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Abstract
IaaS cloud providers are now a de facto alternative to HPC.
They offer a rich catalog of virtual machine instances with
high-end processors and accelerators connected through
advanced network technology. This makes it possible to
create cluster computing platforms rivaling the on-premises
alternatives. This paper presents an Infrastructure as Code
(IaC) approach to build parallel computing systems in Julia,
both hardware and software elements, benefiting users of
HPC applications in dynamic programming languages.

1 Introduction
Cloud computing platforms emerged as an alternative to
providing services for HPC applications [16, 33], with of-
fers at different abstraction levels, ranging from on-demand
infrastructure to building high-end clusters (IaaS) to domain-
specific end-user applications (SaaS), as well as high-level
support to develop and deploy applications (PaaS).
IaaS providers allow users to create clusters of virtual

machines with high-end processors, accelerators, and inter-
connections, taking advantage of state-of-the-art processing
power without worrying about the obsolescence of hardware
and scaling resources according to their current needs and
budget. The first cloud-based supercomputers reached the
top positions of Top500 [27] recently, with Microsoft Azure’s
Eagle [28] reaching the 3rd position in November 2023.
Julia is a dynamically compiled programming language

that emerged in the late 2000s for scientific and technical
computing applications [15]. It attempts to reconcile develop-
ment productivity and HPC requirements, making it possible
to write code that runs as fast as C or Fortran code [14, 34].

This paper contributes with an Infrastructure as Code (IaC)
approach to deploy cloud-based cluster computing resources
in Julia programs, where programmers declaratively create
clusters comprising a set of virtual machine (VM) instances
as compute nodes by specifying assumptions about their
features. As an alternative to specific description languages,
IaC benefits from a dynamic language like Julia for seamless
integration between developers and IaaS providers, making
it easier to deal with computationally intensive parallel code.

The product of this work is CloudClusters.jl, a Julia pack-
age for deploying clusters across multiple cloud providers

to run parallel code based on the Distributed.jl and MPI.jl
packages.CloudClusters.jl introduces contextual contracts on
top of Julia’s multiple dispatch to represent assumptions and
features for selecting instance types for cluster nodes. Using
PlatformAware.jl [21], the implementation of functions may
be tuned to exploit features of clusters and their nodes.

Two case studies are presented for a proof-of-concept eval-
uation of the IaC approach behind CloudClusters.jl. The first
comes from scientific computing: a Julia implementation of
the multizone version of the NAS Parallel Benchmarks (NPB-
MZ) [25]. The second one comes from artificial intelligence
(AI): parallel deep learning using Flux.jl, a widely used deep
learning package in Julia’s ecosystem.

This paper comprises fourmore sections. Section 2 presents
background and related works. Section 3 details the design
of CloudClusters.jl. Section 4 presents and discusses the case
studies and the proof-of-concept evaluation. Finally, Section
5 presents final remarks and lines for further works.

2 Background and Related Works
Cloud computing has become the backbone of today’s digi-
tal society. Through a wide variety of services, clouds have
something to offer for every use case. The abundance of
alternatives implies that even researchers in HPC, whose
goal is to extract all the potential performance from com-
puting platforms, soon realized cloud-based platforms as an
alternative to run parallel programs [16, 33].
The first experiments [2, 26] of using clouds for HPC

showed that although clouds offers powerful computing
resources, they had limitations, including the complexity
of configuration and environmental dynamicity that jeopar-
dized the assurance of QoS requirements. Nevertheless, cloud
providers have improved the suitability of their offerings for
HPC with tailored instance types and network connectiv-
ity [9, 10, 35]. Recently, the widespread interest in IA and
Deep Learning [13, 31] motivated further investments and
research that moved cloud-based HPC from a promise to a re-
ality [16, 33]. For example, Microsoft Azure’s Eagle and EOS
NVIDIA DGX SUPERPOD, both cloud-based systems aimed
at Deep Learning applications, recently reached the top 10
positions in the Top500 ranking of supercomputers [27].
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To tackle the complexity of configuration, cloud providers
support describing infrastructure resources as code (Infras-
tructure as Code - IaC). Instead of building clusters using
the web console or prompt commands, developers can use
declarative code to specify the characteristics of the comput-
ing nodes, interconnect networking, file system capacity, etc.
Researchers can put this description under version control
and recreate the environment whenever they need to run
an application [36]. The downside of this approach is that
the available tools, like Terraform [17], demand a specific
description language for templates, so the developers must
learn a new syntax instead of relying on the concepts of the
programming language they already use in the parallel code.

2.1 The Julia Programming Language
Julia is a programming language targeting scientific and
technical computing applications [15]. It is maintained as
an open-source project1 by the JuliaHub2 company and a
community of users, offering several packages for solving
problems in different domains of sciences and engineering3.
Julia aims to reconcile the productivity of dynamic lan-

guages like Python with the performance of native execution
languages like FORTRAN and C [14]. For that, it combines
the technology of just-in-time (JIT) compilation with a rich
type system [32] designed to support a dynamic multiple
dispatch mechanism for specifying and invoking different
methods of a function, which vary according to the type of
their formal parameters. This approach makes it possible for
the JIT compiler to generate efficient native code for methods
that satisfy the type stability property, for which the primi-
tive type of local variables, especially the ones returned by
the function, can be inferred from the parameter types [34].

2.1.1 Distributed-memory parallelism in Julia.

Julia supports distributed computing throughDistributed.jl4,
a built-in package mainly for distributed computing. A dis-
tributed Julia program comprises 𝑃 processes, numbered
from 1 to 𝑃 , where the process 1 is called master and the
processes from 2 to 𝑃 are called workers. Initially, the stan-
dalone program or REPL session initiated by the user has a
single master process, which may create worker processes
locally or in remote hosts/nodes by calling the addprocs func-
tion. Only the master process is allowed to call addprocs.
The procs, nprocs, workers, nworkers, and myid functions
may be used to inspect the number and identities of worker
processes, and they can be removed by calling rmprocs.
The interaction between the master and the worker pro-

cesses is one-sided through asynchronous remote evaluation
of expressions. To evaluate a Julia expression onto another

1https://github.com/JuliaLang/julia
2https://juliahub.com/
3https://juliahub.com/ui/Packages
4https://github.com/JuliaLang/Distributed.jl

process, one may invoke the @spawnat macro, passing the
process identifier and executing code as arguments. Immedi-
ately, a future value of Future type is returned, which may
be passed to the @fetch macro (or fetch function) to wait
and receive the result of the remote evaluation.
There are some variants of @spawnat, such as@spawn,

which executes the expression in an arbitrary worker, and
@fetchfrom, which combines calls to@spawnat and@fetch.
In turn, @everywhere evaluates an expression across all
workers or a subset of workers, useful for data parallelism.
Finally, the remotecall function provides support for asyn-
chronous remote invocation of functions, with synchronous
variations, remotecall_fetch and remotecall_wait, applied for
functions that return and do not return a value, respectively.
Distributed.jl also offers high-level operations for distribut-
ing data and computations across workers, such as @dis-
tributed and pmap, implementing the map/reduce paradigm.
The host where each worker process is instantiated is

determined by passing a cluster manager as the first argu-
ment to addprocs. A cluster manager is an abstraction for
the distributed environment where worker processes will be
instantiated. So, addprocs has a different method for each
cluster manager, selected through multiple dispatch. Julia
provides two built-in cluster managers: LocalManager, for
launching additional workers on the same host of the master
process, and SSHManager, for launching workers on remote
hosts that accept ssh authentication.
The ClusterManager.jl5 package provides cluster man-

agers for common job queue systems used on clusters, such
as Slurm, Kubernetes, LSF (Load Sharing Facility), SGE (Sun
Grid Engine), PBS (Portable Batch System), etc. In turn,MPI-
ClusterManagers.jl6 provides support for message-passing
interaction among worker processes through MPI.jl. This
third-party Julia package implements MPI [23], a standard
message-passing library widely used in HPC.

2.2 Related Works
ElastiCluster [30] and ParallelCluster [4] are popular projects
for creating HPC clusters on clouds through the IaC ap-
proach. Although they differ on the technological stack, their
usage is similar. Users must define the cluster characteris-
tics in a separate file. For ElastiCluster, the configuration
file has the .ini format, while ParallelCluster uses YAML.
They do not interact directly with the cloud. For that, they
rely on other industry-leading projects to create clusters.
ElastiCluster employs Ansible [5], and ParallelCluster uses
CloudFormation [8]. Besides learning the syntax of the input
file, the researcher interacts with the command line interface
and uses SSH to log into the cluster and submit applications.
Recently, projects like HPC@Cloud [29] have improved

the scheme of ElastiCluster and ParallelCluster with cost

5https://github.com/JuliaParallel/ClusterManagers.jl
6https://github.com/JuliaParallel/MPIClusterManagers.jl
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Figure 1. MW and PW clusters

management and elasticity support but still rely on Ter-
raform, suffering from the same issues regarding the use of
separate configuration languages. vClusters [3] has a similar
approach but fully embraces the Cloud Native and DevOps
development philosophies. With Kubernetes [6], administra-
tors can create pipelines for deploying HPC applications on
supercomputers and clouds with minimal user configuration.
This is closer to allowing the researcher to focus on the ap-
plication code but requires an established operations team,
which is uncommon in many research facilities.

MCMPI [1] allows the programmer to create clusters and
add or remove nodes (elasticity) directly through code with-
out recompilation for MPI applications written in C. The
researcher may use several clusters at once, but currently,
MCMPI only supports AWS as a cloud provider. Even though
the message-passing paradigm continues to be widespread,
developers with parallel applications that do not adhere to it
will have difficulty using MCMPI.

Users without the support of an operations team who
want to uniformize the application and infrastructure code
can use the cloud provider’s software development kit (SDK),
if any. Most cloud providers release SDKs for different pro-
gramming languages. However, they are hardly good choices
since they are merely a layer over the cloud REST services,
providing poor abstractions and doubtful maintainability.

3 The CloudClusters.jl package
We have developed the CloudClusters.jl for deploying cloud-
based clusters in Julia programs package7. It provides a set
of macros and functions to create clusters of virtual machine
(VM) instances, the cluster nodes, through the services of
IaaS cloud providers. For that, the users specify a contextual
7https://github.com/PlatformAwareProgramming/CloudClusters.jl

contract declaring a set of assumptions about features of
these instances to guide the selection of instance types. Also,
they take advantage of the seamless integration with Dis-
tributed.jl to execute computations on the deployed clusters.
The current prototype of CloudClusters.jl only supports

creating clusters through the Amazon’s EC2 services [7],
using the third-party AWS.jl package [18].

Contrarywise to the alternatives described in Section 2.2,
CloudClusters.jl introduces an IaC approach where the code
that configures and instantiates the clusters is specified us-
ing the same language used to write the code of the parallel
algorithms that these clusters will execute. Also, it innovates
by using contextual contracts [20] to specify cluster features.
With contextual contracts, users of CloudClusters.jl may ad-
here to the view of parallel computing system, where they are
concerned not only with the software aspects in the imple-
mentation of parallel algorithms but also with the hardware
aspects, i.e., the features of parallel computing platforms
where the code can execute efficiently by exploiting these
features. This approach encourages platform-aware program-
ming, i.e., code writing by making assumptions about the
features of the target execution platforms. Indeed, Cloud-
Clusters.jl is being integrated to PlatformAware.jl, a Julia
package for structured platform-aware programming [21].

The fundamental macros offered by CloudClusters.jl are:

• @cluster, to specify a set of assumptions about a pre-
defined set of cluster features, through a contextual
contract, which will guide the creation of clusters of
the following types, depicted in Figure 1:
– manager-workers (MW), with a homogeneous set
of compute nodes (workers) and a manager node
through which worker nodes may be accessed.

– peer-workers (PW), with a homogeneous set of di-
rectly accessible compute nodes (peers).

• @resolve, to resolve a contextual contract specified
by a@cluster declaration by finding which instance
type satisfies the assumptions specified in the con-
tract for worker and manager nodes of MW clusters
or worker nodes of PW ones;

• @deploy, to create a cluster from a resolved contex-
tual contract by invoking the selected IaaS provider,
putting it in the running state by instantiating VM in-
stances (cluster nodes) of the instance types calculated
in the contract resolution.

• @interrupt, to move a cluster from the running state
to the interrupted state, pausing the use of cloud re-
sources (e.g., the virtual machine instances that com-
prise their nodes);

• @resume, the inverse of @interrupt, i.e., to move an
interrupted cluster back to the running state;

• @terminate, to move a cluster from the running or
interrupted state to the terminated state, where all the
cloud resources used by the cluster are freed.
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Figure 2. Lifecycle of contracts and clusters

contract_x = @cluster cluster_type=ManagerWorkers ⟨more assumptions⟩
contract_y =@cluster cluster_type=PeerWorkers ⟨more assumptions⟩

@resolve contract_x contract_y # resolve both contracts
@resolve contract_y # no effect

cluster_a, pid_master_1 = @deploy contract_x # 1st cluster
cluster_b, pids_peers_2 = @deploy contract_y # 2nd cluster
cluster_c, pid_master_3 = @deploy contract_x # 3rd cluster

launch computations over the three clusters using Distributed.jl

@terminate cluster_a cluster_c # 1st and 3rd clusters terminated
@interrupt cluster_b # 2nd cluster not necessary at this time

@resume cluster_b

launch computations on the second cluster

@terminate cluster_b # no active clusters from this point

Figure 3. Creating clusters

The diagram of Figure 2 depicts the states of the lifecycle
of clusters and their contracts. Also, Figure 3 illustrates the
operations by creating and using three clusters from two
contracts. Contextual contracts are described in Section 3.1.

The @cluster and @resolve macros are designed to work
in an interactive environment, such as Julia’s REPL interface.
For that, a call to@cluster returns a fresh symbol to make
the role of a contract handle. After the call, such a handle of
an unresolved contract can be applied in a call to@resolve
to resolve it. The@resolve invocation is idempotent, i.e., it
has no effect when applied to a resolved contract. Finally, the
handle of a resolved contract can be applied in a call to deploy
to create a cluster. A call to @deploy also returns a cluster
handle, which may be applied to @interrupt, @resume, and
@terminate macros. Notice that multiple cluster instances
may be deployed from the same cluster contract.

Besides the cluster handle,@deploy also returns a single
integer number or a list of integer numbers. They correspond
to process identifiers (pid) of Distributed.jl processes. For
a MW cluster, it is the pid of the process running in the
manager node of the cluster, while they are pids of processes
running in the peer nodes of the cluster in the case of PW
clusters. In a MW cluster, remember that the processes at
the worker nodes are only accessible from the process at the
manager node that created them.
It is worth noticing that MW clusters are only possible

with an extension of Distributed.jl8 we have developed to
8The modified version of the standard Distributed.jl package is currently
hosted at https://github.com/PlatformAwareProgramming/Distributed.jl.

make it possible to create processes from worker processes
in distributed Julia programs, removing a restriction of ad-
dprocss. In the standard implementation of Distributed.jl,
worker processes cannot make calls to addprocs, i.e., only
the master process can create processes. We have found this
extension is necessary to make it possible for Julia users to
access clusters whose access from an external network to
compute nodes is only possible through its master node. This
is the case of most on-premises clusters, which do not offer
IPv6 addressing to make compute nodes accessible, as well
as a possible restriction in cloud providers where the use of
public addresses incurs costs that the clients want to avoid.

CloudClusters.jl and Distributed.jl are fully integrated so
that users may execute parallel code in the clusters through
remote function invocation operations supported by Dis-
tributed.jl, which also give support to the communication
between these clusters. Moreover, for MW clusters, processes
at worker nodes can exchange messages through MPI, us-
ing theMPI.jl andMPIClusterManagers.jl packages. How-
ever, communication with processes at other clusters is only
possible through the process at the master node. In fact, us-
ing CloudClusters.jl, a user may aggregate the computation
power of multiple clusters running in the infrastructure of
distinct cloud providers, forming multicluster environments.

3.1 Contextual Contracts
Contextual contracts come from HPC Shelf, a proposal of a
component-oriented platform to offer HPC services through
clouds [20]. For CloudCluster.jl, contextual contracts may
be defined as a set of context parameters 𝑛 : 𝜏 , where 𝑛 is the
name of the context parameter and 𝜏 denotes an assumption
about a feature of a cluster (or node). Assumptions are repre-
sented by a system of platform types with a subtyping rela-
tion (<:) between them, where assumptions in the leaf of the
subtyping hierarchy represent features. Finally, a resolution
mechanism matches contracts and instance types offered by
the supported IaaS providers so that, from a given contextual
contract C specifying a set of assumptions {A𝑖 | 𝑖 = 1. . .𝑛},
it may find one or more instance types whose set of fea-
tures {F𝑖 | 𝑖 = 1. . .𝑛} specified by their contracts satisfy the
assumptions of C. We say F𝑖 <: A𝑖 , for 𝑖 = 1. . .𝑛.

CloudClusters.jl assumes that a cluster is associated with
a contextual contract with a subset of parameters represent-
ing assumptions about features of the instance type used
to implement their nodes (instance features). To implement
qualifier types (assumptions and features), it employs the
approach of PlatformAware.jl, a Julia package for structured
platform-aware programming [21], where Julia types repre-
sent qualifier and quantifier types.
With platform types, contract resolution may be imple-

mented through Julia’s dynamic multiple dispatch. For that,
in the first loading of CloudCluster.jl, a set of methods for
a function called resolve are dynamically created through
metaprogramming for each instance type of each IaaS cloud
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provider supported, whose features are described in CSV files
stored in the PlatformAware.jl repository for each provider.
In the prototype used for the proof-of-concept evaluation
reported in this paper, there are 795 methods for the resolve
function, one for each instance/machine type of EC2 and
GCP providers9. The parameters of each resolve method
specify the features of an instance type. For example, the
following method is called for selecting the EC2’s instance
type g4dn.xlarge from a set of compatible assumptions 10:

function resolve (node_provider::Type{>:AmazonEC2},
node_machinetype::Type{>:EC2Type_G4DN_xLarge},
node_memory_size::Type{>:Tuple{AtLeast16G, AtMost16G, 1.7e10}},
node_vcpus_count::Type{>:Tuple{AtLeast4, AtMost4, 4.0}},
accelerator_count::Type{>:Tuple{AtLeast1, AtMost1, 1.0}},
accelerator_type::Type{>:GPU},
accelerator_architecture::Type{>:Turing},
accelerator_manufacturer::Type{>:NVIDIA},
accelerator::Type{>:NVIDIATesla_T4},
processor::Type{>:IntelXeon},
processor_manufacturer::Type{>:Intel},
processor_microarchitecture::Type{>:IntelMicroarchitecture},
storage_type::Type{>:StorageType_SSD},
storage_size::Type{>:Tuple{AtLeast64G, AtMost128G, 1.3e11}},
network_performance::Type{>:Tuple{AtLeast0, AtMost32G, 2.7e10}})

return “g4dn.xlarge”
end

Thus,@resolve calls the resolve function to select an in-
stance type from a set of assumptions that it specifies through
the arguments. For example, consider the following@resolve
call, which attempts to select an EC2 instance type with a
single NVIDIA’s Tesla GPU of Turing architecture, as well
as between 16GB and 32GB of host memory:

my_contract = @cluster cluster_type => PeerWorkers
node_provider => PlatformAware.AmazonEC2
node_memory_size => (PlatformAware.@between 16G 32G)
accelerator => PlatformAware.Tesla
accelerator_count => (PlatformAware.@just 1)
accelerator_manufacturer => PlatformAware.NVIDIA
accelerator_architecture => PlatformAware.Turing

@resolve my_contract

For that, it generates the following call to resolve:

resolve (AmazonEC2, # node_provider
MachineType, # node_machinetype
Tuple{AtLeast16G, AtMost32G,𝑀} where𝑀 , # node_memory_size
Tuple{AtLeast1, AtMostInf, 𝑋 } where 𝑋 , # node_vcpus_count
Tuple{AtLeast1, AtMost1, 𝑋 } where 𝑋 , # accelerator_count
GPU, # accelerator_type
Turing, # accelerator_architecture
NVIDIA, # accelerator_manufacturer
Tesla, # accelerator
ProcessorModel, # processor
Manufacturer, # processor_manufacturer
ProcessorMicroarchitecture, # processor_microarchitecture
StorageType, # storage_type
Tuple{AtLeast0, AtMostInf, 𝑋 } where 𝑋 , # storage_size
Tuple{AtLeast0, AtMostInf, 𝑋 } where 𝑋 # network_performance)

By dynamic multiple dispatch, the resolve method that se-
lects the g4dn.xlarge instance type is called since it satisfies
the assumptions. Dynamic multiple dispatch imposes that

9In the current prototype, the support for deploying clusters using the GCP
(Google Computing Platform) IaaS provider is not yet support.
10In this code, Type{>:𝑇 }, for Julia’s type𝑇 , denotes the type including all
the supertypes of𝑇 .

name instance default typefeature ?
node_count no Integer
node_process_count no Integer
node_provider yes CloudProvider
cluster_locale yes Locale
node_machinetype yes InstanceType
node_memory_size yes @atleast 0
node_ecu_count yes @atleast 1
node_vcpus_unit yes @atleast 1
accelerator_count yes @atleast 0
accelerator_memory yes @atleast 0
accelerator_type yes AcceleratorType
accelerator_arch yes AcceleratorArchitecture
accelerator yes AcceleratorModel
processor yes ProcessorModel
processor_manufacturer yes Manufacturer
processor_microarchitecture yes ProcessorArchitecture
storage_type yes StorageType
storage_size yes @atleast 0
network_performance yes @atleast 0
image_id no String
user no String
key_name no String
subnet_id no String
placement_group no String
security_group_id no String

• The instance features are the ones used by the contract resolution proce-
dure for selecting the instance type of cluster nodes;

• In the case of MW clusters, distinct instance features may be provided
separately for the master and the worker nodes;

• Only node_count is mandatory, denoting the number of worker nodes
for MW clusters or peer nodes for PW clusters.

Table 1. context parameters

only a single instance must satisfy the assumptions. Other-
wise, it causes an ambiguity error. This is the main drawback
of Julia’s multiple dispatch for contract resolution.
Table 1 presents the feature types supported by the cur-

rent prototype of CloudClusters.jl, highlighting the instance
features that form the signature of the resolve methods.

3.2 Usage example
A user is interested in building a PW cluster whose nodes
are equipped with at least four GPUs of NVIDIA’s Ampere
architecture. First, it may query CloudClusters.jl to check if
the supported cloud providers offer some instance type that
satisfies this assumption by running the following command
through Julia’s REPL:
query_result = @select accelerator_count=>(@atleast 4)

accelerator_architecture=>PlatformAware.Ampere

The current version of CloudClusters.jl uses the instance
type database of PlatformAware.jl. So, it returns, through
the query_result variable, a dictionary presenting the fea-
tures of five instance types: g5.12xlarge, g5.24xlarge, g5.48xlarge,
p4de.24xlarge, and p4d.24xlarge. They are accelerated instance
types offered by the AWS EC2 provider.

If the user executes @cluster over the above assumptions,
followed by @resolve, the resolution fails due to ambiguity
since it cannot decide which instance type to select:
my_contract = @cluster cluster_type => PeerWorkers

accelerator_count => (@atleast 4)
accelerator_architecture => PlatformAware.Ampere

@resolve my_contract

https://github.com/PlatformAwareProgramming/PlatformAware.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl
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Figure 4. Multizone NPB’s Architecture (SP, BT, LU)

As mentioned, this behavior results from using Julia’s
multiple dispatch to implement the contract resolution. To
complete the resolution successfully, the user may either
select an instance type explicitly or add new assumptions
that make @select return a single instance type. Both cases
are illustrated below:
contract_1 = @cluster cluster_type=>PeerWorkers

node_machinetype=>PlatformAware.EC2_G5_12xLarge

contract_2 = @cluster cluster_type => PeerWorkers
accelerator_count => (@just 4)
accelerator_architecture => PlatformAware.Ampere
node_memory_size => (@atmost 256G)

@resolve my_contract_1 my_contract_2 # both return only “g5.12xlarge”

Using the first contract, g5.12xlarge is directly selected
to satisfy the assumptions. The result is the same using the
second contract, with two restrictions added. First, the peer
nodes must have 4 GPU devices, excluding p4d.24xlarge,
p4de.24xlarge, and g5.48xlarge instance types, which offer 8
GPUs per instance. Second, peer nodes must have at most
256GB of memory, excluding g5.24xlarge.

4 Case Studies
Two case studies have been designed as a proof-of-concept
forCloudClusters.jl. The first employsMWclusters for multi-
cluster parallelism in a Julia implementation of a well-known
parallel computing benchmark suite. The second employs
PW clusters for distributed deep learning using Flux.jl.

4.1 Multizone NPB
NPB (NAS Parallel Benchmarks) is a benchmark suite de-
veloped in the early 1990s that became popular for evaluat-
ing parallel computing platforms and programming inter-
faces [11, 22]. It comprises a set of programs and standard
problem classes that evolved over time, now including offi-
cial serial and parallel versions written in C, Fortran, HPF,
and Java, with parallel versions targeting both distributed-
memory and shared-memory parallel computers.

This case study uses themulti-zone version of NPB (NPB3.4-
MZ-MPI) [24, 25], including the simulated applications SP,

using CloudClusters, PlatformAware, NPBApps

contract_1 = @cluster cluster_type => ManagerWorkers
cluster_location => PlatformAware.EC2Region_USEast1
node_count => 4
node_machinetype => PlatformAware.EC2Type_T3
node_memory_size => (@atleast 16G)

contract_2 = @cluster cluster_type => ManagerWorkers
cluster_location => PlatformAware.EC2Region_SAEast1
node_count => 4
node_machinetype => PlatformAware.EC2Type_T3
node_memory_size => (@atleast 16G)

@resolve contract_1 contract_2

cluster_1, _ = @deploy contract_1
cluster_2, _ = @deploy contract_2

function run_experiment(N)
for npb in [SP, BT, LU]

npb.benchmark(npb.CLASS_C, N) # running benchmark N times.
end

end

@everywhere workers() @everywhere workers() using NPBApps

run_experiment(5) # run experiment with two clusters.

@terminate cluster_2

run_experiment(5) # run experiment with a single cluster.

Figure 5. Running SP, BT, LU over MW clusters

BT, and LU, where the grid is partitioned into zones dis-
tributed across the cluster’s nodes throughMPI. In each node,
zone processing is parallelized using OpenMP directives.

We have developed a Julia version of NPB3.4-MZ-MPI that
exploits multicluster parallelism at the first parallelism level
and cluster parallelism at the second level, whose architecture
is depicted in Figure 4. The set of zones is distributed across
clusters through Distributed.jl, which becomes responsible
for the data exchange between adjacent zones’ faces in dif-
ferent clusters. In a cluster, each zone is partitioned into
cells that are distributed across cluster nodes usingMPI.jl,
which is responsible for communication between the faces
of adjacent cells and zones assigned to the same cluster.
Figure 5 outlines the code for a scenario where a user

creates two clusters at different EC2 regions, US East (Vir-
ginia) and South America (São Paulo), to run an experiment
with SP, BT, and LU. Both clusters comprise four nodes of
t3.xlarge instance type. The experiment measures the impact
of inter-cluster communication, with clusters placed at dis-
tinct regions, for the problem size of class C. For adjacent
zones deployed at distinct clusters, the inter-zone face ex-
change is performed through Distributed.jl. Otherwise, for
adjacent zones in the same cluster, MPI.jl is used.

Table 2 presents the performance measures for the experi-
ment. The execution time is the average (𝜇) of three in five
executions, eliminating the two higher values. From a single
cluster to two clusters, the inter-zone communication cost
for SP and BT increased from inexpressive 4.32% and 1.54%
to highly significant 64.7% and 65.9%. For LU, the impact of

https://github.com/PlatformAwareProgramming/CloudClusters.jl
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seq 1 cluster 2 clusters
total total computation communication total computation communication
𝜇±𝜎 (s) 𝜇±𝜎 (s) 𝜇±𝜎 (s) 𝜇±𝜎 (s) fraction 𝜇±𝜎 (s) speedup 𝜇±𝜎 (s) speedup 𝜇±𝜎 (s) fraction

SP 240.9±2.81 361.0±12.0 345.4±12.0 15.6±0.09 4.32% 465.4±11.7 0.8 164.2±3.9 2.1 301.1±13.4 64.7%
BT 475.7±6.13 360.1±5.62 354.6±5.4 5.56±0.21 1.54% 480.6±20.5 0.8 163.7±6.0 2.2 316.8±26.3 65.9%
LU 87.8±0.29 109.6±1.9 109.1±1.95 0.5±0.01 0.45% 162.9±14.2 0.7 117.0±7.57 0.9 45.8±6.58 28.1%

Table 2. NPB-MZ performance measures

multicluster execution for inter-cluster communication is
lower, but it also increased significantly, from 0.45% to 28.1%.
The speedups are poor, between 0.7 and 0.8, due to the

high inter-cluster communication overheads. However, dis-
regarding inter-zone communication time, only considering
intra-cluster execution, SP and BT speedups are linear (2.0).
This is not true for LU due to a high increase in intra-cluster
communication for two clusters.

4.1.1 Discussion. The poor multicluster speedups are due
to the SP, BT, and LU parallelism model, not an intrinsic lim-
itation of CloudClusters.jl or multicluster execution. These
programs implement tightly coupled computations designed
to run efficiently in MPPs and clusters with low-latency in-
terconnections. Nobody would run such parallel programs
on multiple clusters expecting a significant speedup when
the communication between the clusters is intensive. In fact,
besides performing a proof-of-concept test and quantifying
communication overheads between cloud-based clusters in
an extreme scenario, this experiment evidences that it is only
justified to run tightly coupled parallel computations on mul-
tiple clusters when the problem size does not fit the memory
capacity of a single cluster and the schedule constraints re-
strictions for having the results available are compatible
with the overhead due to inter-cluster communication. For
example, a single cluster of t3.xlarge instances cannot run
problem classes D, E, and F. So the user must compare the
cost of using bigger (and costly) instance types or increasing
the cluster size by allocating more instances. However, allo-
cating more resources in the same region may be impossible
or restricted due to a lack of resources or cloud provider
policies. In this case, depending on the kind of parallel pro-
gram, the multicluster deployment feature allows the user to
benefit from allocating a cluster in either another region or
through another cloud provider to run a parallel program.

4.2 Distributed Deep Learning
In recent years, there has been a rapid increase in interest
in artificial intelligence (AI) applications, most of which is
explained by the evolution of machine learning techniques
for deep neural networks (DNNs). This led to the emergence
of many tools to support deep learning in programming lan-
guage ecosystems, especially Python.

using CloudClusters, PlatformAware, MLDatasets: CIFAR10

% build the cluster
contract = @cluster cluster_type => PeerWorkers

node_count => 𝑃 # for 𝑃 = 1, 𝑃 = 2, and 𝑃 = 4
node_process_count => 𝑁 # for 𝑁 = 1 and 𝑁 = 2
accelerator_count => @just(1)
accelerator_architecture => PlatformAware.Turing
accelerator_memory => @atleast(16G)

@resolve contract % EC2’s g4dn.xlarge will be selected
cluster, _ = @deploy contract

# call the distributed deep learning function over the deployed cluster
# • model: ResNet-18 (https://doi.org/10.1109/CVPR.2016.90)
# • dataset: CIFAR10 (https://www.cs.toronto.edu/ kriz/cifar.html)
teach_the_model(:resnet18, CIFAR10, cluster)

Figure 6. Running distributed training on a PW cluster

HPC techniques have also contributed to the success of
DNNs, using accelerators, especially GPUs and their vari-
ants. In a vicious cycle, the relevance of challenging IA ap-
plications has motivated the industry to invest in advancing
accelerator technology by developing new devices specially
designed to accelerate DNN training and inference, and IaaS
cloud providers have offered instance types equipped with
such AI accelerators to their customers. In the near future,
any computing device, from smartphones to personal com-
puters, will be equipped with neural processing units (NPUs).
Distributed computing complements accelerator-based

computing, enabling exploiting the combined performance of
multiple accelerators and processors to address challenging
AI applications [12]. As evidence, MPPs and clusters specially
designed for AI workloads have been classified in the Top500
ranking (June 2024), some now occupying the top positions,
such as Intel’s Aurora (#2), Microsoft Azure’s Eagle (#3), and
EOS NVIDIA DGX SUPERPOD (#10) systems.
Flux.jl is a package that enables machine learning using

deep neural networks (DNNs) in Julia programs [19]. In
this case study, a PW cluster comprising four workers is
deployed to study a distributed training strategy for a Flux.jl
implementation of the ResNet18 model to solve an image
classification problem over the CIFAR10 dataset, where each
worker has a dataset partition to train a copy of the global
model locally. Then, a new global model is generated by
combining the local models through an aggregation function.

This study aims to evaluate the impact of an aggregation
function that averages the model parameters on accuracy
improvement and overall training time. Figure 6 depicts the

https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/FluxML


SBLP’2024, October 1–4, 2024, Curitiba, PR, Brazil de Carvalho-Junior, F. H. and de Alencar, J. M. U.

nodes processes time★ speedup epochs time speedup
per epoch

seq - 1904 1.00 7 253 1.00
1 1 1854 1.03 7 252 1.00
1 2 1996 0.95 11 173 1.46
2 2 1571 1.21 11 132 1.93
2 4 1514 1.26 15 94 2.48
4 4 1310 1.45 16 75 3.38
4 8 2885 0.66 45 62 4.10

★ training time in seconds (disregarding accuracy testing time).

Table 3. Deep learning case study - performance results

code for that. The contract requires worker nodes with a
single NVIDIA Turing GPU and at least 16GB of memory.
The resolution returns the EC2’s g4dn.xlarge instance type,
equipped with a single Tesla T4 GPU.

The teach_the_model function performs distributed train-
ing. Since Flux.jl does not natively support distributed train-
ing, it is explicitly programmed by launching a set of 𝑃
worker processes at distinct cluster nodes usingDistributed.jl.
They traverse 𝑃 dataset partitions of the same size in parallel
at each epoch. After each epoch, the local models calculated
by the workers are aggregated in a global model by averaging
parameters. Then, the global model is sent to each worker
to start the next epoch. The computation ends when a 0.8
accuracy is achieved. The experiment has been performed
for 𝑃 equal to 1, 2, and 4. For each 𝑃 , two scenarios were
considered: one with a single process and another with two
processes at the same node, sharing the GPU. This resulted
in a total of 6 experimental cases. The training time (per
epoch) and the number of epochs (iterations) to achieve the
predefined accuracy (80%) are presented in Table 3.

In Figure 7, although the training time per epoch presents
a sublinear decrease with the number of processes, it is com-
pensated by the increase in epochs to achieve 0.8 accuracy.
Overall, the total training time is reduced until the number
of processes reaches 4, presenting a modest 1.45 speedup
across 4 nodes after 16 iterations, doubling the 7 iterations
needed by the sequential version. Indeed, for 8 processes on 4
nodes, the number of epochs to reach 0.8 accuracy increases
to 45, becoming slower than the sequential version, with a
0.66 speedup. The measures show overhead by placing 2 pro-
cesses in a single GPU to increase occupancy. For example,
the speedup achieved for 4 processes on 2 nodes was 1.26.

5 Conclusions
Infrastructure-as-Code (IaC) is a popular alternative for de-
scribing and deploying HPC clusters over clouds of infras-
tructure services. However, using specific-purpose config-
uration languages and separate tools for this purpose may
be cumbersome to many users, and SDKs aimed at IoC inte-
grated into programming languages, when they exist, offer
poor abstractions and doubtful maintainability.

iterations
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Figure 7. Convergence to 0.8 accuracy

CloudClusters.jl, the main artifact of this research work,
is a Julia package to exercise the idea of HPC programmers
using the same programming language to deal with software
and hardware elements of parallel computing systems in-
stead of thinking separately about them. Compared to config-
uration languages, this approach makes it easier to describe
and deploy the cluster infrastructure and execute parallel
code. In addition, such an approach encourages performance
engineering through platform-aware programming, i.e., pro-
gramming by making assumptions about the underlying
parallel computing platform features. For that, CloudClus-
ters.jl is integrated with PlatformAware.jl, a package of Ju-
lia’s ecosystem for structured platform-aware programming.

Another innovation behind CloudClusters.jl is using con-
textual contracts to describe assumptions about cluster fea-
tures and the resolution mechanism to create clusters from
these contracts. i.e., that satisfies contract assumptions. Im-
plementing contextual contracts on top of Julia’s type system
for using dynamic multiple dispatch to implement contract
resolution also deserves special attention.

The ideas behind CloudClusters.jl can be ported to other
programming languages through a library of functions/sub-
routines implementing the CloudClusters.jl primitives. Also,
using metaprogramming, if it is supported, one may em-
bed a DSL to increase abstraction. The main difficulty is
implementing contract resolution without dynamic multiple
dispatch. However, implementing contract resolution with-
out native multiple dispatch makes it possible to circumvent
some limitations, such as dealing with ambiguous contracts.
For example, like in the contextual contract system of HPC
Shelf [20], context parameters representing QoS and cost
assumptions could be introduced to resolve ambiguities in
the resolution of instance types that satisfy a contract. Dy-
namic multiple dispatch is also important in implementing
structured platform-aware programming, but research on
finding other ways to implement it is welcome.
CloudClusters.jl will be published in Julia’s ecosystem

after concluding its proof-of-concept studies, partially re-
ported in this paper. By then, we plan to include the Google
Cloud Platform (GCP) support. Finally, in-depth studies will
be performed on platform-aware programming in parallel
computing systems deployed through CloudClusters.jl.

https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl
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https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl
https://github.com/PlatformAwareProgramming/CloudClusters.jl


Cloud-based parallel computing across multiple clusters in Julia SBLP’2024, October 1–4, 2024, Curitiba, PR, Brazil

References
[1] C. A. T. Aguni, L. M. Sato, and E. T. Midorikawa. 2024. MCMPI: A

library with elasticity for multi-domain and public cloud environments.
Concurrency and Computation: Practice and Experience (2024).

[2] S. Akioka and Y. Muraoka. 2010. HPC Benchmarks on Amazon EC2. In
24th IEEE International Conference on Advanced Information Networking
and Applications Workshops. 1029–1034.

[3] S. R. Alam, M. Gila, M. Klein, M. Martinasso, and T. C. Schulthess.
2023. Versatile software-defined HPC and cloud clusters on Alps
supercomputer for diverse workflows. The International Journal of
High Performance Computing Applications 37, 3-4 (2023), 288–305.

[4] Amazon Web Services (AWS). 2024. AWS ParallelCluster - HPC for the
Cloud. https://github.com/aws/aws-parallelcluster

[5] Ansible. 2024. Ansible Collaborative. https://www.ansible.com
[6] The Kubernetes Authors. 2024. Kubernetes. https://kubernetes.io
[7] Amazon Web Services (AWS). 2024. Amazon Elastic Cloud Computing

(EC2). https://aws.amazon.com/ec2
[8] Amazon Web Services (AWS). 2024. AWS Cloud Formation. https:

//aws.amazon.com/cloudformation/
[9] AmazonWeb Services (AWS). 2024. High Performance Coputing. https:

//aws.amazon.com/hpc
[10] Microsoft Azure. 2024. Azure high-performance computing. https://

azure.microsoft.com/pt-br/solutions/high-performance-computing/
[11] D. H. Bailey and et al. 1991. The NAS Parallel Benchmarks. Interna-

tional Journal of Supercomputing Applications 5, 3 (1991), 63–73.
[12] T. Ben Nun and T. Hoefler. 2019. Demystifying Parallel and Distributed

Deep Learning: An In-depth Concurrency Analysis. ACM Computung
Surveys 52, 4 (Aug. 2019), 65:1–65:43.

[13] J. L. F. Betting, C. I. De Zeeuw, and C. Strydis. 2023. Oikonomos-II:
A Reinforcement-Learning, Resource-Recommendation System for
Cloud HPC. In 30th IEEE International Conference on High Performance
Computing, Data, and Analytics (HiPC). 266–276.

[14] J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek, and
L. Zoubritzky. 2018. Julia: Dynamism and Performance Reconciled
by Design. Proceedings of ACM Programming Languages 2, OOPSLA,
Article 120 (oct 2018), 23 pages.

[15] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. 2017. Julia: A
Fresh Approach to Numerical Computing. SIAM Review 59, 1 (2017),
65–98.

[16] E. Borin, L. M. A. Drummond, Gaudiot J-L., A. Melo, M. M. Alves,
and P. O. A. Navaux. 2023. High Performance Computing in Clouds:
Moving HPC Applications to a Scalable and Cost-Effective Environment.
Springer.

[17] Terraform Community. 2024. Automate infrastructure on any cloud
with Terraform. https://www.terraform.io

[18] AWS.jl contributors. 2024. Julia Interface for AWS. https://github.com/
JuliaCloud/AWS.jl

[19] Flux.jl contributors. 2024. Flux: The Julia Machine Learning Library.
https://fluxml.ai/Flux.jl

[20] F. H. de Carvalho Junior, W. G. Al Alam, and A. B. de O. Dantas. 2021.
Contextual Contracts for Component-Oriented Resource Abstraction
in a Cloud of High Performance Computing Services. Concurrency
and Computation: Practice and Experience 33, 18 (2021), e6225.

[21] F. H. de Carvalho Junior, A. B. Dantas, J. M. Hoffiman, T. Carneiro,
C. S. Sales, and P. A. S. Sales. 2023. Structured Platform-Aware Pro-
gramming. In XXIV Simpósio em Sistemas Computacionais de Alto De-
sempenho (SSCAD’2023) (Porto Alegre, RS). SBC, Porto Alegre, Brazil,
301–312.

[22] NASA Advanced Supercomputing (NAS) Division. 2024. NAS Parallel
Benchmarks. https://www.nas.nasa.gov/software/npb.html

[23] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and
A. White. 2003. Sourcebook of Parallel Computing. Morgan Kauffman
publishers.

[24] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman.
2011. High performance computing using MPI and OpenMP on multi-
core parallel systems. Parallel Computing 37, 9 (2011), 562–575.

[25] H. Jin and R. F. Van der Wijngaart. 2006. Performance characteristics
of the multi-zone NAS parallel benchmarks. Journal of Parallel and
Distributed Computing 66, 5 (2006), 674–685. IPDPS’04 Special Issue.

[26] P. Mehrotra, J. Djomehri, S.e Heistand, R. Hood, H. Jin, A. Lazanoff, S.
Saini, and R. Biswas. 2012. Performance evaluation of Amazon EC2
for NASA HPC applications. In Proceedings of the 3rd Workshop on
Scientific Cloud Computing (Delft, The Netherlands). ACM, New York,
NY, USA, 41–50.

[27] H. Meuer, E. Strohmaier, J. Dongarra, and H. D. Simon. 2013. Top 500
Supercomputer sites. http://www.top500.org

[28] Microsoft Azure. 2024. Eagle - Microsoft NDv5, Xeon Platinum 8480C
48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR. https://top500.org/
system/180236/

[29] V. Munhoz and M. Castro. 2024. Enabling the execution of HPC
applications on public clouds with HPC@Cloud toolkit. Concurrency
and Computation: Practice and Experience 36, 8 (2024), e7976.

[30] Riccard Murri. 2024. ElastiCluster. https://github.com/elasticluster/
elasticluster

[31] O. O. Napoli, R. K. Tesser, D. L. Fonseca, and E. Borin. 2023. Cost
Effective Deep Learning on the Cloud. Springer, 283–307.

[32] F. Z. Nardelli, J. Belyakova, A. Pelenitsyn, B. Chung, J. Bezanson, and J.
Vitek. 2018. Julia Subtyping: A Rational Reconstruction. Proceedings of
the ACM Programming Languages 2, Article 113 (oct 2018), 27 pages.

[33] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and
R. Buyya. 2018. HPC Cloud for Scientific and Business Applications:
Taxonomy, Vision, and Research Challenges. ACM Computing Surveys
51, 1 (Jan. 2018), 1–29.

[34] A. Pelenitsyn, J. Belyakova, B. Chung, R. Tate, and J. Vitek. 2021. Type
Stability in Julia: Avoiding Performance Pathologies in JIT Compilation.
Proceedings of ACM Programmming Languages 5, OOPSLA, Article 150
(oct 2021), 26 pages.

[35] Google Cloud Platform. 2024. High Performance Coputing. https:
//cloud.google.com/solutions/hpc

[36] P. Vaillancourt, B. Wineholt, B. Barker, P. Deliyannis, J. Zheng, A.
Suresh, A. Brazier, R. Knepper, and R. Wolski. 2020. Reproducible and
Portable Workflows for Scientific Computing and HPC in the Cloud.
In Practice and Experience in Advanced Research Computing (Portland,
OR, USA) (PEARC’20). Association for Computing Machinery, New
York, NY, USA, 311–320.

https://github.com/aws/aws-parallelcluster
https://www.ansible.com
https://kubernetes.io
https://aws.amazon.com/ec2
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/hpc
https://aws.amazon.com/hpc
https://azure.microsoft.com/pt-br/solutions/high-performance-computing/
https://azure.microsoft.com/pt-br/solutions/high-performance-computing/
https://www.terraform.io
https://github.com/JuliaCloud/AWS.jl
https://github.com/JuliaCloud/AWS.jl
https://fluxml.ai/Flux.jl
https://www.nas.nasa.gov/software/npb.html
http://www.top500.org
https://top500.org/system/180236/
https://top500.org/system/180236/
https://github.com/elasticluster/elasticluster
https://github.com/elasticluster/elasticluster
https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 The Julia Programming Language
	2.2 Related Works

	3 The CloudClusters.jl package
	3.1 Contextual Contracts
	3.2 Usage example

	4 Case Studies
	4.1 Multizone NPB
	4.2 Distributed Deep Learning

	5 Conclusions
	References

