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ABSTRACT
Haskell is a statically-typed, purely functional programming lan-

guage with a strong academic foundation, widely recognized for

its application in both research and industry for developing robust,

high-assurance software. Nowadays, it is being adopted for a va-

riety of projects, where applications reach a level of complexity

where manual testing and human inspection are insufficient to

ensure quality in software development. Even in the presence of

automated unit testing, such methodologies infrequently encom-

pass the entirety of significant code scenarios, which means that

certain defects may remain undetected, particularly when the code

is subjected to an identical set of validation criteria repetitively.

Considering this context, this paper describes a type system guided

algorithm to generate random and well-typed Haskell programs,

which can be used for testing the compiler, development tools, and

libraries.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Code generation, Fuzzing, Haskell compiler, Differential Testing.

1 INTRODUCTION
Nowadays, Haskell stands as a distinguished language, renowned

for its emphasis on pure functional programming. It is a statically

typed, purely functional language with type inference and lazy

evaluation. Developed in 1990, Haskell has been subject to continu-

ous development, with the Haskell community actively enhancing

its capabilities through successive versions [14]. A notable release

introduced advanced features such as type classes, pattern match-

ing, and list comprehensions, which enrich Haskell’s functional

paradigm by allowing more expressive and concise code [7].

With the adoption of the Haskell language in large-scale projects

[24], it is important to have mechanisms to verify that the compiler

is working as expected. Therefore, due to its complexity, checking

whether a compiler is working properly often surpasses the effec-

tiveness of traditional testing, code reviews, and manual inspection.

This trend suggests the need for tools to exhaustively examine all

potential actions, assisting to find and fix the compiler on the pres-

ence of unexpected behaviors. Given Haskell’s strong static type

system and emphasis on pure functions, these tools are particularly

adept at verifying correctness in Haskell code [23]. However, the

task of formalizing and proving properties for a whole language

is a difficult and time-consuming activity. Considering this fact, a

lightweight approach which combines properties and testing can

be applied to improve the quality of programming language tools.

The construction of test suites for programming languages and

compilers presents a significant challenge, since several criteria

must be adhered to in order to forge a test case that is both valid

and useful [1, 3]. The human factor in this process often results in

a constrained scope of creativity, with the potential for presupposi-

tions regarding the implementation that may affect the quality of

the test cases. Furthermore, the ongoing evolution of the language

brings additional complexities in the maintenance of these tests.

Consequently, there is a growing research community interested

within the domain of random test generation, a.k.a. programming

language fuzzing. This area of research, however, has its own set

of challenges, as it necessitates the generation of programs that

comply with the intricate constraints imposed by the program-

ming language’s compiler, such as the adherence to syntactical

correctness, the fulfillment of type-system requirements inherent

to statically-typed languages, and that avoid non-termination and

undefined behaviors.

In this context, we investigate the type-directed method [2, 8, 21]

to fuzz the programming language, which operates by applying

rules from the type system in a bottom-up, goal-oriented way. We

implement a generator capable of generating type-correct programs

containing a considerable subset of the Haskell language, including

functions, lambda expressions, algebraic data types, and pattern

matching, as well as basic operations. This means that the generator

respects the rules of the type system and considers the context in

which individual expressions are generated. To measure the quality

of our generator, we check the code coverage. Furthermore, to

evaluate the capabilities of the generator, we perform differential

testing with a Haskell compiler.

More specifically, this paper presents the following contribu-

tions:

• We provided a type-directed algorithm for constructing ran-

dom programs for a large subset of Haskell, including ADTs

and pattern matching. We argue that the algorithm is sound

with respect to the Haskell type system, i.e., it generates only

well-typed programs.

• We used a lightweight manner to check the Haskell com-

piler by applying differential testing using the generated

programs.

• We analyzed the execution of 10,000 tests against the compi-

lation and behavior preservation properties of Haskell pro-

grams using the GHC compiler with different optimization

levels.

The remainder of this text is organized as follows: Section 2 sum-

marizes the Haskell subset considered by the generation method.

Section 3 presents the process of generating well-typed random

programs in the context of the subset of Haskell. Section 4 shows

the results of differential testing to check the compilation and be-

havior preservation properties for each generated program to attest
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conformance. Section 5 discusses related works. Finally, we present

the final remarks in Section 6.

2 THE SUBSET OF HASKELL
Haskell is as a language dedicated to Functional Programming (FP),

which was created aiming to be suitable for industry and academic

purposes, where its features could be extended for research. It was

named after Haskell B. Curry, a logician known by his contribu-

tions to the field of combinatorial logic and lambda calculus [13].

During the last years, Haskell has been used as a type-system lab-

oratory, assisting on the study of many advanced ideas regarding

programming language features.

The standard implementation for Haskell is the Glasgow Haskell

Compiler (GHC) [15]. The type system within GHC is referred to

as System FC, which is a typed lambda calculus developed from the

foundational System F lambda calculus [12]. However, there exist

several other active projects that implement the Haskell language.

Next we present the Haskell subset considered for our generation

algorithm, showing first the syntax that should be respected and

then the typing rules needed for guiding the generation process.

2.1 Syntax
The abstract syntax for the considered subset of Haskell is given

in Figure 1, where 𝑇 represents type declarations, M and I denote

modules and imports, D defines declarations, P stands for patterns,

𝑙 is used for literal values, and e refers to the allowed expressions.

The meta-variables N and K are used to represent type and con-

structor names, 𝑥 and 𝑓 are used for variable and function names.

Throughout this paper, we write 𝑇 as shorthand for a possibly

empty sequence 𝑇1, ...,𝑇𝑛 (similarly for 𝑃 , 𝑒 , etc.). Following the

common practice, we let the meta-variable Γ denote an arbitrary

typing environment, which consists of a finite mapping between

variables and functions, and their respective types. We also let the

meta-variable Δ represent an environment to store user-defined

types. Sequences of declarations and parameter names are assumed

to contain no duplicate names. Similarly, for simplicity, we assume

that there are no duplicate variable names in the same scope to

avoid shadowing and variable capture.

On this subset, we have primitive types (I, R, B, S, C standing

for integer, float, boolean, string and char), function, tuple and list

types, and user-defined types, which can be build by Algebraic

Data Types (ADTs) or by aliases. Note that the syntax doesn’t

include polymorphic types. A module is defined by a name, a list of

imported modules and a list of declarations. If the module contains

a main function, it can be executed directly. A declaration allows

the user to create ADTs with a name 𝑁 , a sequence of constructors

𝐾 , and a list of types, type aliases providing a new name to an

existing type, and (typed) functions with a sequence of equations

having patterns and expressions. A pattern consists of variables,

wildcards, ADT constructors, literal values, tuples, empty and cons

lists. An expression allows the use of variables, functions, lambda

abstractions, function applications, let bindings, pattern matching,

conditionals, tuples, lists and ADT constructors. The presented

syntax represents a substantial subset of the Haskell language.

Syntax

𝑇 ::= types

I | R | B | S | C primitive

𝑇 → 𝑇 function

(𝑇 ) tuple

[𝑇 ] list

𝑁 :: 𝐾 𝑇 algebraic

𝑁 synonym

𝑀 ::= modules

module 𝑛 𝐼 𝐷

𝐼 ::= imports

import 𝑛

𝐷 ::= declarations

data 𝑁 = 𝐾 𝑇 ADTs

type 𝑁 = 𝑇 aliases

𝑓 :: 𝑇 → 𝑇 ⊲ 𝑓 𝑃 = 𝑒 functions

𝑃 ::= patterns

𝑥 | _ | 𝐾 𝑃 | 𝑙 | (𝑃) | [] | [𝑃 : 𝑃]
𝑒 ::= expressions

𝑥 variable

𝑓 function

𝜆𝑃 :: 𝑇 → 𝑒 abstraction

𝑒 𝑒 application

let 𝑥 = 𝑒 in 𝑒 binding

case 𝑒 of 𝑃 ← 𝑒 pattern matching

if 𝑒 then 𝑒 𝑒𝑙𝑠𝑒 𝑒 conditional

(𝑒) tuple

[𝑒] list

𝐾 𝑒 constructor

Figure 1: Syntax considered for the selected subset of Haskell.

2.2 Type System
Since our generation approach is guided by the type system, we

present the typing rules for declarations in Figure 2 and for expres-

sions in Figure 3. For short, we omit the rules for trivial syntactical

constructors. In our definitions, for simplicity, we consider that the

rules for declarations 𝐷 extend the Δ context, storing user-defined

types (ADTs and aliases), and also extend the Γ context, inserting

typing information about the functions. Rule T-Adt extends the

Δ context adding each constructor 𝐾 with its corresponding type

𝑇 → 𝑁 . Rule T-Alias just adds a new name 𝑁 for a given type 𝑇

in the context Δ. And the rule T-Function extends the Γ context

adding the function 𝑓 with its defined type 𝑇 → 𝑇 . Since we are

considering that an equation can be defined using pattern match-

ing constructors, we use a function var-types, which extracts the

variables and types from a given pattern.

The typing rules for expressions are mostly standard [22]. We

use the typing judgment with the form Δ; Γ ⊢ 𝑒 : 𝑇 , meaning that

in the environments Δ and Γ, expression 𝑒 has type 𝑇 . The rule
T-Var and T-Fun obtain the respective type from the Γ context.

Rule T-Abs is adapted to resemble Haskell’s type system, where

pattern matching can be applied to parameters. Here we also use
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Δ ⊢ data 𝑁 = 𝐾 𝑇 ↦→ Δ, 𝐾 : 𝑇 → 𝑁 [T-Adt]

Δ ⊢ type 𝑁 = 𝑇 ↦→ Δ, 𝑁 : 𝑇 [T-Alias]

Γ, var-types(𝑃,𝑇 ) ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑓 :: 𝑇 → 𝑇 ⊲ 𝑓 𝑃 = 𝑒 ↦→ Γ, 𝑓 : 𝑇 → 𝑇

[T-Function]

Figure 2: Type system considered for declarations.

the function var-types to extract variables and types from a given

pattern. The resulting type is a function type 𝑇 → 𝑇 . Rule T-App

is similar to the regular simply-typed lambda calculus, however

one can consider multi-parameter function invocation. Rule T-Let

is standard. Rule T-Case enforces that each pattern matching 𝑃 is

refering to type 𝑇1, and that all expressions 𝑒 return type 𝑇2. Rules

T-If, T-Tuple and T-List are also standard. And finally, rule T-Constr

defines that the constructor 𝐾 exists in the Δ context, and that

expressions 𝑒 are respecting its type 𝑇 .

𝑥 : 𝑇 ∈ Γ
Δ; Γ ⊢ 𝑥 : 𝑇

[T-Var]

𝑓 : 𝑇 → 𝑇 ∈ Γ

Δ; Γ ⊢ 𝑓 : 𝑇 → 𝑇
[T-Fun]

Δ; Γ, var-types(𝑃,𝑇 ) ⊢ 𝑒 : 𝑇

Δ; Γ ⊢ 𝜆𝑃 :: 𝑇 → 𝑒 : 𝑇 → 𝑇
[T-Abs]

Δ; Γ ⊢ 𝑒 : 𝑇 → 𝑇 Δ; Γ ⊢ 𝑒 : 𝑇
Δ; Γ ⊢ 𝑒 𝑒 : 𝑇

[T-App]

Δ; Γ ⊢ 𝑒1 : 𝑇1 Δ; Γ, 𝑥 : 𝑇1 ⊢ 𝑒2 : 𝑇2
Δ; Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝑇2

[T-Let]

Δ; Γ ⊢ 𝑒 : 𝑇1 Δ; Γ, var-types(𝑃,𝑇1) ⊢ 𝑒 : 𝑇2
Δ; Γ ⊢ case 𝑒 of 𝑃 ← 𝑒 : 𝑇2

[T-Case]

Δ; Γ ⊢ 𝑒 : B Δ; Γ ⊢ 𝑒1 : 𝑇 Δ; Γ ⊢ 𝑒2 : 𝑇
Δ; Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇

[T-If]

Δ; Γ ⊢ 𝑒 : 𝑇
Δ; Γ ⊢ (𝑒) : (𝑇 )

[T-Tuple]

for each 𝑖 Δ; Γ ⊢ 𝑒𝑖 : 𝑇
Δ; Γ ⊢ [𝑒] : [𝑇 ]

[T-List]

𝐾 : 𝑇 → 𝑁 ∈ Δ Δ; Γ ⊢ 𝑒 : 𝑇
Γ ⊢ 𝐾 𝑒 : 𝑇

[T-Constr]

Figure 3: Type system considered for expressions.

With these rules in mind, we propose an algorithm to generate

well-typed Haskell programs, which will be presented in the next

section.

3 PROGRAM GENERATION
We split the generation of valid (well-typed) Haskell programs in

four parts. The first part considers the generation of valid types,

which include the primitive and user-defined types. The second

shows the generation of patterns, which are used in expressions

that allow pattern matching. The third consists in generating dec-

larations, i.e., a set of ADTs, aliases and functions, respecting the

language type system, similarly to what a developer would do. For

each of the generated declaration signature, we use the Δ and Γ
context to store its information. That way, we can use this informa-

tion when generating new declarations and expressions. The fourth

part defines how we generate another expression to be used as the

main function. Likewise, we can use the previously generated decla-

rations during the expression generation to produce more complex

expressions. To allow us to compare the compilation and execution

properties of different executions, we compile, run and print the

value of this expression on the standard output, and collect the

results to be further analyzed. The analysis of differential testing is

presented in Section 4.

The following subsections present in detail how types, patterns,

declarations, and expressions are randomly generated considering

the language constraints, i.e., syntax and typing rules, to produce

an executable from the presented subset of Haskell, which consider

programs with ADTs, aliases and functions.

3.1 Type Generation
On the presented subset, the type generation is purely syntactical,

i.e., there is no extra constraint for generating a valid type. This

is valid for this subset, but not for the standard Haskell language,

because we are not considering kinds and higher-order types. This

means that, to generate a valid type, we can only select any at ran-

dom. The following definition describes the judgment to generate

types.

Definition 1. Type generation judgment. Δ; Γ
t
=⇒ 𝑇

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, a new type T is generated
by selecting a valid type at random.

Considering the syntax for types, when a terminal value (primi-

tive or used-defined type) is selected, the result is immediate. How-

ever, if a function, tuple, or list type is selected, the judgment should

be applied recursively to generate the required syntax.

Example 1. To generate a function type, the type generation judg-
ment should be used three times.

Δ; Γ
t
=⇒ 𝑇𝑝 (2) Δ; Γ

t
=⇒ 𝑇𝑟 (3)

Δ; Γ
t
=⇒ 𝑇𝑝 → 𝑇𝑟 (1)

Note that the invocation (1) selected a function type. Then, the

invocation (2) was used recursively to generate the types for each

parameter for that function. We use a threshold to define the maxi-

mum number of parameters allowed by the generator. And for last,

the invocation (3) was used once more to generate the return type.

Since the generation is recursive, our procedure is not guaranteed
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to terminate. To avoid non-termination we decrement a fuel param-

eter on each recursive call. When this parameter reaches zero, only

terminal symbols can be generated, forcing the generation to stop.

This approach is applied similarly on the next sections.

3.2 Pattern Generation
The considered subset of Haskell allows us to use pattern match-

ing with expressions according to their types. It allows the use of

irrefutable patterns, such as variables and wildcards, and refutable

patterns, such as ADT data constructors, literals, tuples, empty and

non-empty lists. The following definition describes the judgment

to generate patterns.

Definition 2. Pattern generation judgment. Δ; Γ;𝑇
pat
===⇒ 𝑃

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 , a new
pattern P is generated by selecting a valid pattern at random.

Taking into account the syntax for patterns, when the irrefutable

patterns (𝑥 and _), the literal (𝑙), or the empty list ([]) pattern is

selected, the result is immediate. But, if the ADT data constructor,

tuple, or non-empty list pattern is selected, the judgment has to be

applied recursively to generate a valid pattern.

When implementing a pattern generator, we need to consider

that there is no guarantee that the generated patterns will be ex-

haustive. A simple solution is to generate an irrefutable pattern

(variable or wildcard) on the last equation. This way, we can be

certain that any pattern will match with it.

3.3 Expression Generation
The generation of expressions is goal-oriented, i.e., the generation

selects valid syntactical constructors according to a given context,

which includes information about user-defined types, free-variables,

and a valid type. It is important to mention that, to generate valid

expressions, respecting only the syntax is not enough. The genera-

tor should be able to generate type-correct expressions. Because

of that, we guide the generation process by using the typing rules

presented in Figure 3.

The aim of the expression generator is to produce a well-typed

expression of the desired type. Note that for generating an expres-

sion of a given type, only a subset of the typing rules can be used.

For example, the rule T-Var can only be used when generating the

body of a function or lambda expression, since the formal parame-

ters give rise to free-variables, the rules T-Fun and T-Abs can only

be used when the expected type is a function type, and so on.

The method we use to generate expressions involves reading the

typing rules backwards. In other words, to produce an expression

that appears as the consequence of a rule, we must first create the

expressions that form the rule’s premises and thenmerge them. This

process may require recursively generating sub-goals to ultimately

generate the desired expression. Employing the typing rules in this

manner guarantees that the expressions we create are correctly

typed.

Considering this, we propose an expression generation judgment

as follows.

Definition 3. Expression generation judgment. Δ; Γ;𝑇
e
=⇒ 𝑒

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 , a new
expression e is generated by selecting a syntactical constructor at
random respecting the typing rules.

It is worth to remember that an expression can contain sub-

expressions, and because of that, the expression generation judg-

ment should be invoked recursively to fulfill the sub-expressions

accordingly. Since the subset of Haskell we are considering allows

expressions to have variables, application of lambda expressions

and functions, let bindings, pattern matching with case expressions,
conditionals, tuples, lists, ADT data constructors, and other simple

operators
1
, we present next the definitions to create each valid

expression individually.

Definition 4. Variable generation. Δ; Γ;𝑇
var
===⇒ 𝑥

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 , a variable
𝑥 of type 𝑇 is selected from the Γ context at random, if and only if
there exists one or more variables of type 𝑇 .

Following the typing rule T-Var, a variable expression can only

be created if there is some variable of the expected type in the Γ
environment. So, it is important to mention that we don’t use a

greedy algorithm to avoid the need for backtracking. Instead, for

each type, the algorithm presents a list of candidate expressions

that can be generated, which allows a random selection, excluding

syntactical constructors that cannot be used for that type.

Definition 5. Function access generation. Δ; Γ;𝑇 → 𝑇
fun
===⇒ 𝑓

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 → 𝑇 , a
function 𝑓 of type 𝑇 → 𝑇 is selected from the Γ context at random, if
and only if there exists one or more functions of type 𝑇 → 𝑇 .

The function access generation is similar to the variable genera-

tion, except that it searches the Γ context for function types.

Definition 6. Abstraction generation. Δ; Γ;𝑇 → 𝑇
abs
===⇒ 𝜆𝑃 ::

𝑇 → 𝑒

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 → 𝑇 , a
lambda expression is created by generating a sequence of patterns 𝑃
for each type in 𝑇 , and an expression 𝑒 which result type should be 𝑇 ,
considering an extended Γ environment with variables extracted from
the patterns 𝑃 .

The abstraction generation follows the typing rule T-Abs to gen-

erate a lambda expression. The input type 𝑇 → 𝑇 defines that the

algorithm needs to generate a function with arguments of type 𝑇

and return type 𝑇 . It means that we need to use the pattern gener-

ation judgment to generate patterns for each argument type, and

apply recursively the expression generation judgment to generate

the body of the required function, following the premise of rule

1
We omit the rules for mathematical and relational operator for space reasons, however,

their semantics and typing rules are standard.
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T-Abs, where the body expression can use the variables extracted

from the generated patterns.

Example 2. To generate an abstraction expression, we use the
judgments to generate patterns and expressions.

Δ; Γ;𝑇𝑝
pat
===⇒ 𝑃 (2) Δ; Γ, var-types(𝑃,𝑇𝑝 );𝑇𝑟

e
=⇒ 𝑒 (3)

Δ; Γ;𝑇𝑝 → 𝑇𝑟
abs
===⇒ 𝜆𝑃 :: 𝑇𝑝 → 𝑒 (1)

In this example we show how the judgments are used to generate

an abstraction expression. Invocation (1) uses the abstraction gener-

ation judgment to generate the lambda expression. Then, invocation

(2) uses the pattern generation judgment to generate a pattern P for

each type in 𝑇𝑝 . And last, invocation (3) uses the expression gener-

ation judgment to generate an expression which should respect the

function return type 𝑇𝑟 considering the variables extracted from

the generated patterns through the function var-types2.

Definition 7. Application generation. Δ; Γ;𝑇
app
===⇒ 𝑒 𝑒

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 , an appli-
cation is created by generating an expression 𝑒 with a function type
𝑇 → 𝑇 , and a sequence of expressions 𝑒 of type 𝑇 .

To generate a function application, there is two valid options. The

first considers using a function declaration in which the return type

is 𝑇 , if that function exists. The second considers the generation of

a lambda expression with return type 𝑇 . In any case, the algorithm

have to generate the expressions to represent the actual parameters

𝑒 respecting the types in 𝑇 .

Example 3. To generate an application expression, the expression
generation judgment should be used recursively twice.

Δ; Γ;𝑇 → 𝑇
e
=⇒ 𝑒 (2) Δ; Γ;𝑇

e
=⇒ 𝑒 (3)

Δ; Γ;𝑇
app
===⇒ 𝑒 𝑒 (1)

The example above shows that to generate an application ex-

pression, we need to generate the required sub-expressions using

the expressions generation judgment recursively. Invocation (1)

uses the application generation judgment, which from a type 𝑇

generates the function invocation. The invocation (2) generates an

expression of a function type 𝑇 → 𝑇 . Then, invocation (3) calls the

expression generation judgment for each type in 𝑇 , generating a

sequence of expressions 𝑒 to represent the actual parameters.

Definition 8. Let generation. Δ; Γ;𝑇
let
==⇒ let 𝑥 = 𝑒1 in 𝑒2

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type𝑇 , a let binding
is created by generating an unused variable name 𝑥 , an expression
𝑒1 with type 𝑇1, and an expression 𝑒2 which should have type 𝑇 ,
considering an extended Γ environment with the variable 𝑥 of type
𝑇1.

2
When generating a lambda expression, only one equation is allowed in the standard

Haskell implementation.

The let binding generation first selects an unused name for the

variable 𝑥 from a predefined list of names. Then it uses the type

generation judgment to decide which type expression 𝑒1 should

have, and generates this expression using the expression genera-

tion judgment recursively. The last step generates expression 𝑒2
augmenting the Γ context with variable 𝑥 .

Definition 9. Case generation. Δ; Γ;𝑇
case
====⇒ case 𝑒1 of 𝑃 ← 𝑒

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type 𝑇 , a case
expression is created by generating an expression 𝑒1 of type 𝑇1, and
a sequence of alternatives in the form 𝑃 ← 𝑒 , where each of them
have a pattern 𝑃 for the type 𝑇1 and an expression 𝑒 which should
have type 𝑇 , considering an extended Γ environment with variables
extracted from the pattern 𝑃 .

To generate a case expression, the algorithm uses first the type

generation judgment to generate a type 𝑇1 that allows pattern

matching
3
. Then an expression 𝑒1 is generated through the expres-

sion generation judgment using as input the type 𝑇1. The last step

is to generate the sequence of case alternatives, where each alter-

native is composed by a pair of patterns and expressions. Here we

define a threshold to limit the number of alternatives. To generate

these items the algorithm uses the pattern generation judgment

and the expression generation judgment, following the premises of

rule T-Case, where each expression can use the variables extracted

from the generated patterns.

Example 4. To generate a case expression, we need to use the
judgments to generate types, patterns and expressions.

Δ; Γ;𝑇1
pat
===⇒ 𝑃 (4) Δ; Γ, var-types(𝑃,𝑇1);𝑇

e
=⇒ 𝑒 (5)

Δ; Γ
t
=⇒ 𝑇1 (2) Δ; Γ;𝑇1

e
=⇒ 𝑒1 (3)

Δ; Γ;𝑇
case
====⇒ case 𝑒1 of 𝑃 ← 𝑒 (1)

This example shows us how the judgments are used to generate

a case expression. Invocation (1) uses the case generation judgment

to start the process. Then invocation (2) uses the type generation

judgment to select a valid type 𝑇1 that can be used in the pattern

matching process. After that, invocation (3) uses the expression

generation judgment to generate an expression 𝑒1 of type 𝑇1. Then

invocation (4) and (5) are used with a threshold limit to generate the

alternatives, where the first uses the pattern generation judgment

and the second uses once more the expression generation judgment.

That way, we guarantee that the expression is well-typed.

Definition 10. Conditional generation.Δ; Γ;𝑇
if
=⇒ if 𝑒 then 𝑒1 else 𝑒2

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a type𝑇 , a conditional
expression is created by generating an expression 𝑒 of type B, and
expressions 𝑒1 and 𝑒2 which should be of type 𝑇 .

Generation of conditional expressions should respect the T-If

rule. The algorithm uses the expression generation judgment 3

3
Here we need that distinction, because the function type doesn’t allow pattern

matching.
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times, where the first should generate an expression of type boolean,
and the others should have the same type 𝑇 , according to Haskell

semantics.

Definition 11. Tuple generation. Δ; Γ; (𝑇 )
tup
===⇒ (𝑒)

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a tuple type (𝑇 ), a
tuple is created by generating an expression 𝑒 for each type in 𝑇 .

The tuple generation is simple. It should use the expression

generation judgment recursively to generate expressions respecting

the tuple type.

Definition 12. List generation. Δ; Γ; [𝑇 ] list
===⇒ [𝑒]

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a list type [𝑇 ], a list
is created by generating a sequence of expressions 𝑒 of type 𝑇 .

Similarly, the list generation uses the expression generation

judgment recursively to generate the list elements of a given type.

Different from the tuple generation, the list has only one type for

all of its elements. For simplicity, the algorithm creates lists only

which the square brackets notation, not using the list cons operator.

Definition 13. ADT data constructor generation. Δ; Γ;𝑁
constr
=====⇒

𝐾 𝑒

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, and a user-defined type 𝑁 ,
an ADT data constructor is created by selecting a valid data construc-
tor 𝐾 with its list of types 𝑇 from type 𝑁 at random, and generating
an expression 𝑒 for each expected type in 𝑇 .

To generate an ADT data constructor from a valid user-defined

type 𝑇 , the algorithm selects one of them from the Δ context, and

generates an expression for each expected type of that constructor

using the expression generation judgment recursively. Since this

procedure respects the T-Constr typing rule, it is guaranteed that

only valid data constructor expressions will be generated.

Example 5. To generate an ADT data constructor expression, we
use the expression generation judgment recursively.

𝐾 : 𝑇 → 𝑁 ∈ Δ (2) Δ; Γ;𝑇
e
=⇒ 𝑒 (3)

Δ; Γ;𝑁
constr
=====⇒ 𝐾 𝑒 (1)

In this example, we can see that the ADT data constructor judg-

ment is used to start the generation process in invocation (1). Then,

in the invocation (2), a constructor 𝐾 of type 𝑁 is selected from

the Δ context. Last, we use the expression generation judgment to

generate expressions 𝑒 for each type in 𝑇 in invocation (3).

3.4 Declaration Generation
In the presented subset of Haskell we have three different con-

structors for declarations. We can generate ADTs, type aliases, and

functions. All declarations need to create new names, for ADTs,

constructors, aliases and functions. These names are selected from

a predefined list to avoid repetitions and to generate programs with

human readable names.

Similar to the generation of types, generation of ADTs and aliases

doesn’t depend on the typing rules, having only to respect the

syntax and the use of valid types.

Haskell allows one developer to make compound types by using

ADTs, i.e., creating a new type where one can specify the shape of

each of the elements, which can represent sum or product types.

An ADT is composed by a type constructor, a non-empty list of

data constructors, where each data constructor can have a possibly

empty list of valid types
4
. The following definition presents how

an ADT is generated by our algorithm.

Definition 14. ADT generation judgment. Δ; Γ
adt
===⇒ data 𝑁 =

𝐾 𝑇

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, a new ADT is created by
generating a new name N, and a sequence of constructor names 𝐾
with their list of valid types 𝑇 .

We can note that to create a new ADT, besides generating names

for type and data constructors, we need to use the judgment to

generate types for each constructor. This way, it is guaranteed that

only valid types will be selected during the generation process. We

use a threshold to define the maximum number of constructors and

types that can be generated.

A type alias or type synonym is a new name for an existing

type, where values of different synonyms of the same type are

entirely compatible. The generation is simple, and is presented in

the following definition.

Definition 15. Alias generation judgment. Δ; Γ
alias
====⇒ type 𝑁 =

𝑇

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, a new alias is created by
generating a new name N for a valid type T.

In a similar manner, we use the type generation judgment to

allow only valid types.

Since Haskell is a functional language, functions play a major

role when using this language. Mathematically, a function relates

all values in a set A to values in a set B. In Haskell, functions

can be written with an optional type specification, and a set of

equations, where each of them can use pattern matching to deal

with parameters and expressions to be evaluated. The following

definition presents the function declaration generation judgment.

Definition 16. Function declaration generation judgment.Δ; Γ
f
=⇒

𝑓 :: 𝑇 → 𝑇 ⊲ 𝑓 𝑃 = 𝑒

Given a Δ context containing the user-defined types, a Γ context
containing the free variables and functions, a new function is created
by generating a new name 𝑓 , a function type 𝑇 → 𝑇 , and a sequence

of equations of the form ⊲ 𝑓 𝑃 = 𝑒 , where each of them have a list
of patterns 𝑃 for the types 𝑇 , and an expression 𝑒 which result type
should be 𝑇 , considering an extended Γ environment with variables
extracted from the patterns 𝑃 .

4
In this subset, we are not considering the record syntax for the ADT generation.
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The function declaration generation judgment is a bit complex.

It combines all the generation judgments presented in the last

subsections, since we need to generate the function name and type,

patterns and expressions. Furthermore, it should respect the T-

Function rule, to guarantee that all generated expressions have

the expected type. Considering that all the previous judgments are

guaranteed to be well-typed, the generated function should also be

well-typed.

Example 6. To generate a function, we use the judgments to gen-
erate types, patterns and expressions.

Γ;𝑇𝑝
pat
===⇒ 𝑃 (4) Γ, var-types(𝑃,𝑇 );𝑇𝑟

e
=⇒ 𝑒 (5)

Γ
t
=⇒ 𝑇𝑝 (2) Γ

t
=⇒ 𝑇𝑟 (3)

Γ
f
=⇒ 𝑓 :: 𝑇𝑝 → 𝑇𝑟 ⊲ 𝑓 𝑃 = 𝑒 (1)

In this example we show how the judgments are used to generate

a function declaration. Invocation (1) uses the function generation

judgment where a name 𝑓 is selected from a predefined list of

unused names. Then, to generate the function type we use the

type generation judgment twice. Invocation (2) generates the types

for each parameter and invocation (3) generates the function re-

turn type. We use a threshold to limit the maximum number of

parameters. After that, to complete the function, the process needs

to generate a non-empty sequence of equations starting with the

function name already selected. For each equation, the pattern gen-

eration judgment is used to generate patterns for each parameter

type, as we can see in invocation (4). Similarly, for each equation,

the expression generation judgment is used to generate an expres-

sion which should respect the function return type 𝑇𝑟 considering

the variables extracted from the generated patterns through the

function var-types, as shown in invocation (5).

4 DIFFERENTIAL TESTING
To provide a proof-of-concept, we implemented a Haskell code

generator based upon the definitions presented in Section 3, and a

test suite using the Haskell language
5
. Then, we used the test suite

to run 10 batches of 1000 tests. Each batch took less than 5 sec-

onds to generate 1000 programs, however to generate and compile

each program on a batch with the GHC compiler, it was necessary

around 20 minutes on average to conclude. The experiments were

performed on an ASUS laptop with an Intel(R) Core i5-7200U CPU

(2,50 GHz × 4), with 8GB RAM, running Linux 6.5.0-35 (Ubuntu

22.04.4 LTS). The experiments with the prototype were performed

with a weak laptop configuration with an acceptable running time,

what suggests that using a powerful hardware configuration could

improve drastically the performance. It is worth mentioning that all

generated programs were compiled successfully by the GHC com-

piler, which indicates that we are indeed generating only well-typed

programs, as stated by our definitions.

As a way to check the diversity of the generated programs, we

used the Haskell Program Coverage (HPC) [11] tool. We proceed

5
The complete source-code of our implementation is available online for access at

https://github.com/sfeitosa/hsgenerator.

with that verification because the algorithm decides the branches

to generate at random, i.e., some programs should contain only

parts of the considered syntax. However, by the statistics reports of

HPC, we could notice that 100% of the syntactical constructors by

the generated programs, and 97% of the equations and alternatives

from the function that exports the AST to the concrete syntax of

Haskell were reached, when considering a batch of 1000 generated

test cases.

Having made the basic tests, and collected some statistics, we

turned our attention for differential testing the compiler. Each of

the generated programs was compiled and executed without op-

timization, and with different levels of optimization on the GHC

compiler (-O0, -O, -O1, and -O2) aiming to check two properties:

• Compilation preservation. If a program is with a valid syntax

and well-typed, it should compile with and without optimiza-

tion. Otherwise, it could indicate a bug on the compilation

step.

• Behavior preservation. If the same program is executed with

and without optimization, the result should be the same on

both executions. Otherwise, it could also indicate a bug at

runtime.

Each generated program goes through the compilation step 4

times. The first uses the GHC flag -O0, to compile the programwith-

out optimization. The other three compile the generated program

with optimization flags -O, -O1, and -O2, which apply from basic to

more advanced optimizations. Then, we compare the GHC output,

checking whether the program was successfully compiled each

time with the different optimization levels, to test the compilation

preservation property.

The compilation phase generates 4 binary files for each program,

each of them was compiled with different levels of optimization. To

test the behavior property, we run each of these binaries, collecting

and comparing their output. As an extra test, we also execute the

same program using the Haskell interpreter.

We used QuickCheck [4] as a lightweight manner to define these

properties, for which the generated random Haskell programs are

passed as input. QuickCheck helped us by providing a library with

basic building blocks and combinators for generating random data

and running the properties, and by allowing us to experiment with

different design and implementations of our generator. This was

essential to find bugs and fix them during the development phase.

After running 10,000 tests, we analyzed the statistics provided

by QuickCheck as a way to summarize the results. During our tests,

we were able to identify a potential bug on GHC when testing the

compilation preservation property. The same source-code was com-

piled by GHC with the flag -O (standard optimizations) successfully,

but it was a compilation error with flag -O0 (without optimization).

Next we can see part of the GHC error message.

[1 of 1] Compiling Main
ghc: sorry! (uninplemented feature or known bug)
(GHC version 8.8.4 for x86_64-unknown-linux):

Trying to allocate more then 132879 bytes.

Upon analyzing the error message and the generated source

code, we observed that the generated file was extremely large. The

generator was creating static data to populate a list of elements,

which turned out to be of an enormous size. While searching online,

https://github.com/sfeitosa/hsgenerator
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we discovered a bug report for this issue, which had been reported

in 2010
6
. The root cause of this bug is the allocation of a significant

amount of memory to store static data within a single source file.

Currently, this is recognized as a limitation of GHC.

To prevent the recurrence of the same error, we made strate-

gic modifications to our program generator. These changes were

specifically aimed at reducing the amount of static data produced.

Previously, the generator was creating extensive static data to pop-

ulate large lists within the programs, which led to the error. By

refining the generator’s algorithm, we minimized the creation of

such data, thereby avoiding the generation of excessively large

programs that could trigger the identified error. This proactive ap-

proach has significantly improved the reliability and efficiency of

our code generation process.

5 RELATEDWORK
The use of random testing for the field of programming languages

dates back to the early 1960s. Even so, the generation of random

programs continues to be a challenge by itself. As a consequence of

this, random testing for finding bugs in compilers and programming

language tools received some attention in recent years.

Generation of random programs for imperative languages. YARP-
Gen [18] is a random test-case generator for C and C++, which was

used to find and report several bugs in GCC, LLVM and the Intel C++

Compiler. The testing tool Csmith [25] is a generator of programs

for the C language, supporting a large number of language features,

which was used to find a number of bugs in compilers such as GCC,

LLVM, etc. These works differ by ours, first by generating code

for a different programming language and paradigm, and second

because most of them rely on informal approaches to describe the

generation process. We believe that several ideas presented on these

papers can be incorporated in our formal generation method. The

work of Klein et al. [16] presents a new algorithm for randomly

testing programs and libraries combining contracts and environ-

ment bindings to guide the test-case generator in the context of a

Java-like class system. Feitosa, Ribeiro and Du Bois [9]) also used

Featherweight Java as a basis to formalize a type-directed proce-

dure to generate random well-typed programs, and an extension to

generate programs considering Java 8 constructors. Although these

papers use a similar approach to ours on the generation of pro-

grams, they consider the generation of an object-oriented language.

However, their generator is also implemented is Haskell.

Generation of random programs for functional languages. The
work of Palka, Claessen and Hughes [21] used the QuickCheck

library in their work aiming to generate 𝜆-terms to test the GHC

compiler. Our approach was somewhat inspired by theirs, since

we also generate well-typed terms following the formal typing

rules to test the Haskell compiler. Our work differs from theirs

by providing the a type-directed algorithm to generate a larger

subset of Haskell. The work of Mista and Russo [20], develops an

extensive framework for deriving compositional generators, which

can be combined in different ways to fit the developers’ demands.

This work approaches a different and more general problem than

ours, however, we believe that their ideas could be explored fur-

ther explored by us in future works. Another example is the work

6
https://gitlab.haskell.org/ghc/ghc/-/issues/4505.

of Drienyovszky, Horpácsi and Thompson [6] which presents an

automated testing framework based on QuickCheck for testing

refactoring tools written for the Erlang programming language.

The intersection point with our work is the generation of source-

code. We believe that our results can also be applied for testing

refactoring tools, although it was out of scope on this paper. More

recently, Frank, Quiring, and Lampropoulos [10] provided a novel

algorithm to generate functions, where they delay the generation

of types for sub-expressions to allow the use of arguments more

efficiently.

Other sorts of program generation. Recently, the field of genera-

tive AI and machine learning based test-case generation has gained

a lot of attention. For example, the work of Liu et al. [17] uses a

machine learning approach targeting C compilers, where 82% of

the generated code can be compiled and optimized, aiming find-

ing compiler crash bugs. Similarly, Cummins et al. [5] approaches

the problem using the same technique, mainly targeting OpenCL

compilers. Lyu et. al. [19] proposed a coverage-guided fuzzer for

prompt fuzzing that iteratively generates fuzz drivers to explore

undiscovered library code. These works use different techniques to

generate code, which can also be explored in the context of testing

the Haskell compiler.

6 CONCLUSION
In this paper, we described a syntax directed judgment for gener-

ating random type-correct Haskell programs. We argued that the

generation method is sound with respect to a subset of Haskell’s

type system, which includes primitive types and operators, ADT

constructors, several expressions, conditional and pattern matching.

Furthermore, we presented an implementation of a test suite in

Haskell, used to apply differential testing with the properties of

compilation and behavior preservation on the GHC compiler.

As future work, we can expand the algorithm to cover more

complex syntactical constructors of Haskell, such as polymorphic

and higher-order types. The differential testing can also be applied

to other Haskell compilers. Furthermore, the use of AI to generate

programs can be explored to compare with the approach presented

in this paper.
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