OFG-STM: Transactional Memory for GPUs based on
Obstruction-Free STM algorithms

Tiago Perlin Gerson Cavalheiro André Rauber Du Bois
PPGC - Universidade Federal de PPGC - Universidade Federal de PPGC - Universidade Federal de
Pelotas Pelotas Pelotas

Pelotas, Brazil
tiago.perlin@inf.ufpel.edu.br

Abstract

Transactional memory is a high-level programming abstrac-
tion for synchronizing concurrent tasks investigated in dif-
ferent architectures, such as multicores, distributed systems
and GPUs. Software transactional memory systems (STMs),
including those for GPUs, are usually implemented using
a lock-based system, where the locks that protect memory
locations being accessed by a transaction are acquired, either
at commit time or during transaction execution, to guar-
antee the atomicity of the transaction’s changes to mem-
ory. Transactional memory systems can also be lock-free or
obstruction-free. Still, such STM algorithms are complex to
implement in languages that do not support garbage collec-
tion, as they rely on a structure called locator, which must
be used to acquire ownership of transactional objects. Every
time a transaction needs to access an object in write mode,
a new locator is created to substitute the current locator of
the object. As transactions can be aborted at any time, and
concurrent transactions must read the locators of objects to
access their current versions, it is difficult to know when
exactly such a locator is not being used and can be freed,
a common problem in designing lock-free data structures.
This paper presents OFG-STM, an STM system for GPUs in-
spired by obstruction-free STM algorithms. OFG-STM takes
advantage of the fact that GPU threads executing the same
kernel execute the same code, and threads in a warp exe-
cute a kernel in lockstep, to introduce a garbage-collection
phase every time a number of transactions has committed.
This paper presents the design and implementation of the
OFG-STM system, as well as experiments demonstrating its
usability.

CCS Concepts: » Computing methodologies — Parallel
programming languages.

Keywords: transactional memory, GPU, parallel program-
ming

1 Introduction

Transactional memory (TM) is a high-level programming
abstraction for synchronizing concurrent accesses to shared-
memory. In systems implemented using TM, accesses to
shared memory are performed inside of transactions that
are guaranteed by the TM system to execute atomically with

Pelotas, Brazil
gerson.cavalheiro@inf.ufpel.edu.br

Pelotas, Brazil
dubois@inf.ufpel.edu.br

respect to other concurrent executing transactions. The TM
abstraction can be implemented in hardware or software,
and has been investigated in different architectures such as
CPUgs, distributed systems, and GPUs.

Software Transactional Memory (STM) systems for CPUs
are usually implemented using lock-based algorithms such
as TL2 [6], tinySTM[8] and SwissTM[7]. In such systems,
the locks of objects being accessed by transactions must be
acquired, either at first encounter or at commit time, in order
to guarantee that updates made to objects seem to be atomic.
Objects in memory are also tagged with version numbers,
which are used to validate data read by transactions: a trans-
action can only commit if the versions of the values read have
not changed during its execution. Some STM algorithms are
also called time-based, as they use a global shared clock to
provide version numbers. In such systems, every memory
location is tagged with the time that they were last writ-
ten, and when a transaction starts, it records its start time
from the global clock to guarantee that, during execution, it
will only read memory locations that were updated before
it started. When a transaction commits, it must first lock
all locations to be written (if they are not already locked),
then it validates its reads by checking that the versions of
the memory locations read have not changed, and finally,
it updates the version number of locations to be written
before their locks are released. Software Transactional Mem-
ory systems for GPUs use algorithms inspired by the CPU
ones, so they are also implemented using variations of the
lock-based/time-based approach, e.g., [19, 29, 34].

In STM systems for CPUs, the use of a global clock can be
a source of contention [1], especially in large systems with
frequent commits [25]. Such a problem would be even worse
in GPUs, where many threads compete to access the global
clock.

Looking at the literature on STM, it is possible to find other
techniques for implementing the TM abstraction. Since the
objective of TM is to avoid the problems introduced by the
use of locks, there are many TM algorithms that are Lock-
Free or Obstruction-Free, e.g., [15, 16, 21, 32]. Obstruction-
free STM algorithms are complex to implement in languages
that do not support garbage collection as they rely on a
structure called locator (see Section 2.2) that must be used
to acquire ownership of transactional objects. Every time

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

a transaction needs to access an object in write mode, a
new locator is created to substitute the current locator of
the object. As transactions can be aborted at any time, and
concurrent transactions must read the locators of objects to
access their current versions, it is difficult to know when
exactly such a locator is not being used and can be freed, a
common problem in designing lock-free data structures [18].

In this paper, we look at obstruction-free STM algorithms
as an inspiration for developing an STM system for GPUs.
We present OFG-STM, a software transactional memory sys-
tem for GPUs based on obstruction-free STM algorithms.
The main idea of the system is to take advantage of the fact
that threads executing a kernel execute the same code, and
threads in a warp execute in lockstep, to introduce a garbage
collection phase every time several transactions have been
committed. This paper describes the design and implementa-
tion of OFG-STM, and presents experiments with the current
prototype of the system, implemented in CUDA, using the
Bank benchmark [23, 29], a benchmark used to evaluate
other STM systems for GPUs.

This paper is organized as follows: Section 2 presents some
background on transactional memory and obstruction-free
STM algorithms. Section 3 describes the main contribution
of this paper, the OFG-STM system. Section 4 presents ex-
periments comparing OFG-STM with an implementation of
the JVSTM algorithm for GPUs using the Bank Benchmark.
Finally, related works (Section 5) and Conclusions (Section
6) are discussed.

2 Background
2.1 Transactional Memory

As multiprocessor systems became more and more avail-
able, researchers started to think about new abstractions to
simplify concurrent programming. One such abstraction is
Transactional Memory (TM) [13, 14], which is a concurrency
abstraction that was first proposed as a hardware feature
[17] and was investigated on different computing architec-
tures such as CPUs [6-8], distributed systems [24, 26, 31],
and GPUs [19, 23, 29, 34]. The main idea is that program-
mers should access shared memory through transactions,
similar to database transactions, and the transactional run-
time system should guarantee that these accesses to shared
memory appear to be performed atomically concerning other
concurrent memory transactions executing in the system.
In an STM system, memory transactions can execute con-
currently, and if finished without conflicts, a transaction may
commit. Conflict detection may be eager if a conflict is de-
tected the first time a transaction accesses a value, or lazy
when it occurs only at commit time. With eager conflict detec-
tion, to access a value, a transaction must acquire ownership
of the value, preventing other transactions from accessing it,
also called pessimistic concurrency control. With optimistic
concurrency control, ownership acquisition, and validation

Tiago Perlin, Gerson Cavalheiro, and André Rauber Du Bois

occur only when committing. These design options can be
combined for different kinds of accesses to data, e.g., eager
conflict detection for write operations and lazy for reads.
STM systems also differ in the granularity of conflict detec-
tion, being the most common word-based and object-based.

STM systems need a mechanism for version management.
With eager version management, values are updated directly
in memory, and a transaction must maintain an undo log
that keeps the original values. If a transaction aborts, it uses
the undo log to copy the old values back to memory. With
lazy version management, all writes are buffered in a redo
log, and readers must consult this log to see earlier writes. If
a transaction is committed, it copies these values to memory,
and the redo log can be discarded if it aborts.

2.2 Obstruction-Free STM algorithms

In Obstruction-Free STM systems, every transacted memory
location is accessed through an abstraction called transac-
tional object (TMObject) [16] or versioned box [10]. Data that
transactions will access must be encapsulated in transac-
tional objects, which, during transaction execution, must be
open for reading or writing before their content can be ac-
cessed. A transaction typically opens a number of versioned
boxes in read/write mode, performs operations on their val-
ues, and then commits. As data is accessed only through
versioned boxes, the underlying STM system can guarantee
consistent and atomic access to it.

Internally, each transactional object points to a locator (see
Figure 1). Each locator has three fields: the owner that points
to the state of the transaction that last opened the object in
write mode; the new version, which is the owner’s view of
the object; and old version, that is the version of the object
before the owner opened it. The current version of the object
can be determined by the owner’s state: if the transaction is
COMMITTED, the current version is the new version, and if
the transaction is ABORTED or ACTIVE, the current version
is in its old version field.

Before a transaction can use a transactional object, it must
explicitly open it in write or read mode. When opening a
TMODbject in write mode, the transaction must acquire own-
ership of the object by substituting the current locator with
a new one. In the new locator, the owner field points to the
state of the transaction opening the object. The new version
and old version of the new locator contain a copy of the
object’s current version. A CAS (compare-and-swap) opera-
tion is used to substitute the current locator with the new
one. If the old owner is ACTIVE, then the transactional sys-
tem asks a contention manager to decide which transactions
should be aborted. A contention manager is a black box that
uses some heuristic to decide which transactions to abort
[13, 14, 28].

When a transaction opens a TMObject in read mode, it
simply consults the object’s locator to get its current version
and adds the object to its read set. Read sets are used to

OFG-STM: Transactional Memory for GPUs based on Obstruction-Free STM algorithms

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

Transaction

—+————*{ commrrTen]

TMObject Locator .
owner
new version —

old version

1':

]

Figure 1. Transactional object and locator

validate the state of the transaction to guarantee that it has
seen a consistent state and can commit.

This design makes it easy to update objects atomically
at commit time. As all objects opened by a transaction in
write mode point to the transaction’s state, we just need to
atomically change the transaction’s status from ACTIVE to
COMMITTED using a CAS operation to update the objects.
In the same way, if there is a conflict between two transac-
tions, we can abort one of them by atomically changing its
state from ACTIVE to ABORTED.

The ideas presented in this Section were first proposed by
Herlihy et al. in [16]. Variations of this design were imple-
mented in many STM systems, e.g., [15, 16, 21, 32].

3 OFG-STM: STM for GPUs inspired by
Obstruction-Free STM algorithms

The OFG-STM system is inspired by the Obstruction-Free
STM algorithms described in Section 2.2. Each GPU thread
can execute several transactions, one at a time, and as transac-
tions are garbage collected (see Section 3.4), all transactions
executed on the same thread use the same space for metadata.
Each transaction has a read-set and a write-set, which are
allocated to the thread’s shared memory, which is faster than
the global memory. The read-set is used for validating reads,
i.e., to check if a transaction has seen a consistent view of
memory. To ensure that the state of a transaction is always
consistent, the read-set is validated each time a new object
is opened. Unlike the Obstruction-Free STMs, presented in
Section 2.2, transactions also have a write-set. The write-set
is used to garbage-collect transactions so that their metadata
can be reused by other transactions executing on the same
thread (see Section 3.3). As transactions must be able to see
the state of other transactions to decide the correct versions
of objects, the state of all transactions is kept in an array on
global memory. Each transaction has a unique ID that can
be used to index the array of states to find its current state.
Every thread also has a queue of free locators accessed by
transactions whenever they need to open an object in write
mode. Since all transactions must view locators, they are
allocated on the global memory. The typical workflow of a
transaction is first to initialize its metadata, then a number of

objects are opened in read (Section 3.2) or write mode (Sec-
tion 3.1). Once objects are open, the transaction can read and
write to them freely with no overhead, and when finished
computing, it tries to commit (Section 3.3).

3.1 Opening objects for writing

In Figure 2, we can see the algorithm for opening a trans-
actional object for writing. Initially (lines 3 and 4), the trans-
action gets the current locator of the object to be opened
and asks the memory management system for a new locator
(n_locator) that will be used to substitute the current one.
If the current transaction is already the object’s owner, we
return the object’s current version (line 6). Otherwise, the
new locator’s state depends on the current owner’s state. If
the current owner is COMMITTED, the current version of
the object is in its locator’s new_version field, so the new
locator is initialized accordingly (lines 11 and 12). If the cur-
rent owner is ABORTED, the current version of the object
is in the locator’s old_version field. If the current owner is
ACTIVE (line 18), there is a conflict between the two trans-
actions, so we ask a contention manager (see Section 3.5)
to decide which transaction to abort. If the current trans-
action was not aborted (line 21), it means that the enemy
transaction was, so the new locator is initialized with the
old_version field of the owner. If the current transaction is
aborted, the new locator created is useless, so it is returned
to the memory management system (line 26). Finally, after
the new locator was initialized, __threadfence() is called
to guarantee that the updates done in the new locator are
visible to other transactions (line 31) and we try to substitute
the old locator for the new one using a compare and swap
operation (line 32). If successful, we validate the read set
to guarantee that the transaction still has a consistent view
of the memory and return the new version of the object.
Otherwise, the transaction is aborted.

3.2 Opening an object for reading

When opening an object for reading, a transaction must
check the state of the locator to get the correct version of the
object (Figure 3). If the object’s current owner has committed,
the current version is in the new_version field. Otherwise,

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

1 TX_Open_Write(stm_data, tx_data, object)

2 {

3 locator = get_locator(object)

4 n_locator = get_new_locator()

5 if (locator->owner == tx_data->tr_id)

6 return locator->new_version;

7 n_locator->owner = tx_data->tr_id;

8 n_locator->object = object;

9 switch (get_tr_state(locator->owner)) {

10 case COMMITTED:

1 n_locator->old_version = locator->new_version;
12 n_locator->new_version = n_locator->old_version;
13 break;

14 case ABORTED:

15 n_locator->old_version = locator->old_version;
16 n_locator->new_version = n_locator->old_version;
17 break;

18 case ACTIVE:

19 TX_contention_manager(stm_data, tx_data,

20 n_locator->owner, locator->owner))

21 if(get_tr_state(tx_data->tr_id) != ABORTED)

22 {

23 n_locator->o0ld_version = locator->old_version;
24 n_locator->new_version = n_locator->old_version;
25 } else {

26 free_locator(n_locator);

27 3

28 break;

29 }

30 if(get_tr_state(tx_data->tr_id) != ABORTED)
31 { __threadfence();

32 if (atomicCAS(stm_data->vboxes[object],

33 locator, n_locator))

34 {

35 if(TX_validate_readset(stm_data, tx_data))
36 { add_write_set(n_locator, object)

37 return n_locator->new_version;

38 } else {

39 abort_tr(stm_data, tx_data->tr_id);}
40 } else {

41 free_locator(n_locator);

42 }

43 return NULL;

4}

Figure 2. Opening an object for writing

if the transaction is active or aborted, the current version
is in the old_version field. After discovering the object’s
current version, the transaction validates its read set to verify
that the objects it has read so far have not changed, in which
case the transaction has a consistent view of memory and
can proceed. Otherwise, the transaction aborts.

3.3 Committing a transaction

The commit operation in obstruction-free STMs is very cheap
compared to other lock-based algorithms. As in OFG-STM

Tiago Perlin, Gerson Cavalheiro, and André Rauber Du Bois

1 TX_Open_Read(stm_data, tx_data, object)

2 {

3 locator = get_locator(object)

4 switch (get_tr_state(locator->owner)) {
5 case COMMITTED:

6

version = locator->new_version;
7 break;
8 case ABORTED:
9 version = locator->old_version;
10 break;
11 case ACTIVE:
12 version = locator->old_version;
13 break;
14 }
15 if(TX_validate_readset(stm_data, tx_data))
16 {
17 add_read_set(tx_data, object, locator, version);
18 return version;
19 }
20 abort_tx(tx_data);
21 return NULL;
2 3

Figure 3. Opening an object for reading

1 TX_commit(stm_data, tx_data)

2 {

3 __threadfence();

4 if(atomicCAS(tr_state(tx_data->tr_id),
5 ACTIVE |,

6 COMMITTED))

7 {

8 TX_free_locators(stm_data, tx_data);
9 return 1;

10 }

11 return 0;

12}

Figure 4. Committing a transaction

every time a transaction opens an object in write mode, it
has to validate its read set; when a transaction opens its last
object for writing, the transaction is in a state where it owns
all objects to be written and also has a consistent view of
memory, and that is the transactions serialization point in
time. Hence, to commit a transaction, we only have to change
its state from ACTIVE to COMMITTED, using a compare-
and-swap operation (Figure 4). If the transaction is still active,
the CAS operation will succeed, and its changes to memory
will be automatically available to all other transactions. If
the CAS operation fails, it means that the transaction is no
longer active and was aborted by other transactions due to
conflicts.

To help OFG-STM’s garbage-collection (see Section 3.4),
when a transaction commits, it must also free the locators it
has created, which are present in its write-set. This process

OFG-STM: Transactional Memory for GPUs based on Obstruction-Free STM algorithms

changes the owner field of the locators to point to the state
of a dummy transaction, which is always committed. This
process guarantees there are no references to the committing
transaction, and its memory space can be used to execute
another transaction in the same thread.

3.4 Garbage-Collection

Obstruction-Free STMs are challenging to implement in
languages with no garbage-collection due to the difficulty
in managing locators. When a transaction opens an ob-
ject in write mode, it must substitute the current locator
of the TMObject. Although the old location is now garbage,
we can not reuse it as other transactions might have it in
their read set. This is a common problem in designing lock-
free/obstruction-free algorithms for CPUs [18], and there
are many solutions to it, like reference counting [20], hazard
pointers [22] and epoch-based reclamation [2]. The main
problem with these techniques is that they are heavily based
on atomic operations, which are very expensive for GPUs.

In OFG-STM, we take advantage of the fact that on the
GPU, threads executing the same kernel execute the same
code, and threads in the same warp execute in lockstep, to
introduce a garbage-collecting phase during execution. The
idea is that threads synchronize to garbage collect their lo-
cators after executing several transactions. Synchronization
is achived using CUDA’S Cooperative Groups '. Each thread
in the STM system starts with a fixed number of locators,
which can be used during the lifetime of a thread to perform
transactions. These locators are stored in a queue, one for
each thread. When a transaction calls get_new_locator ()
in the TX_Open_Write primitive (see Figure 2), the locator
at the top of the queue is returned, and the queue advances.
If a transaction is aborted, in some cases, it can return an
unused locator to the queue (see lines 26 and 41 of Figure 2).

Locators were extended with an extra field object (see
Figure 6) that points to the TMObject that the locator protects
to allow garbage collection. Garbage collection proceeds by
passing through the used locators in the queue of locators,
checking if each TMODbject pointed by the locators still con-
tains the respective locator. If not, the locator is garbage and
can be reused.

3.5 Contention Management

A contention manager (CM) is a black box responsible for
deciding which transaction should continue when two trans-
actions conflict. There are only two requisites for contention
managers in obstruction-free algorithms [27]: they must be
non-blocking, and a transaction must, after a finite number
of tries, eventually be granted permission to abort an enemy
transaction.

In the current prototype of OFG-STM, we employ a simple
contention manager that favors the transaction that has done

Lhttps://developer.nvidia.com/blog/cooperative-groups/

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

more work. For that, it compares the size of the write set
of both transactions and aborts the transaction with the
smaller set. If both write sets are the same size, it aborts the
transaction that has been aborted fewer times up until now.
There are some contention managers explicitly designed for
GPUs, e.g., [29, 30], and we plan, in the future, to investigate
how these techniques could be applied in the OFG-STM
system.

4 Experiments

To evaluate the current prototype of OFG-STM, written in
CUDA, we have implemented the Bank benchmark, a bench-
mark used evaluate transactional memory for GPUs in other
works [23, 29]. The bank benchmark simulates a bank that
manages a number of accounts, that begin with an initial
balance, and also provides two operations: (i) transfer, which
transfers an amount of money between two accounts, and (ii)
balance, which reads the balance of an account. To stress the
system, in all experiments presented, OFG-STM each thread
performs garbage collection after every transaction commit-
ted. Also, each thread starts with 4.500 locators to be used
by its transactions. This value was obtained by executing
the worst case scenarios and counting how many locators
were needed. The reader should notice that, to execute 1024
threads, the total size of the global memory occupied by loca-
tors is approximately 27.5 Megabytes. The experiments were
carried out on an AMD Ryzen 7 5700X 8-Core Processor,
with an NVIDIA GP102 TITAN Xp, 12 GB, 3840 cores, run-
ning Ubuntu Server Linux kernel 6.5.0-28, and nvcc version
V12.0.140. As a baseline for comparison, we are using an
implementation of the JVSTM transactional memory algo-
rithm [10] modified for GPU execution, taken from [23]. The
JVSTM algorithm was designed for applications in which
most transactions are read-only and uses locks at commit
time.

The application is executed for 5 seconds for each case
scenario, and then the throughput, given in commits per
second, is computed. Each application instance was executed
30 times, and the average throughput is used in the graphs.
In the experiments of Figure 5, 1024 threads are concurrently
executing transactions that modify the state of the bank in a
grid comprised of 32 blocks with 32 threads. The experiment
is executed in two scenarios, a high-contention one with
100K bank accounts and a low-contention scenario with 10M
accounts. The experiment shows how throughput varies
when we increase the number of bank accounts accessed
per transaction. As expected, it is possible to see that when
contention rises, i.e., each transaction accesses more objects,
the throughput decreases. The reader should notice that, with
100K bank accounts, when transactions access 120 objects
in the worst-case scenario, the total number of accounts
concurrently accessed by transactions is higher than the

https://developer.nvidia.com/blog/cooperative-groups/

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

150000
100000

50000

0 I . || | —

20 40 60 80 100 120
accounts per transaction

throughput (tx/s)

wstv [} oFe-sv

(a) 100,000 accounts and 80% read-only transactions

100000

50000 I

i AR
40 60 80 100 120

20

throughput (tx/s)

accounts per transaction

JVST™M . OFG-STM

(c) 10,0000,000 accounts and 80% read-only transactions

Tiago Perlin, Gerson Cavalheiro, and André Rauber Du Bois

Q

& 75000

2 50000

S

3 25000 .

é 0 - | — —
20 40 60 80 100 120

accounts per transaction

wstv [} oFe-s™

(b) 100,000 accounts and 20% read-only transactions

75000

50000
I in
! H m
20 40 60 80 100 120

accounts per transaction

throughput (tx/s)

JVST™M . OFG-STM

(d) 10,0000,000 accounts and 20% read-only transactions

Figure 5. Throughput of the bank application varying the number of objects accessed by each transaction.

Locator

owner

new version

old version

object

Figure 6. New locator structure

total number of bank accounts. In lower contention, both
systems present higher throughput.

In the experiments of Figure 7, the number of bank ac-
counts accessed by each transaction was fixed at 30, and
we varied the number of transactions executed concurrently
using the high and low-contention scenarios. In general,
when the number of concurrent threads increases, also the
throughput increases.

As the JVSTM algorithm was designed for read-dominant
scenarios, in the last experiment, we wanted to compare

both systems when we increased the percentage of read-
only transactions. The experiments were carried out with
1024 transactions, each accessing 30 bank accounts, and the
results are presented in Figure 8. As it is possible to see in
the graphs, the difference between OFG-STM and JVSTM
decreases as we increase the number of read-only transac-
tions, but JVSTM is faster than OFG-STM only with 100%
read-only transactions.

5 Related Work

The first STM system for GPUs was [3], which was limited
because it only allowed one transaction for each thread block.
The main problem with the approach is that it can not deal
with the large workloads expected in a GPU.

GPUSTM [34] is a lock-based STM system for GPUs. It
combines timestamp-based and value-based validation, which
they call hierarchical-based validation. The system is inspired
by STM algorithms proposed initially for the CPU [6, 9].

PR-STM [29] implements a typical lock-based STM system
for GPUs that uses version numbers to validate reads. Each
transactional value in memory contains a version number

OFG-STM: Transactional Memory for GPUs based on Obstruction-Free STM algorithms SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

o o
X X 60000
< 100000 =
E_ é_ 40000
50000

3] °
o 2
< s 0

1024 1280 1536 1792 2048 1024 1280 1536 1792 2048

number of transactions number of transactions
wstv [} oFe-sv wstv [} oFe-s™
(a) 100,000 accounts and 80% read only transactions (b) 100,000 accounts and 20% read only transactions

¥ 150000 Y
s & 90000
5 100000 5
2 3 60000
5 5
2 50000 I 3 30000 I
o o
S 0 £= 0

1024 1280 1536 1792 2048 1024 1280 1536 1792 2048

number of transactions number of transactions
JVSTM . OFG-STM JVSTM . OFG-STM
(c) 10,0000,000 accounts and 80% read only transactions (d) 10,0000,000 accounts and 20% read only transactions

Figure 7. Throughput of the bank application varying the number of threads.

g 400000 9 200000
3 3
,‘5’ 300000 ,‘g 300000
% 200000 I _g 200000 I
3 100000 3 100000
o o
2 wmwwwwmnnll £ OIIIIIIIIII
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
read only transaction (%) read only transaction (%)
JVSTM . OFG-STM JVSTM . OFG-STM
(a) 100,000 accounts (b) 10,0000,000 accounts

Figure 8. Throughput of the bank application varying the probability of executing read-only transactions.

that is updated every time a committing transaction mod- favored. It uses a pre-locking scheme where transactions
ifies the value. Its main difference compared to STMs for register their intention to lock an object, and locks can be
the CPU is that it uses a priority-based contention manager. stolen by higher-priority transactions. Also, a contention
Each transaction has a different priority, and when a con- manager designed for the system was investigated in [30].

flict occurs, the transaction with a higher priority is always

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

In [19], the authors present the Lightweight Software
Transactions system for the GPU. The paper describes three
different variations of lock-based STM systems for the GPU.
ESTM is an eager system in which transactions acquire locks
of memory locations to be written at the first encounter.
PSTM treats reads in the same way as writes, acquiring locks
to secure that values read by a transaction are not modified.
ISTM makes reads invisible to other transactions so that
conflicts are reduced.

In [23], the authors present different implementations
of the JVSTM [10] transactional memory algorithm for the
GPU. The main idea of the JVSTM algorithm is to maintain a
linked list of older versions of an object at each transactional
object so that read-only transactions are never aborted. It
uses timestamps for version numbers, and a transaction uses
its starting time to know which versions of objects it can
access. In the paper, different versions of the system were
presented, one that uses locks at commit time (which was
used in the experiments of Section 4) and a client-server
variation of the algorithm that uses the system in [33] for
message-passing. Although the proposed scheme is good for
read-only transactions, it does not scale well when the num-
ber of updated transactions increases. In the experiments
presented in [23], transactions would update a maximum of
two memory locations.

The works mentioned in this section are all software-based
approaches for transactional memory on GPUs. There are
also several hardware based TMs for GPUs, e.g., [4, 5, 11, 12].
These systems try to avoid overheads imposed by STMs
through special-purpose hardware. The drawback of these
approaches is that they can not be executed on existing
GPUs.

6 Conclusions and Future Work

This paper presented OFG-STM, a transactional memory sys-
tem for GPUs inspired by obstruction-free STM algorithms.
The main difficulty in implementing obstruction-free STM al-
gorithms in languages with no automatic garbage collection
is managing locators, a structure used to acquire ownership
of objects. When transactions open objects in write mode,
they must substitute the locator of the object being opened
by a new one. Different transactions may point to a locator,
so it is difficult to know when they are garbage. To solve
this problem, we take advantage of the fact that all threads
executing a kernel execute the same code, some of them even
in lockstep, to introduce a garbage collection phase where
each thread collects its own locators.

As future work, we would like to investigate other con-
tention management policies, including those specifically
designed for GPUs, e.g., [29, 30], in conjunction with OFG-
STM. Contention management plays an important role in
obstruction-free STM algorithms [14], and we believe that

Tiago Perlin, Gerson Cavalheiro, and André Rauber Du Bois

OFG-STM could be improved with CM policies specially de-
signed for it. Furthermore, we would like to implement other
applications using OFG-STM, as for example, Memcached
[23] and also we would like to compare OFG-STM with other
STM systems for GPU.

Acknowledgments

This study was financed in part by the Coordenagéo de Aper-
feicoamento de Pessoal de Nivel Superior — Brasil (CAPES)
— Finance Code 001.

References

[1] Ehsan Atoofian and Amir Ghanbari Bavarsad. 2012. AGC: adaptive
global clock in software transactional memory. In Proceedings of the
2012 International Workshop on Programming Models and Applications
for Multicores and Manycores (New Orleans, Louisiana) (PMAM ’12).
Association for Computing Machinery, New York, NY, USA, 11-16.
https://doi.org/10.1145/2141702.2141704
Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free
Data Structures: There has to be a Better Way. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing (Donostia-San
Sebastian, Spain) (PODC ’15). Association for Computing Machinery,
New York, NY, USA, 261-270. https://doi.org/10.1145/2767386.2767436
Daniel Cederman, Philippas Tsigas, and Muhammad Tayyab Chaudhry.
2010. Towards a Software Transactional Memory for Graphics Proces-
sors . In Eurographics Symposium on Parallel Graphics and Visualization,
James Ahrens, Kurt Debattista, and Renato Pajarola (Eds.). The Euro-
graphics Association. https://doi.org/10.2312/EGPGV/EGPGV10/121-
129
Sui Chen and Lu Peng. 2016. Efficient GPU hardware transactional
memory through early conflict resolution. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 274—
284. https://doi.org/10.1109/HPCA.2016.7446071
Sui Chen, Lu Peng, and Samuel Irving. 2017. Accelerating GPU hard-
ware transactional memory with snapshot isolation. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
282-294. https://doi.org/10.1145/3079856.3080204
Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional Locking II. In
Distributed Computing, Shlomi Dolev (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 194-208.
Aleksandar Dragojevi¢, Rachid Guerraoui, and Michal Kapalka. 2009.
Stretching transactional memory. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (Dublin, Ireland) (PLDI °09). Association for Computing Machinery,
New York, NY, USA, 155-165. https://doi.org/10.1145/1542476.1542494
Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic
Performance Tuning of Word-Based Software Transactional Memory.
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP (02 2008). https://doi.org/10.1145/
1345206.1345241
Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic
Performance Tuning of Word-Based Software Transactional Memory.
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP (02 2008). https://doi.org/10.1145/
1345206.1345241
[10] Sérgio Miguel Fernandes and Jodo Cachopo. 2011. Lock-free and
scalable multi-version software transactional memory. SIGPLAN Not.
46, 8 (feb 2011), 179-188. https://doi.org/10.1145/2038037.1941579
[11] Wilson W. L. Fung and Tor M. Aamodt. 2013. Energy efficient GPU
transactional memory via space-time optimizations. In 2013 46th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
408-420.

[2

—

E

—

[4

—

(5

—_

G

—

[7

—

8

—

[

—

https://doi.org/10.1145/2141702.2141704
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.2312/EGPGV/EGPGV10/121-129
https://doi.org/10.2312/EGPGV/EGPGV10/121-129
https://doi.org/10.1109/HPCA.2016.7446071
https://doi.org/10.1145/3079856.3080204
https://doi.org/10.1145/1542476.1542494
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/2038037.1941579

OFG-STM: Transactional Memory for GPUs based on Obstruction-Free STM algorithms

(12]

(18]

(19]

[20]

[21

—

[22]

(23]

[24]

[25

[

[26]

[27

—

[28

—

[29]

Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M.
Aamodt. 2011. Hardware transactional memory for GPU architectures.
In 2011 44th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 296-307.

Rachid Guerraoui and Paolo Romano (Eds.). 2015. Transactional Mem-
ory. Foundations, Algorithms, Tools, and Applications. LNCS, Vol. 8913.
Springer.

Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional Memory,
2nd edition. Morgan and Claypool Publishers.

Maurice Herlihy, Victor Luchangco, and Mark Moir. 2006. A Flexible
Framework for Implementing Software Transactional Memory. In 21st
OOPSLA. ACM, 253-262.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer.
2003. Software Transactional Memory for Dynamic-Sized Data Struc-
tures (PODC 03). ACM, 92-101.

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory:
architectural support for lock-free data structures. SSIGARCH Comput.
Archit. News 21, 2 (may 1993), 289-300. https://doi.org/10.1145/173682.
165164

Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear.
2020. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Anup Holey and Antonia Zhai. 2014. Lightweight Software Trans-
actions on GPUs. In 2014 43rd International Conference on Parallel
Processing. 461-470. https://doi.org/10.1109/ICPP.2014.55

Richard Jones, Antony Hosking, and Eliot Moss. 2023. The garbage
collection handbook: the art of automatic memory management. CRC
Press.

Virendra J. Marathe, William N. Scherer, and Michael L. Scott. 2005.
Adaptive Software Transactional Memory. In DISC’05.

Maged M Michael. 2004. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491-504.

Diogo Nunes, Daniel Castro, and Paolo Romano. 2022. CSMV: A Highly
Scalable Multi-Versioned Software Transactional Memory for GPUs. In
2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 526-536. https://doi.org/10.1109/IPDPS53621.2022.00057
Jerénimo Ramos, Andre Rauber Du Bois, and Gerson Cavalheiro. 2023.
Obstruction-Free Distributed Transactional Memory. In Proceedings of
the XXVII Brazilian Symposium on Programming Languages (, Campo
Grande, MS, Brazil,) (SBLP °23). Association for Computing Machinery,
New York, NY, USA, 33-40. https://doi.org/10.1145/3624309.3624316
Torvald Riegel, Christof Fetzer, and Pascal Felber. 2007. Time-based
transactional memory with scalable time bases. In Proceedings of
the Nineteenth Annual ACM Symposium on Parallel Algorithms and
Architectures (San Diego, California, USA) (SPAA °07). Association
for Computing Machinery, New York, NY, USA, 221-228. https:
//doi.org/10.1145/1248377.1248415

Mohamed M. Saad and Binoy Ravindran. 2012. Transactional Forward-
ing: Supporting Highly-Concurrent STM in Asynchronous Distributed
Systems. In IEEE 24th SBAC-PAD. 219-226. https://doi.org/10.1109/
SBAC-PAD.2012.36

William Scherer and Michael Scott. 2005. Contention management in
dynamic software transactional memory. In Proceedings of PODC’05.
William N. Scherer and Michael L. Scott. 2005. Advanced contention
management for dynamic software transactional memory. In Pro-
ceedings of the Twenty-Fourth Annual ACM Symposium on Princi-
ples of Distributed Computing (Las Vegas, NV, USA) (PODC °05). As-
sociation for Computing Machinery, New York, NY, USA, 240-248.
https://doi.org/10.1145/1073814.1073861

Qi Shen, Craig Sharp, William Blewitt, Gary Ushaw, and Graham
Morgan. 2015. PR-STM: Priority Rule Based Software Transactions
for the GPU, Vol. 9233. 361-372. https://doi.org/10.1007/978-3-662-
48096-0_28

[30]

[31]

[32]

[33]

[34]

SBLP 24, Sept 30— Oct 4, 2024, Curitiba, PR

Qi Shen, Craig Sharp, Richard Davison, Gary Ushaw, Rajiv Ranjan,
Albert Y. Zomaya, and Graham Morgan. 2020. A general purpose
contention manager for software transactions on the GPU. }. Parallel
Distrib. Comput. 139, C (may 2020), 1-17. https://doi.org/10.1016/].
jpdc.2019.12.018

Konrad Siek and Pawel T. Wojciechowski. 2016. Atomic RMI: A Dis-
tributed Transactional Memory Framework. Int. Journal of Parallel
Programming 44, 3 (01 Jun 2016), 598-619.

Michael F. Spear, Virendra J. Marathe, William N. Scherer, and
Michael L. Scott. 2006. Conflict Detection and Validation Strategies
for Software Transactional Memory. In DISC.

Kai Wang, Don Fussell, and Calvin Lin. 2019. Fast Fine-Grained Global
Synchronization on GPUs. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 793-806.
https://doi.org/10.1145/3297858.3304055

Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, and Depei
Qian. 2014. Software Transactional Memory for GPU Architectures.
In Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (Orlando, FL, USA) (CGO ’14). Association
for Computing Machinery, New York, NY, USA, 1-10. https://doi.org/
10.1145/2581122.2544139

https://doi.org/10.1145/173682.165164
https://doi.org/10.1145/173682.165164
https://doi.org/10.1109/ICPP.2014.55
https://doi.org/10.1109/IPDPS53621.2022.00057
https://doi.org/10.1145/3624309.3624316
https://doi.org/10.1145/1248377.1248415
https://doi.org/10.1145/1248377.1248415
https://doi.org/10.1109/SBAC-PAD.2012.36
https://doi.org/10.1109/SBAC-PAD.2012.36
https://doi.org/10.1145/1073814.1073861
https://doi.org/10.1007/978-3-662-48096-0_28
https://doi.org/10.1007/978-3-662-48096-0_28
https://doi.org/10.1016/j.jpdc.2019.12.018
https://doi.org/10.1016/j.jpdc.2019.12.018
https://doi.org/10.1145/3297858.3304055
https://doi.org/10.1145/2581122.2544139
https://doi.org/10.1145/2581122.2544139

	Abstract
	1 Introduction
	2 Background
	2.1 Transactional Memory
	2.2 Obstruction-Free STM algorithms

	3 OFG-STM: STM for GPUs inspired by Obstruction-Free STM algorithms
	3.1 Opening objects for writing
	3.2 Opening an object for reading
	3.3 Committing a transaction
	3.4 Garbage-Collection
	3.5 Contention Management

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

