in the expression, it can also call functions

or defer values for later. To help tell these purposes apart,

we relate combinatory logic to the concatenative calculus of

Kerby, which features separate primitives for the different

facets of B.

We provide translations from combinatory logic to con-

catenative calculus and vice versa. In both directions we

have contributions. From concatenative to combinatory, we

show that first-order stack programs map to regular com-

binators, and which patterns of combinators higher-order

stack programs map to. From combinatory to concatenative,

we extend an algorithm of Kerby to make it compatible with

a call-by-value evaluation order, in addition to call-by-name.

To enforce a strong association between the two worlds,

our translations are simulations. That is, one evaluation step

in the original program is simulated by zero or more evalua-

tions steps in the translated program.

Keywords: concatenative calculus, combinatory logic, stack

languages, conversion, simulation, tacit programming, point-

free programming

1 Introduction
Tacit programming, also known as point-free programming,

is the practice of programming without named variables. It

builds functions out of smaller combinators. For example, the

function composition operator allow us to write _𝑥 . 𝑓 (𝑔(𝑥))
as 𝑓 ◦ 𝑔, without the variable 𝑥 . Tacit programming has

applications in the theory of computing, where variables

may introduce mathematical complexity; and in day-to-day

programming, where it may lead to concise programs that

emphasize their control flow.

Combinatory logic. An important tacit model for func-

tional programming is Combinatory Logic, created by Schön-

finkel [11] and expanded and popularized by Curry [1]. This

model is built on top of a set of basic combinators all named

with a single letter:

B 𝑞 𝑓 𝑥 −→ 𝑞 (𝑓 𝑥) S 𝑞 𝑓 𝑥 −→ 𝑞 𝑥 (𝑓 𝑥)
C 𝑞 𝑥 𝑦 −→ 𝑞 𝑦 𝑥 W 𝑞 𝑥 −→ 𝑞 𝑥 𝑥

K 𝑞 𝑥 −→ 𝑞 I 𝑥 −→ 𝑥

We can understand combinators by their effects. C per-

mutes 𝑥 and 𝑦, K discards 𝑥 , W duplicates 𝑥 , and I is the

identity function. B is often described as function composi-

tion, but it actually does more than that. For starters, if 𝑓 is

a curried function, the composition may also be seen as par-

tial application. Furthermore, B can help other combinators

reach deeper arguments. For example, in BK the B makes K

discard the second argument after 𝑞, instead of the first:

B K 𝑞 𝑥 𝑦 −→ K (𝑞 𝑥) 𝑦 −→ 𝑞 𝑥

We want to be able to look at a combinator and intuitively

understand what it means. A first obstacle is that some com-

binators serve more than one purpose. That was already

bad for B, and it gets even worse for S. A famous result of

combinatory logic is that any combinator can be expressed

in terms of only S and K. Thus, combinations of S and K can

literally do anything.

A second obstacle is that the combinator basis BCKWI

encourages continuation-passing style, because their first

argument behaves like a continuation callback. This is ser-

viceable, but can take some time to get used to.

Higher-order concatenative programming. The higher-
order concatenative (stack) languages, such as Joy [12, 13]

and Factor [8], are also well-suited for tacit programming,

but unlike combinatory logic they have separate operators

for the things that B does: composition, partial application

and “digging”. We will illustrate with examples from Kerby’s

concatenative calculus [3].

In the concatenative calculus, as in any concatenative

language, programs are sequences of instructions in reverse-

polish notation. To compose two programs, we concatenate

their sequences. For instance, the sequence swap dup is the
composition of swap and dup:

3 4 swap dup ↦→ 4 3 dup ↦→ 4 3 3

The calculus uses square brackets to write anonymous sub-

routines, which it calls “quotations”. In the following exam-

ple, [+] is a quotation that adds two numbers. The cons oper-
ator performs partial application: it combines that quotation

SBLP 2024, September 2024, Curitiba, Paraná, BR Daniel Kiyoshi Hashimoto Vouzella de Andrade and Hugo Musso Gualandi

with a first number, producing an one-argument quotation

that expects the remaining number.

7 [+] cons ↦→ [7 +]

The dip operator runs a quotation one level deeper into

the stack. Whereas zap discards the topmost argument, the

program [zap] dip discards the second from the top. This

[] dip pattern is analogous to the B in the BK combinator.

3 4 [zap] dip ↦→ 3 zap 4 ↦→ 4

As we have started to see, concatenative instructions can

give a new point of view into combinatory logic combinators.

At the basic level, it appears that C is related to swap, K to

zap, W to dup. B seems to be related to composition, partial

application or dip, depending on the situation. In this work,

we formalize this correspondence and generalize it to more

complex combinators. We describe two relations: one that

maps an arbitrary concatenative program into combinators,

and one that maps an arbitrary combinator into a concate-

native program. We show that our relations are simulations:

one reduction step in the original program maps to zero

or more reduction steps in the output. This preserves the

relation between the two sides at each step of their evalu-

ation. Thus, we ensure that a concatenative program like

swap swap should relate to a combinator that calls C twice,

instead of one that optimizes the swaps into a no-op.

From concatenative programs to regular combina-
tors. The first conversion that we demonstrate maps stack

programs into combinatory expressions. We show that first-

order stack programs correspond to the well-studied regular

combinators, which follow a continuation-passing discipline.

We then extend our translation to higher-order programs,

supporting unrestricted use of quotations and the call, dip
and cons instructions. The resulting combinators follow a

higher-order variant of continuation-passing style: it may

assume that a non-continuation argument is a continuation-

passing combinator.

Interestingly, our conversion can also be played back-

wards, in which case it converts a continuation-passing com-

binator into a direct-style concatenative program.

From combinatory to concatenative. Many combina-

tors are not regular. To fill that gap, we will describe three

methods to convert an arbitrary combinator into a concate-

native program. The first of them, due to Kerby, outputs

a concatenative program that emulates a call-by-name re-

duction for the original combinator. We also present two

novel methods that emulate a call-by-value order. Whereas

call-by-name always reduces the outermost combinator ex-

pression, call-by-value reduces the innermost one. The main

challenge we had to solve was how to identify when an

evaluation step will produce an inner reducible expression,

because that impacts whether the conversion should use the

cons or the call instruction. The first of our call-by-value

methods works for every combinator, but requires that we

modify the concatenative calculus so that the reducibility of

a quotation expression may be inspected at run-time. Our

second call-by-value method uses compile-time type infer-

ence to compute which sub-expressions will be reducible. It

is restricted to simply-typed combinators, but can be applied

to the unmodified concatenative calculus.

Contributions. We present a formal model of how com-

binatory logic relates to the concatenative calculus.

• A mapping between regular combinators and first-

order concatenative programs, and amapping between

a superset of regular combinators and higher-order

programs. (Section 3)

• Methods for compiling arbitrary combinators into the

concatenative calculus stack machine, using call-by-

value evaluation order. (Section 4)

In Section 2 we review combinatory logic and the concate-

native calculus. In Section 5, we summarize our results and

discuss related work. A preliminary version of this work can

be found in Hashimoto Vouzella de Andrade [2].

2 Definitions
In this section, we review combinatory logic and the con-

catenative calculus, including their syntax, semantics, and

important definitions.

2.1 Combinatory Logic
A combinator is either a basic combinator or an application

of two smaller combinators. Different variants of combina-

tory logic chose different sets of basic combinators. The

minimalist bases SK and SKI are popular choices. In this

paper we will focus on the classic basis BCKWI ; we want

to draw connections with stack-based programming and for

that goal we would rather have distinct combinators that do

one thing each, instead of few combinators that do many

things.

Uppercase letters stand for combinators and lower case

letters for variables (𝑥 ,𝑦, 𝑧). Similarly to the lambda-calculus,

application is written with spaces and is left-associative.

A proper combinator is a combinator which does not

introduce new terms into its output: everything comes from

the input. All of the basic combinators are proper, but appli-

cations of them might not be. For instance, K I leaves an I in

its output: K I𝑥 −→ 𝐼 .

A regular combinator is a combinator whose first ar-

gument appears exactly once in the output, also in the ini-

tial position. This is the case for all basic combinators, for

example: C𝑞 𝑥 𝑦 −→ 𝑞𝑦 𝑥 . The first argument of a regular

combinator acts as a callback or continuation. To empha-

size that, we use the letter 𝑞. (Alas, 𝑐 and 𝑘 were already

taken.) In the literature, regular combinators are sometimes

Converting Combinatory Logic to and from Concatenative Calculus SBLP 2024, September 2024, Curitiba, Paraná, BR

Instructions: swap zap dup apply call dip cons
Values (𝑥,𝑦, 𝑓 , 𝑔): quotation [𝑃], or opaque function 𝑓
Programs (𝑃,𝑄, 𝑅): sequence of instructions and values

Figure 1. Syntax of the Concatenative Calculus

𝑦 𝑥 swap ↦→ 𝑥 𝑦

𝑥 zap ↦→
𝑥 dup ↦→ 𝑥 𝑥

𝑥 𝑓 apply ↦→ 𝑓 (𝑥)
[𝑃] call ↦→ 𝑃

𝑥 [𝑃] dip ↦→ 𝑃 𝑥

𝑥 [𝑃] cons ↦→ [𝑥 𝑃]

if 𝑃 ↦→ 𝑄 then 𝑃 𝑅 ↦→ 𝑄 𝑅

if 𝑃 ↦→ 𝑄 then 𝑅 𝑃 ↦→ 𝑅 𝑄

Figure 2. Reduction rules for the concatenative calculus

required to be proper. However, we allow improper combi-

nators because we want to be able to embed constants inside

our combinators.

2.2 The Concatenative Calculus
In this section, we summarize the version of concatenative

calculus that we will use in this paper. Figure 1 describes

its syntax. A concatenative program is a sequence of in-

structions and values. Uppercase metavariables (P, Q, R) rep-
resent arbitrary programs. The empty program is Y. The

metavariables 𝑥 , 𝑦, 𝑧,𝑤 represent values on the stack and 𝑓 ,

𝑔 represent function values.

Concatenative programs represent stack transformations.

In Figure 2, we describe an operational semantics for the cal-

culus. Instead of working with an explicit stack, the relation

↦→ describes a reduction from one stack transformation to

another.

The swap, zap and dup instructions are typical stack shuf-

fling operations. Intuitively, the arguments to the left of an

instruction represent the top of the stack: swap exchanges
the top two values on the stack, zap discards the top value

and dup duplicates the top value.

To support higher-order programming, the concatenative

calculus features quotations and instructions to manipulate

them. A quotation is a subprogram, written between square

brackets. They play a similar role to anonymous functions.

The call instruction runs a quotation, removing its square

brackets: 𝑥 [dup] call ↦→ 𝑥 dup ↦→ 𝑥 𝑥 . Note that in the

concatenative calculus, composition is merely concatenation

while calling is an explicit instruction.

The dip instruction works similarly to call except that
the topmost value is not passed to the quotation and is pre-

served for the rest of the program. Observe how in the fol-

lowing example, the 𝑥 is left untouched: 𝑦 𝑥 [dup] dip ↦→
𝑦 dup𝑥 . Moreover, we can nest dip instructions to access

deeper values: 𝑧 𝑦 𝑥 [[dup] dip] dip ↦→ 𝑧 𝑦 [dup] dip𝑥 ↦→
𝑧 dup𝑦 𝑥 .

The cons instruction partially applies a quotation. It re-

ceives a quotation and a value and puts the value inside the

quotation: 𝑥 [swap] cons ↦→ [𝑥 swap]. Now the partially

applied swap only asks for one more argument to be called:

𝑦 [𝑥 swap] call ↦→ 𝑦 𝑥 swap.
We extend Kerby’s concatenative calculus with opaque

functions. Unlike quotations, whose code is concatenative,

opaque functions stand for an external or builtin opera-

tions. We model them as arbitrary mathematical functions

and introduce an apply instruction to run them:

𝑥 𝑓 apply ↦→ 𝑓 (𝑥)
The need for separating call and apply will become more

clear on Section 3, where we use call with continuation-

passing style programs while we use apply for functions not
in continuation-passing style.

Finally, we have two structural rules, which say that a

reduction P ↦→ Q can still occur if we concatenate a program

R to the left or right of P. These rules allow us to make

reductions in the middle of the instruction list, but not inside

quotations.

We can divide the concatenative programs into two kinds.

A first-order program is composed of only opaque func-

tions, swap, zap, dup, apply or a quotation immediately fol-

lowed by a dip. These programs model stack languages that

are not able to push and manipulate function objects on the

stack, such as classic FORTH [7, 10]. Only a restricted use of

dip is permitted, to allow access to deeper stack values. Con-

versely, a higher-order program allows unrestricted use

of quotations, call, dip and cons. They model higher-order

stack languages such as Joy [12, 13] and Factor [8].

3 From Concatenative to Combinatory
In this section, we relate regular combinators and concate-

native programs and we will show that this relation is a

simulation: one evaluation step on the concatenative side

corresponds to zero or more on the combinatory side. We

will start with first-order concatenative programs, and then

we will extend it to the higher-order ones.

3.1 First-order programs
Recall that regular combinators keep their first argument

in place after the reduction. For instance, C𝑞 𝑥 𝑦 𝑧𝑤 −→
𝑞𝑦 𝑥 𝑧𝑤 . If we interpret this first argument 𝑞 as a continu-

ation, we can think of C as a variadic function written in

continuation-passing style, which returns values by passing

them to the continuation. In the previous example, we receive

(𝑥 𝑦) and pass to the continuation the proper results (𝑦 𝑥) fol-

lowed by the unused arguments (𝑧 𝑤). This is analogous to

the concatenative swap instruction, which exchanges the

two values at the top of the stack, without touching deeper

values:𝑤 𝑧𝑦 𝑥 swap ↦→ 𝑤 𝑧 𝑥 𝑦.

SBLP 2024, September 2024, Curitiba, Paraná, BR Daniel Kiyoshi Hashimoto Vouzella de Andrade and Hugo Musso Gualandi

(a) values

v-function

𝑓 ∼ 𝑓

v-qot

𝛼 ↔ P

𝛼 ∼ [P]

(b) first-order programs

r-apply

B ↔ apply
r-swap

C ↔ swap
r-zap

K ↔ zap
r-dup

W ↔ dup

r-empty

I ↔ Y

r-concat

𝛼 ↔ P 𝛽 ↔ Q

B 𝛼 𝛽 ↔ P Q

r-qot-dip

𝛼 ↔ P

B 𝛼 ↔ [P] dip

r-push

𝛼 ∼ 𝑥 𝛽 ↔ Q

C 𝛽 𝛼 ↔ 𝑥 Q

(c) higher-order instructions

r-call

C I ↔ call
r-dip

C B ↔ dip
r-cons

C (B B B) C ↔ cons

(d) simulation

s-reg

𝛼 ↔ P

𝛼 𝑞 ⇔ P

s-empty

𝑞 ⇔ Y

s-push

𝛼 ∼ 𝑥
𝑞 𝛼 ⇔ 𝑥

s-concat

𝛼 ⇔ P ˆ𝛽 ⇔ Q

𝛼{ ˆ𝛽/𝑞} ⇔ P Q

Figure 3. Regular combinators and concatenative programs

We can build upon this pattern to find matching combina-

tors for any concatenative program. In Figure 3a, we show

the relation 𝛼 ∼ 𝑥 , which relates a combinator 𝛼 to a concate-

native value 𝑥 . Opaque functions are the same on both sides

and a quotation relates to the same regular combinator as its

subprogram. Figure 3b defines a relation 𝛼 ↔ P that relates a
regular combinator to a concatenative program.Wemap B, C,

K,W to the corresponding primitive instructions and I to the

empty program. It is known that the two-argument form of

B composes two regular combinators and the one-argument

form defers values [9]. Thus, we map two-argument B to con-

catenation and one-argument B to dip. The r-push rule is

here because we allow improper combinators, which contain

embedded values. It describes the instruction that pushes a

value to the stack. Notice how C 𝛽 𝛼 𝑞 reduces to 𝛽 𝑞 𝛼 , insert-

ing 𝛼 at the top of the list of non-𝑞 arguments for 𝛽 . Thus, if

𝛼 is the combinator for a stack value 𝑥 , and 𝛽 is the combi-

nator for program Q, then C 𝛽 𝛼 stands for pushing 𝑥 to the

stack before running Q. Figure 3c describes the higher-order
part of the calculus, which we will cover in Section 3.2.

Unfortunately, the relation ↔ is not suitable for a simula-

tion because evaluation steps in the concatenative side might

not correspond to those on the combinatory side. Consider

the reduction 𝑥 zap ↦→ Y and the associated combinators

CK𝑥 and I. As one would hope, if we supply the continuation

argument to kickstart the evaluation, the two combinators

eventually arrive at a common value 𝑞. However, this is not

a simulation because CK𝑥 𝑞 cannot reduce to I𝑞 without

“walking backwards”.

CK𝑥 𝑞 −→ K𝑞 𝑥 −→ 𝑞

I𝑞 −→ 𝑞

To address this deficiency, we will no longer treat the

continuation as an ordinary argument and will allow it to

appear inside the combinator. In Figure 3d, we describe a

relation 𝛼 ⇔ P which relates a concatenative program P
to a combinator 𝛼 that contains the special continuation

variable 𝑞 exactly once. The circumflex hat is a reminder

that there is a 𝑞 nested inside 𝛼 . This relation extends rela-

tion↔ and adds new cases so that we never need to “walk

backwards”. The rule s-reg covers the case when the ex-

pression is a regular combinator applied to the continuation.

This rule makes ⇔ be an extension of ↔. The remaining

rules fix the problematic cases that had to walk backwards.

s-emptymatches the empty program without using I. s-push

describes how to push values to the stack without C. The

last rule s-concat describes how to concatenate without B.

The notation 𝛼{ ˆ𝛽/𝑞} stands for substituting ˆ𝛽 for 𝑞 inside

𝛼 . For example, from C𝑞 ⇔ swap and K𝑞 ⇔ zap, we can
deduce C (K𝑞) ⇔ swap zap.
Let’s illustrate these rules with a concrete example. Now

that the continuation 𝑞 can be nested inside the combina-

tor, each reduction step in the combinatory side matches a

reduction step in the concatenative side:

K (C (W 𝑞)) 𝑥 𝑦 𝑧 ⇔ 𝑧 𝑦 𝑥 zap swap dup
C (W 𝑞) 𝑦 𝑧 ⇔ 𝑧 𝑦 swap dup

W 𝑞 𝑧 𝑦 ⇔ 𝑦 𝑧 dup
𝑞 𝑧 𝑧 𝑦 ⇔ 𝑦 𝑧 𝑧

Non-injectivity of 𝛼 ↔ P. It is possible to have two

different combinators that relate to the same concatenative

program, because r-concat allows multiple choices for P
and Q. This reflects how function composition is associative

(B𝛼 (B 𝛽 𝛾) ≡ B (B𝛼 𝛽) 𝛾) and has the identity function as a

neutral element (B𝛼 I ≡ 𝛼 ≡ B I𝛼).

Non-injectivity of 𝛼 ⇔ P. The ⇔ relation introduces

even more ways to represent the same concatenative pro-

gram. For example, we have both BKW𝑞 ⇔ zap dup (using

r-concat and s-reg) and K (W𝑞) ⇔ zap dup (using only

s-concat). But notice that the former reduces to the latter.

We can state that as a lemma:

Lemma 3.1 (q-normal-form). If 𝛼 ⇔ P, there exists ˆ𝛽 such

that 𝛼 −→∗ ˆ𝛽 and
ˆ𝛽 ⇔ P where the rules r-empty, r-concat,

and, r-push are only used inside quotations.

Converting Combinatory Logic to and from Concatenative Calculus SBLP 2024, September 2024, Curitiba, Paraná, BR

Proof. By induction in the size of 𝛼 . Suppose that 𝛼 ⇔ P
is not in q-normal-form. There must be at least one in-

stance where rule s-reg was used together with r-empty,

r-concat, or r-push. Suppose that it was r-concat. We

would have B𝛼 𝛽 𝑞 ⇔ P Q with 𝛼 ↔ P and 𝛽 ↔ Q and

thus (𝛼 𝑞) ⇔ P and (𝛽 𝑞) ⇔ Q. From the inductive hypoth-

esis, (𝛼 𝑞) −→∗ 𝛼 and (𝛽 𝑞) −→∗ ˆ𝛽 , both in q-normal-form.

Therefore, B𝛼 𝛽 𝑞 −→ 𝛼 (𝛽 𝑞) −→∗ 𝛼{ ˆ𝛽/𝑞} ⇔ P Q, the latter
which is in q-normal-form. A similar argument can be used

for the r-empty and r-push cases. □

Lemma 3.2. If ˆ𝛿 ⇔ P Q and
ˆ𝛿 is in q-normal-form then

ˆ𝛿 = 𝛼{ ˆ𝛽/𝑞} with 𝛼 ⇔ P and
ˆ𝛽 ⇔ Q.

Proof. By induction in the length of P Q. In the base case at

least one of P or Q are empty, and we can choose 𝛼 = 𝑞 and
ˆ𝛽 = ˆ𝛿 or vice-versa. In the inductive case, neither is empty.

Because
ˆ𝛿 is in q-normal form, the only rule that matches

the concatenation is s-concat. However, it might not split

right between P and Q. Suppose, without loss of generality,

that it splits P = X Y. It will have split ˆ𝛿 into 𝑋 and 𝑌𝑄 , with

𝑋 ⇔ X, 𝑌𝑄 ⇔ Y Q, and 𝑋 {𝑌𝑄/𝑞} ⇔ X (Y Q). But we can fix

that. According to the inductive hypothesis from 𝑌𝑄 ⇔ Y Q,

we can find 𝑌 ⇔ Y and �̂� ⇔ Q with 𝑌𝑄 = 𝑌 {�̂�/𝑞}. Thus,
we currently have 𝑋 {(𝑌 {�̂�/𝑞})/𝑞} ⇔ X (Y Q). Since substi-
tution and concatenation are associative, that also gives us

(𝑋 {𝑌/𝑞}){�̂�/𝑞} ⇔ (X Y) Q. Considering that X Y = P, we can

fulfill our goal with 𝛼 = 𝑋 {𝑌/𝑞} and ˆ𝛽 = �̂� . We must only

confirm 𝛼 ⇔ P, which follows from 𝑋 ⇔ X and 𝑌 ⇔ Y. □

We are now ready to prove our main simulation theorem,

which says that if a combinator relates to a concatenative

program then one step in the concatenative side may be

simulated by zero or more steps in the combinatory side:

Theorem 3.3 (first-order simulation). If ˆ𝛿 ⇔ P and P ↦→ Q

then there exists [̂ such that
ˆ𝛿 −→∗ [̂ and [̂ ⇔ Q.

Proof. By induction on P ↦→ Q. The base case is a reduction of
a primitive instruction. We will show the proof for swap; the
others are similar. Given any (𝛼 ⇔ 𝑦 𝑥 swap), the q-normal-

form lemma guarantees that 𝛼 −→∗
C𝑞 𝑥 𝑦. That in turn

reduces to 𝑞𝑦 𝑥 which corresponds to 𝑥 𝑦.

𝛼 ⇔ 𝑦 𝑥 swap
C 𝑞 𝑥 𝑦 ⇔ 𝑦 𝑥 swap
𝑞 𝑦 𝑥 ⇔ 𝑥 𝑦

Now consider the structural rules P R ↦→ Q R and R P ↦→ R Q.
We will show the proof for the former. Given P R ↦→ Q R and

ˆ𝛿 ⇔ P R, lemmas 3.1 and 3.2 tell us that
ˆ𝛿 reduces to 𝛼{𝛾/𝑞}

such that 𝛼 ⇔ P and 𝛾 ⇔ R. By the induction hypothesis,

there exists
ˆ𝛽 ⇔ Q such that 𝛼 −→∗ ˆ𝛽 . If we replay this re-

duction sequence step-by-step but substitute 𝛾 for 𝑞, we

conclude that 𝛼{𝛾/𝑞} −→∗ ˆ𝛽{𝛾/𝑞}. We are now done.

ˆ𝛿 ⇔ P R
𝛼{𝛾/𝑞} ⇔ P R
ˆ𝛽{𝛾/𝑞} ⇔ Q R

The last case left is dip. From now on, we skip the first

step of the proof, where we apply the q-normal-form lemma.

After that step, it is left to show that given 𝛼 ↔ P, the
following commutes:

B 𝛼 𝑞 𝑥 ⇔ 𝑥 [P] dip
𝛼 (𝑞 𝑥) ⇔ P 𝑥

From 𝛼 ↔ P and s-reg, we obtain (𝛼 𝑞) ⇔ P. Then, with
(𝑞 𝑥) ⇔ 𝑥 , and s-concat we arrive at 𝛼 (𝑞 𝑥) ⇔ P 𝑥 . □

3.2 Higher order programs
To compile higher-order concatenative programs into combi-

nators, we must provide rules for the call and cons instruc-
tions and we must allow dip to appear by itself, without

being immediately preceded by a quotation. We list the new

rules in in Figure 3c.

The simplest higher-order instruction is call. We want a

combinator that receives a continuation 𝑞 and the combina-

tor 𝛼 for the quotation; and then transfers the control to 𝛼

with 𝑞 as its continuation. The answer is C I. In the diagram

below, we assume 𝛼 ↔ P, and show that C I simulates the

concatenative reduction step.

C I 𝑞 𝛼 ⇔ [P] call
I 𝛼 𝑞

𝛼 𝑞 ⇔ P

Next, let’s examine the dip instruction. We want a com-

binator that receives 𝑞, 𝛼 , and a value 𝑥 ; and then transfer

control to 𝛼 , but with 𝑞 𝑥 as the continuation. This way, the

𝑥 is not passed to the quotation 𝛼 and is left at the top of

the stack after 𝛼 returns (that is, calls the continuation). The

combinator CB can perform this task. In the diagram, we

assume 𝛼 ↔ P and 𝜑 ∼ 𝑥 and show that CB simulates the

reduction step on the right.

C B 𝑞 𝛼 𝜑 ⇔ 𝑥 [P] dip
B 𝛼 𝑞 𝜑

𝛼 (𝑞 𝜑) ⇔ P 𝑥

An attentive reader might notice that the B𝛼 𝑞 𝜑 in the sec-

ond line is the first-order translation for dip, as described by
r-qot-dip. This confirms that the higher-order instruction

generalizes the first-order one.

Lastly, we must find a combinator for cons, which con-

structs a new quotation [𝑥 P] and pushes it to the stack. In

combinatory terms, this means using r-push to construct

the combinator C𝛼 𝜑 and then s-push to pass it to the con-

tinuation 𝑞. To find a combinator that does this, we used

the bracket-abstraction algorithm [1, 9]. Working backwards

from 𝑞 (C𝛼 𝜑), we found C (BBB) C.

SBLP 2024, September 2024, Curitiba, Paraná, BR Daniel Kiyoshi Hashimoto Vouzella de Andrade and Hugo Musso Gualandi

C (B B B) C 𝑞 𝛼 𝜑 ⇔ 𝑥 [P] cons
B B B 𝑞 C 𝛼 𝜑

B (B 𝑞) C 𝛼 𝜑
B 𝑞 (C 𝛼) 𝜑
𝑞 (C 𝛼 𝜑) ⇔ [𝑥 P]

3.3 𝛼 ↔ P as a function
If we use only the rules from Figures 3a and 3b, the relation

↔ covers every first-order concatenative program. If we

also add the higher-order rules from Figure 3c, we can cover

every concatenative program.

On the concatenative side of the ↔ relation, the com-

binators are almost always regular combinators. The sole

exception are C I, CB and C (BBB) C from the rules r-call,

r-dip and r-cons. They technically are not regular, but be-

have as such if their second argument is regular.

Taking this into account, we can view↔ either as a par-

tial function from regular combinators to concatenative pro-

grams, or as a total function from concatenative programs

to a set of equivalent combinators. We think the latter in-

terpretation is particularly interesting because the our main

goal when we designed ↔ was to match every concate-

native program. In the following figure, we provide an al-

ternative presentation of↔ using function notation. Since

programs might match more than one of the cases, there are

two ways to interpret this. The first option is to treat it as

a non-deterministic transformation that can match any of

the cases. The other is to introduce an order of preference

between the cases (match the first case, pick the smallest

non-empty P for ⟦P Q⟧). This turns it into a function that

returns a single representative combinator.

⟦apply⟧ = B ⟦P Q⟧ = B ⟦P⟧ ⟦Q⟧
⟦swap⟧ = C ⟦[P] dip⟧ = B ⟦P⟧
⟦zap⟧ = K ⟦dip⟧ = C B

⟦dup⟧ = W ⟦call⟧ = C I

⟦Y⟧ = I ⟦cons⟧ = C (B B B) C
⟦𝑥 P⟧ = C ⟦P⟧ 𝑥

4 From Combinatory to Concatenative
In this section, we describe how to convert any combinator

to concatenative program, including irregular combinators.

We start by presenting a conversion developed by Kerby

which behaves in a call-by-name manner. We then adapt this

technique for call-by-value.

In call-by-name, we always reduce the outermost redex.

In call-by-value, we reduce innermost redexes first. That is,

in call-by-value the arguments of a basic combinator must be

fully reduced before reducing the basic combinator. Unlike

some treatments of call-by-value, we do not mandate a left-

to-right or a right-to-left order.

The difference between call-by-name and call-by-value

is most apparent for B. In Figure 4, we compare the two

(a) call-by-name

B (B C) K 𝑥 𝑦 𝑧 𝑤
B C (K 𝑥) 𝑦 𝑧 𝑤
C (K 𝑥 𝑦) 𝑧 𝑤

K 𝑥 𝑦 𝑤 𝑧

𝑥 𝑤 𝑧

(b) call-by-value
B (B C) K 𝑥 𝑦 𝑧 𝑤
B C (K 𝑥) 𝑦 𝑧 𝑤
C (K 𝑥 𝑦) 𝑧 𝑤

C 𝑥 𝑧 𝑤

𝑥 𝑤 𝑧

Figure 4. Evaluation orders for B (BC) K

« B » := [cons] dip call «W» := [dup] dip call
« C » := [swap] dip call « I » := call
« K » := [zap] dip call «𝛼 𝛽» := [«𝛽»] «𝛼»

Figure 5. Kerby’s call-by-name conversion

reduction orders for B (BC) K. The first B partially applies K

to 𝑥 , producing (K𝑥). The second B produces (K𝑥 𝑦), which
has enough arguments to reduce. Now, the evaluation orders

take different paths. In call-by-name the (K𝑥 𝑦) is an inner

expression and won’t be evaluated just yet. Effectively, it is

also a partial application. Conversely, call-by-value wants

to reduce (K𝑥 𝑦) right away. This poses a problem: the first

B wants to partially apply, while the second B does not. In

concatenative terms, this boils down to a choice between

cons and call.
In the following subsections, wewill describe three conver-

sion algorithms. The first is a call-by-name translation, due

to Kerby [3]. The second is a call-by-value translation that

chooses between cons and call at run-time. And the third

is a call-by-value translation that chooses at compile-time.

4.1 Call-by-name
When Kerby introduced the concatenative calculus, he also

described an algorithm to convert a combinator to a concate-

native program [3]. We summarize his method in Figure 5.

He represents terms as quotations. The basic combinators B,

C, K andW are translated to a dipped instruction (to jump

over the 𝑞 argument) followed by a call to evaluate the

resulting term. I can be translated to the empty program.

In an application, we leave the leftmost combinatory term

unquoted, and its argument quoted. If the left argument is

another application, we recursively flatten the entire left

spine of the tree.

Let’s go through the example in Figure 6. In the first line,

the compiled versions of 𝑞, 𝑥 and 𝑦 are quoted until it is

time for them to be evaluated. The combinator C gets com-

piled to [swap] dip call and, because it is at the head of

the list, it is not quoted. The [swap] dip performs the swap-

ping duties and the final call unquotes the new head of the

list («𝑞»). This method emulates a call-by-name evaluation

order because it always reduces the outermost combinator

expression. After all, the other ones are all quoted and cannot

be reduced.

Converting Combinatory Logic to and from Concatenative Calculus SBLP 2024, September 2024, Curitiba, Paraná, BR

«C 𝑞 𝑥 𝑦» = [«𝑦»] [«𝑥»] [«𝑞»] [swap] dip call
[«𝑦»] [«𝑥»] swap [«𝑞»] call
[«𝑥»] [«𝑦»] [«𝑞»] call

«𝑞 𝑦 𝑥» = [«𝑥»] [«𝑦»] «𝑞»

Figure 6. A call-by-name example

𝑥 [P]𝑛 ★ ↦→ 𝑥 P if 𝑛 = 1 and 𝑥 is a value

𝑥 [P]𝑛 ★ ↦→ [𝑥 P]𝑛−1 if 𝑛 ≥ 2 and 𝑥 is a value

Figure 7. Dynamic application

⟨ B ⟩ := [[★] dip★]3 ⟨ K ⟩ := [[zap] dip]2
⟨ C ⟩ := [[swap] dip★★]3 ⟨ I ⟩ := []1
⟨W⟩ := [[dup] dip★★]2 ⟨𝛼 𝛽⟩ := ⟨𝛽⟩ ⟨𝛼⟩ ★

Figure 8. Dynamic call-by-value conversion

4.2 Dynamic call-by-value
A basic combinator can only be reduced once it has received

enough arguments. If we represent a partially applied com-

binator as a quotation, the question becomes how to know

if a quotation already has enough arguments to be called. If

we are willing to modify the concatenative calculus, we can

make this question easier to answer.

We describe our modifications in Figure 7. First we cre-

ate a new kind of quotation: subscripted quotations. Their

subscript indicates how many arguments they ask for. For in-

stance, [swap]2 indicates that swap expects two arguments

and [𝑥 swap]1 indicates that 𝑥 swap needs only one more

argument. The second modification is a new instruction:

dynamic application, written ★. It consults the counter to

choose at run-time whether to behave as call or cons. If
𝑛 = 1, then we are applying the last value and ★ acts as a

call. If 𝑛 ≥ 2, then the quotation expects more arguments

to come; ★ acts as a cons and decrements the counter.

In Figure 8, we use ★ to build a call-by-value conversion

algorithm. Subscripted quotations correspond to terms in the

original combinatory expression. Unsubscripted quotations

appear only in the inner code of basic combinators, always

together with dip. The conversion rules always compile

applications into ★ and do not directly output any cons nor

call. Unlike the call-by-name conversion, this one wraps

basic combinators in a quotation.

We use exactly one ★ per application, including the ones

that might be “invisible”. This becomes clearer if we write

parenthesis around every application. For example, B𝑥 𝑦 𝑧 re-

duces to (𝑥 (𝑦 𝑧)). Looking back at Figure 8, the inner paren-

thesis around 𝑦 𝑧 is the ★ inside the dip’s quotation and

the outer parenthesis is the ★ after the dip. K and I don’t

have any ★, because they don’t introduce any new applica-

tions. C and W produce two applications in sequence. See

C I𝑥 I −→ ((I I) 𝑥) −→ (I𝑥) −→ 𝑥 .

⟨𝐵𝐾𝐼𝑥𝑦⟩ =
𝑦 𝑥 []1 [[zap] dip]2 [[★] dip ★]3 ★★★★

𝑦 𝑥 []1 [[zap] dip]2 [★] dip ★★

⟨𝐾 (𝐼𝑥)𝑦⟩ =
𝑦 𝑥 []1 ★ [[zap] dip]2 ★★

𝑦 𝑥 Y [[zap] dip]2 ★★

⟨𝐾𝑥𝑦⟩ =
𝑦 𝑥 [[zap] dip]2 ★★

𝑦 𝑥 [zap] dip
⟨𝑥⟩ =

𝑥

Figure 9. Dynamic compilation of BK I𝑥 𝑦

Let’s now illustrate the behavior of ★with a concrete ex-

ample. In Figure 9, we translate the combinatory expression

BK I𝑥 𝑦. The subsequent steps closely mirror the call-by-

value reduction BK I𝑥 𝑦 −→ K (I𝑥) 𝑦 −→ K𝑥 𝑦 −→ 𝑥 . The

first and second steps consume three★ to unquote the B and

then run it. The third and fourth steps consume one ★ to

unquote and run the I. Finally, the last two steps unquote

and run the K.

The conversion function ⟨𝛼⟩ has one downside: partially
applied combinators such as K I compile into concatenative

programs that are not values:

⟨𝐾𝐼 ⟩ = []1 [[zap] dip]2★ ↦→ [[]1 [zap] dip]1

To fully emulate a call-by-value reduction order, we must

add a simplification step that removes the ★ from values.

Definition 4.1. Let the relation 𝛼 ⇒ P mean that ⟨𝛼⟩ = Q
and Q ↦→∗ P using only reduction rules that eliminate ★.

Lemma 4.2. If 𝛼 is an irreducible combinator expression then

there exists an irreducible concatenative value 𝑣 such that

𝛼 ⇒ 𝑣 .

Proof. If 𝛼 is a combinatory value, the only possible concate-

native reduction steps taken starting from ⟨𝛼⟩ are simplifi-

cations where ★ performs a cons. The result will be a single
subscripted quotation, which is a value. □

We are now ready to prove that our translation emulates a

call-by-value evaluation order. Our construction guarantees

that we only reduce a combinator after its arguments have

been reduced to values, because ★ requires that the argu-

ment be a value. Firstly, we point out that the concatenative

program only reduces a combinator after its arguments have

been reduced to values. The other thing we must show is

that the translated program can follow the entire combinator

reduction sequence, without getting stuck.

Theorem 4.3 (call-by-value simulation). If 𝛼 −→ 𝛽 then

there exist concatenative programs P and Q such that 𝛼 ⇒ P
and 𝛽 ⇒ Q and P ↦→∗ Q.

SBLP 2024, September 2024, Curitiba, Paraná, BR Daniel Kiyoshi Hashimoto Vouzella de Andrade and Hugo Musso Gualandi

Proof. By induction in the small-step reduction relation𝛼 −→
𝛽 . The base cases are the reduction steps for basic combina-

tors. Let’s begin with the B𝑥 𝑦 𝑧 −→ (𝑥 (𝑦 𝑧)) case.
B 𝑥 𝑦 𝑧 ⇒ ¤𝑧 ¤𝑦 ¤𝑥 [★] dip ★
(𝑥 (𝑦 𝑧)) ⇒ ¤𝑧 ¤𝑦 ★ ¤𝑥 ★

We know that ⟨B𝑥 𝑦 𝑧⟩ = ⟨𝑧⟩ ⟨𝑦⟩ ⟨𝑥⟩ [[★] dip★]3★★★. As
we are using call-by-value, 𝑥 , 𝑦, and 𝑧 must be values. Let

¤𝑥 , ¤𝑦, and ¤𝑧 be the corresponding concatenative values from

Lemma 4.2. We reduce ⟨B𝑥 𝑦 𝑧⟩ to ¤𝑧 ¤𝑦 ¤𝑥 [[★] dip★]3★★★
and then to ¤𝑧 ¤𝑦 ¤𝑥 [★] dip★. Now we are done simplifying ★

and can evaluate the dip that came from the B. We arrive

at ¤𝑧 ¤𝑦★ ¤𝑥 ★, which matches (𝑥 (𝑦 𝑧)). The proof of the other
basic combinators follows a similar structure:

C 𝑥 𝑦 𝑧 ⇒ ¤𝑧 ¤𝑦 ¤𝑥 [swap] dip ★★

((𝑥 𝑧) 𝑦) ⇒ ¤𝑦 ¤𝑧 ¤𝑥 ★★

W 𝑥 𝑦 ⇒ ¤𝑦 ¤𝑥 [dup] dip ★★

((𝑥 𝑦) 𝑦) ⇒ ¤𝑦 ¤𝑦 ¤𝑥 ★★

K 𝑥 𝑦 ⇒ ¤𝑦 ¤𝑥 [zap] dip
𝑥 ⇒ ¤𝑥
I 𝑥 ⇒ ¤𝑥
𝑥 ⇒ ¤𝑥

Lastly, the inductive case covers a reduction inside a sub-

term of an application. As our call-by-value reduction does

not mandate a left-to-right or right-to-left order, we can have

either (𝛼 𝛾) −→ (𝛽 𝛾) or (𝛾 𝛼) −→ (𝛾 𝛽). Let 𝛼 ⇒ P, 𝛽 ⇒ Q,
and 𝛾 ⇒ R. Applying the induction hypothesis to 𝛼 −→ 𝛽

gives us P ↦→∗ Q, which gets us to the intended destination.

𝛼 𝛾 ⇒ P R ★
𝛽 𝛾 ⇒ Q R ★

𝛾 𝛼 ⇒ R P ★
𝛾 𝛽 ⇒ R Q ★

□

4.3 Static call-by-value
The dynamic translation added subscripted quotations. To

avoid doing that, we need to be able to infer for each ★,

whether it will turn into a cons or a call.
That is possible if we restrict ourselves to simply-typed

combinators. We describe such a method in Figure 10. The

relation 𝛼 : 𝜏 ⇒ P means that the combinator 𝛼 has type 𝜏

and compiles to P. Our typing rules are the usual ones, except
that we label the arrow types with either call or cons. For
each combinator, the rightmost arrow is labelled with a red

call, which indicates that we reached the last argument

and we may now reduce the combinator. The other arrows

are labelled with a blue cons to indicate that there are more

arguments to come. The purple arrows inside argument types

are labeled with the variables 𝑥 and 𝑦. They may be either

call or cons, as determined by the type of that argument.

The compiled program uses these variables to decide whether

to use call or cons for that sub-expression. For example,

consider the type of the B combinator. If the 𝑦 label says

call, then we generate a [call] dip.

B : (𝑏 𝑥→ 𝑐) cons→ (𝑏 𝑦→ 𝑎) cons→ 𝑎
call→ 𝑐 ⇒ [[y] dip x]

C : (𝑎 𝑥→ 𝑏
𝑦→ 𝑐) cons→ 𝑏

cons→ 𝑎
call→ 𝑐 ⇒ [[swap] dip x y]

W : (𝑎 𝑥→ 𝑎
𝑦→ 𝑏) cons→ 𝑎

call→ 𝑏 ⇒ [[dup] dip x y]

K : 𝑎
cons→ 𝑏

call→ 𝑎 ⇒ [[zap] dip] I : 𝑎
call→ 𝑎 ⇒ []

𝛼 : 𝑎
𝑥→ 𝑏 ⇒ P 𝛽 : 𝑎 ⇒ Q

𝛼 𝛽 : 𝑏 ⇒ Q P x

Figure 10. Inferring cons and call

In Figure 11, we show a concrete example using the com-

binator BK I, the same one from Figure 9. For brevity, we

only show the compiled program on the last line. We color

and number the arrows to show where each call and cons
label comes from. The type inference begins from the basic

combinators. These arrows are red and blue and have an

individual number from 1 to 6. All the remaining call and
cons labels are inferred from these. For instance, in the first

line of the derivation, the first argument of B has type 𝛼 → 𝛽 .

This comes from the type of K so we infer 𝑎
cons 2→ (𝑏 call 6→ 𝑎).

Now, let’s turn our attention back to the generated con-

catenative program. Remember that the purple arrows from

Figure 10 dictate whether the resulting program uses cons
or call. We represent them here with bold labels and paren-

thesis around the numbers. For example, the call(1) and
cons(2) in the type of B dictate that we should compile it to

[[call] dip cons]. The compiled program has exactly the

same shape from the dynamic version from Figure 9 except

that each one of the six ★ became a cons or a call.

An optimization. Our algorithm only generates a call
when there are enough arguments for the quotation. There-

fore, any occurrences of cons call are redundant and can

be optimized to just call.

Limitations of simple types. One important limitation

of simply-typed combinators is that they are strongly nor-

malizing and always reduce to a normal form after a finite

number of steps. Thus, this type system cannot support loop-

ing combinators such as Ω = WI (WI) or Y 𝑓 = 𝑓 (Y 𝑓).
Another limitation is that a simple type system is not

polymorphic for cons-call. The combinators must decide at

compile-timewhether theywill use call or cons, exclusively.
Such polymorphism may be necessary if a combinator is

duplicated. For example, consider WIBK𝑥 I𝑦. In the first

reduction step,W duplicates B. The first copy wants to use

cons to partially apply (K𝑥), while the second wants to use

Converting Combinatory Logic to and from Concatenative Calculus SBLP 2024, September 2024, Curitiba, Paraná, BR

B : (𝑎 cons(2)→ (𝑏 call 6→ 𝑎)) cons(3)→ (𝑎 call(1)→ 𝑎) cons 4→ 𝑎
call 5→ (𝑏 call 6→ 𝑎) K : 𝑎

cons 2→ 𝑏
call 6→ 𝑎

B K : (𝑎 call 1→ 𝑎) cons(4)→ 𝑎
call 5→ (𝑏 call 6→ 𝑎) I : 𝑎

call 1→ 𝑎

B K I : 𝑎
call(5)→ (𝑏 call 6→ 𝑎) 𝑥 : 𝑎

B K I 𝑥 : 𝑏
call(6)→ 𝑎 𝑦 : 𝑏

B K I 𝑥 𝑦 : 𝑎 ⇒ 𝑦 𝑥 [] [[zap] dip] [[call(1)] dip cons(2)] cons(3) cons(4) call(5) call(6)

Figure 11. Inferring cons and call for B K I x y

call to apply (I𝑦). The original B cannot satisfy both.

W I B K 𝑥 I 𝑦

I B B K 𝑥 I 𝑦

B B K 𝑥 I 𝑦

B (K 𝑥) I 𝑦
(K 𝑥) (I 𝑦)

5 Conclusion
We connected combinatory logic and concatenative calculus,

two styles of tacit programming. We showed how to convert

between them using semantics-preserving simulations.

The translation from combinatory to concatenative uses

continuation-passing style. Our main contribuition was a

model that can handle call-by-value evaluation order. The

key obstacle was the impedance mismatch between curried

combinators and 𝑛-ary concatenative programs.

Our translation from concatenative to combinatory uses

direct style, without continuations. It relates regular combi-

nators to short concatenative programs. We also extended

the notion of regular combinators to encompass embedded

constants and higher-order programming.

Related Work. Another formalization of the concatena-

tive calculus was developed by Kleffner [4]. His typed con-

catenative calculus features lambdas, recursive fixpoint op-

erators and polymorphic type inference.

Our compilation from combinatory to concatenative is

reminiscent of lambda calculus stack machines such as the

SECD machine [5]. The main difference is that the concate-

native calculus must distinguish between partial and non-

partial application.

Simulation relations are a standard technique for showing

that compilation preserves the semantics of the source lan-

guages. An example is the CompCert verified compiler [6].

Future Work. In this paper, we used the BCKWI basis. It

would be interesting to do the same for SKI, but for that we

would first need to define regular combinators for that basis.

A limitation of our work is that our proofs were done in

pen-and-paper. In the future, we plan to mechanize them

using a proof assistant.

Acknowledgments
This study was financed in part by the Coordenação de Aper-

feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) –

Finance Code 001

References
[1] Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley,

and Jonathan P Seldin. 1958. Combinatory logic. Vol. 1. North-Holland

Amsterdam. (Regular combinators are discussed in chapter 5).

[2] Daniel Kiyoshi Hashimoto Vouzella de Andrade. 2024. From Combina-

tory to Concatenative and Back Again. Bachelor’s Thesis. Universidade

Federal do Rio de Janeiro. http://hdl.handle.net/11422/22871.
[3] Brent Kerby. 2002. The Theory of Concatenative Combinators. Pub-

lished online at http://tunes.org/~iepos/joy.html. Accessed 05/09/2023.
[4] Robert Kleffner. 2017. A Foundation for Typed Concatenative Languages.

Master’s thesis. Northeastern University.

[5] Peter J Landin. 1964. The mechanical evaluation of expressions. The

computer journal 6, 4 (1964), 208–230. https://doi.org/10.1093/comjnl/
6.4.308

[6] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,

Markus Pister, and Christian Ferdinand. 2016. CompCert-a formally

verified optimizing compiler. In ERTS 2016: Embedded Real Time Soft-

ware and Systems, 8th European Congress.

[7] Charles H Moore and Geoffrey C Leach. 1970. Forth–a language for

interactive computing. Amsterdam: Mohasco Industries Inc (1970).

[8] Sviatoslav Pestov, Daniel Ehrenberg, and Joe Groff. 2010. Factor: A

dynamic stack-based programming language. ACM SIGPLAN Notices

45, 12 (2010), 43–58.

[9] Adolfo Piperno. 1989. Abstraction problems in combinatory logic: a

compositive approach. Theoretical computer science 66, 1 (1989), 27–43.

[10] Elizabeth D Rather, Donald R Colburn, and Charles HMoore. 1996. The

evolution of Forth. In History of programming languages—II. 625–670.

[11] Moses Schönfinkel. 1924. Über die Bausteine der mathematischen

Logik. Mathematische annalen 92, 3-4 (1924), 305–316.

[12] Manfred von Thun. 1994. Mathematical foundations of Joy. Pub-

lished online at http://www.latrobe.edu.au/phimvt/joy/j02maf.html.
Archived in 2011 at https://web.archive.org/web/20111007025556/http:
//www.latrobe.edu.au/phimvt/joy/j02maf.html.

[13] Manfred von Thun and Reuben Thomas. 2001. Joy: Forth’s Functional

Cousin. In Proceedings of the 17th EuroForth Conference.

http://hdl.handle.net/11422/22871
http://tunes.org/~iepos/joy.html
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1093/comjnl/6.4.308
http://www.latrobe.edu.au/phimvt/joy/j02maf.html
https://web.archive.org/web/20111007025556/http://www.latrobe.edu.au/phimvt/joy/j02maf.html
https://web.archive.org/web/20111007025556/http://www.latrobe.edu.au/phimvt/joy/j02maf.html

	Abstract
	1 Introduction
	2 Definitions
	2.1 Combinatory Logic
	2.2 The Concatenative Calculus

	3 From Concatenative to Combinatory
	3.1 First-order programs
	3.2 Higher order programs
	3.3 alpha <-> P as a function

	4 From Combinatory to Concatenative
	4.1 Call-by-name
	4.2 Dynamic call-by-value
	4.3 Static call-by-value

	5 Conclusion
	Acknowledgments
	References

