
Hok: Higher-Order GPU kernels in Elixir
André Rauber Du Bois

PPGC - UFPel - Pelotas, RS - Brazil
dubois@inf.ufpel.edu.br

Tiago Perlin
PPGC - UFPel - Pelotas, RS - Brazil

tiago.perlin@inf.ufpel.edu.br

Frederico Peixoto Antunes
PPGC - UFPel - Pelotas, RS - Brazil

fpantunes@inf.ufpel.edu.br

Gerson Cavalheiro
PPGC - UFPel - Pelotas, RS - Brazil
gerson.cavalheiro@inf.ufpel.edu.br

Abstract
GPUs (Graphics Processing Units) are usually programmed
using low-level languages like CUDA or OpenCL. Although
these languages allow the implementation of very optimized
software, they are difficult to program due to their low-level
nature, where programmers have to mix coordination code,
i.e., how tasks are created and distributed, with the actual
computation code. In this paper we present Hok, an exten-
sion to the Elixir functional language that allows the imple-
mentation of higher-order GPU kernels, granting program-
mers the ability to clearly separate coordination from com-
putation. The Hok system provides a DSL (Domain-Specific
Language) for writing low-level GPU kernels that can be
parameterized with the computation code. Hok allows de-
vice functions, including anonymous functions, to be created
and referenced in the host code so that they can configure a
kernel before it is launched. We demonstrate that Hok can be
used to implement high-level abstractions such as algorith-
mic skeletons and array comprehensions. We also present
experiments that demonstrate the usability of the current
implementation of Hok, and show that high speedups can
be obtained in comparison to pure Elixir, specially in com-
putationally intensive programs with large inputs.

CCS Concepts: • Computing methodologies → Parallel
programming languages.

Keywords: parallel programming, gpu, Elixir

1 Introduction
GPUs are mainly programmed in low-level languages like
CUDA and OpenCL. Programming in such languages is dif-
ficult due to their low-level nature and lack of abstraction.
When writing GPU programs in these languages, program-
mers have to mix coordination code, i.e., code relative to
creation and coordination of tasks, together with computa-
tion, code, i.e., the code that does the real computation.
In simple programs, coordination is usually boilerplate

code, but in more complex systems, the efficient coordination
of tasks can become a complex endeavor, and should, asmuch
as possible, be left to specialized libraries designed by expert
programmers.
This paper presents Hok, an extension to the functional

programming language Elixir that allows the implementation

of higher-order GPU kernels. Hok allows device functions,
including anonymous device functions, to be referenced in
host code, and be passed as arguments to kernels at launch
time. This allows the programmer to separate coordination
code, that is encapsulated in kernels and Elixir functions,
from computation code, that can be left in device functions.

The contributions of this paper are as follows:
• We present Hok, an Elixir extension for GPU program-
ming. Hok extends the GPotion DSL [11] with Higher-
Order Kernels, which are GPU kernels that can take
functions as arguments, hence allowing programmers
to separate coordination code from computation code.
Furthermore, Hok allows the programmer to define
and reference at host code, device functions that can be
used to configure kernels before they are executed. De-
vice functions and anonymous functions are values in
the language, so that they can be passed as arguments
to kernels or to other device functions. We discuss the
current implementation of Hok, which is implemented
using the meta-programming features of Elixir, with
no modifications to the Elixir compiler.

• A clean separation between coordination and computa-
tion allows the development of high-level abstractions
for GPU programming. We demonstrate the usability
of Hok through a series of examples, including high-
level abstractions like algorithmic skeletons and array
comprehensions

• We present an experiment that demonstrates the us-
ability of the architecture proposed for the implemen-
tation of Hok. In the experiments, we compare five
programs implemented in Hok with programs that use
the same abstractions but are written in pure Elixir.
The experiments demonstrate that higher speed-ups
can be obtained in larger instances of problems that
are more computationally intensive.

The source code for Hok and the benchmarks used in
the experiments is available as free software in a GitHub
repository. 1
This paper is organized as follows: we start by covering

some background on Elixir, Actors model and GPU program-
ming (Section 2). Next, we introduce Hok, the main contribu-
tion of this paper, by first describing how basic GPU kernels
1https://github.com/ardubois/hok

https://github.com/ardubois/hok


SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR André Rauber Du Bois, Tiago Perlin, Frederico Peixoto Antunes, and Gerson Cavalheiro

are implemented in the GPotion DSL (Section 3.1), and then
how higher-order kernels can be expressed (Section 3.2). The
following Section demonstrates how Hok can be used to
implement high-level abstractions like algorithmic skeletons
and array comprehensions. Section 4 describes how the cur-
rent prototype of Hok was implemented. In Section 5, we
present experiments comparing the same abstractions both
in Hok and pure Elixir. Finally, related work and conclusions
are discussed.

2 Background
2.1 Elixir and Actors
The Actors model, was presented by Hewitt in his work [20]
as framework for handling concurrency, where computations
are structured around Actors. These Actors, are autonomous
entities that engage in asynchronous message passing to
communicate. Presently, the Actors model is adopted across
various programming languages and frameworks. Notable
among these implementations are the Akka framework2 [37]
for Java and Scala, as well as Microsoft Orleans [31] for .NET.
Additionally, languages like Erlang [3] and Elixir3 inherently
support the Actors model. Recently, the Actors model has
found application in federated machine learning [38, 41],
underscoring its suitability for leveraging GPU programming
within this domain.

Elixir, is a dynamic functional programming language de-
signed for software development using the Actors model. It
executes on the Erlang virtual machine (BEAM) [25], inher-
iting its features such as scalability, distribution, and fault
tolerance, while offering a more modern language. Due to
its functional nature, Elixir ensures concurrency without
relying on shared state, with actors exclusively interacting
through asynchronous message passing.

2.2 GPU programming
Originally, GPU programming predominantly involved writ-
ing low-level C code using either CUDA, supported byNVIDIA,
or OpenCL, an open standard for cross-platform parallel pro-
gramming. These languages remain the primary options for
general-purpose parallel programming on GPUs [23].
Various systems aim to simplify GPU programming in C

by offering higher-level abstractions through pragmas, such
as OpenMP, OpenACC, hiCUDA [17], or other higher-level
annotations like SPar [34].

Exploring GPU programming beyond C can be approached
through different languages, including libraries like CuPy
[32] and JCuda [42], just-in-time (JIT) compilation tech-
niques [24, 26, 29], or embedded domain-specific languages
(DSLs) such as Accelerate [7], Nikola [27], and Obsidian [40].
However, supporting GPU programming in languages other
than C often necessitates significant modifications to the
2https://akka.io/
3https://elixir-lang.org/

compiler and its internal representation [4]. Some endeavors
involve defining entirely new languages with high-level ab-
stractions tailored for GPU programming, as seen in works
like Lime [12], Chesnut [39], HIPA [30], and GPUActors [18].
In many GPU programming paradigms, like CUDA and

OpenCL, a function executable on the GPU is termed a kernel.
Typically, upon launching a kernel, it is executed by numer-
ous threads. In CUDA and similar GPU libraries, threads are
hierarchically organized into three-dimensional blocks, and
a kernel is always launched within a grid, which is an array
of blocks. By combining its thread and block IDs, a thread
can compute a unique identifier used to associate it with
data elements or tasks. During kernel execution, blocks are
mapped to the GPU’s stream multiprocessors, where threads
run concurrently. Since GPUs have separate memory from
the CPU, the typical program flow involves initially loading
data onto the CPU, then transferring it to GPU memory, fol-
lowed by kernel/grid launch, and finally, moving the results
back from GPU memory to the CPU.

3 Hok
The main contribution of this paper is Hok, an Elixir exten-
sion that allows the implementation of higher-order GPU
kernels. In Hok, GPU kernels are written using the GPotion
DSL, and we review it in Section 3.1. Hok extends GPotion
with higher-order kernels, that are described in Section 3.2.

3.1 GPotion kernels
GPotion [11] extends Elixir with two abstractions: the GMa-
trex and GPotion kernels. A GMatrex is an array that resides
in the GPU memory and can only be manipulated by GPo-
tion kernels. The GPotion language provides compatibility
with the Matrex library 4, which is an Elixir library for fast
operations on numerical arrays. Matrex provides fast saving
and loading of arrays, and compatibility with NumPy arrays.
The Matrex library offers many common matrix operations
implemented in native C code and also offers a back-end that
uses the CBLAS library.
A new GMatrex can be created from an existing Matrex,

or by providing a number of rows and columns:
1

2 gmat1 = Hok.new_gmatrex(Matrex.random(1,10000))
3 gmat2 = Hok.new_gmatrex(1,10000)
4

A GMatrex is just a reference to a Matrex that resides
in the GPU memory and is of no use in the regular Elixir
world. A GMatrex can only be operated inside kernels that
are implemented using the GPotion DSL. A GMatrex can be
transformed back into a Matrex using get_gmatrex:
1 new_matrex = Hok.get_gmatrex(gmat1)

4https://hexdocs.pm/matrex/Matrex.html

https://akka.io/
https://elixir-lang.org/
https://hexdocs.pm/matrex/Matrex.html


Hok: Higher-Order GPU kernels in Elixir SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR

1 require Hok
2

3 Hok.defmodule Saxpy do
4

5 defk saxpy_kernel(a,b,c,n) do
6 index = blockIdx.x*blockDim.x+threadIdx.x
7 stride = blockDim.x * gridDim.x
8

9 for i in range(index,n,stride) do
10 c[i] = 2 * a[i] + b[i]
11 end
12 end
13 end

Figure 1. A GPU kernel that computes Saxpy

The get_gmatrex function takes a GMatrex as an argu-
ment and transfers it into the host memory returning a Ma-
trex that can be manipulated in the Elixir world using the
regular Matrex operations. A GMatrex created in the host
does not need to be freed as it is automatically garbage col-
lected by the Elixir/Erlang virtual machine.
GPU kernels are written using the GPotion DSL, as can

be seen in the saxpy example of Figure 1. Hok kernels are
written inside Hok modules, which are just like regular Elixir
modules extended with the ability to also implement kernels
and GPU functions. As can be seen in the example, a kernel is
defined using the defk keyword. The example also illustrates
the main differences between the GPotion DSL and regular
Elixir code: GPotion exports CUDA runtime constants, as
for example those related to blocks and grids (lines 6 and 7),
GPotion allows update in-place of memory locations (line
10), and, as Elixir does not provide loops, GPotion extends
Elixir with python-like fors (lines 9 to 11) and whiles. The
reader should notice that in-place update is restricted to GPU
kernels and does not affect regular Elixir code. The purely
functional part of Elixir can not offload a GMatrex while it is
being mutated by kernels, as a call to get_gmatrex blocks
while the respective GMatrex is used on the GPU. A GPotion
kernel can be seen as a unique isolated process that does not
communicate. Although GPotion kernels can not send and
receive messages, they can easily be executed inside other
processes that communicate and execute GPotion kernels
accordingly.

The example in Figure 2, illustrates how a GPotion kernel
can be launched. First, the Hok module where the kernel was
defined is imported (line 1). Next, in lines 4 and 5, two new
CPU arrays containing random numbers are created. Lines 7
and 9 show how GPU arrays can be generated, either from
an exiting Matrex (lines 7 and 8) or by providing the number
of rows and columns of the new empty array to be created
(line 9). A kernel is launched using the Hok.spawn primitive
(line 14), which takes as arguments two tuples configuring
grid and blocks, and a list with the kernel arguments. Finally,

1 Hok.include [Saxpy]
2

3 n = 10000000
4 mat1 = Matrex.random(1,n)
5 mat2 = Matrex.random(1,n)
6

7 gm1 = Hok.new_gmatrex(mat1)
8 gm2 = Hok.new_gmatrex(mat2)
9 gmr = Hok.new_gmatrex(1,n)
10

11 threads = 128;
12 n_blocks = div(n + threads_pb - 1, threads_pb)
13

14 Hok.spawn(&Saxpy.saxpy_kernel/4,{n_blocks,1,1},
15 {threads,1,1},
16 [gm1,gm2,gmr,n])
17 result = Hok.get_gmatrex(gmr)

Figure 2. Spawning a kernel

the result of the computation can be brought back to the
CPU memory using get_gmatrex (line 17).

3.2 Hok: Higher-Order kernels
The main novelty of Hok is to allow kernels and device
functions to be higher-order, meaning that device functions,
including kernels, can take functions as their arguments.
Furthermore, device functions, including device anonymous
functions, can be created and referenced in host code so that
they can be passed to kernels when they are launched.

Higher-order kernels allow the separation between coordi-
nation and computation code, as can be seen in the example
of Figure 3. The apply_k kernel takes as arguments two ar-
rays, the input array and the result array of the same size,
the size of the arrays, and a function, which is applied to
each element of the input array generating the result ar-
ray. To simplify the code presented in this text, we always
assume that one grid can hold all the elements of the ar-
rays used in the examples. The apply_k kernel encapsulates
the coordinating aspects of the general idea of applying a
transformation into the elements of an array which in turn
computes a new array.

Computation code can be encapsulated in Hok functions,
which are device functions that are implemented unsing
the defh keyword, as the function square in Figure 3. Hok
functions can be written in pure Elixir or also using the
GPotion extensions. As Hok functions are compiled into
CUDA (see Section 4), they can not call other Elixir functions,
but can call other Hok functions and also C CUDA functions.

The apply_k kernel could be spawned with the following
command:
1 Hok.spawn(&Ex1.apply_k/4, {n_blocks,1,1},
2 {threads_pb,1,1},
3 [gm1,gmr,n, &Ex1.square/1])



SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR André Rauber Du Bois, Tiago Perlin, Frederico Peixoto Antunes, and Gerson Cavalheiro

1 require Hok
2 Hok.defmodule Ex1 do
3 defk apply_k(a,r,size,f) do
4 id = blockIdx.x * blockDim.x + threadIdx.x
5 if(id < size) do
6 r[id] = f(a[id])
7 end
8 end
9 defh square(x) do
10 x*x
11 end
12 end

Figure 3. Defining Hok kernels and functions

The kernel receives as arguments an input array gm1, the
result array gmr, the size n of the arrays, and the function
square (from Figure 3). Hence, this kernel launch will square
all the elements of the input array, generating a new array.
Hok kernels also accept anonymous functions. For exam-

ple, the same previous program could be written by substi-
tuting the square function by an anonymous function with
the same semantics:
1 Hok.spawn(&Ex1.apply_k/4, {n_blocks,1,1},
2 {threads_pb,1,1},
3 [vet1_gpu,resp_gpu, n,
4 Hok.hok fn x -> x*x end]

Device anonymous functions can be createdwith the Hok.hok
primitive. As with device functions, Hok anonymous func-
tions can be written using pure Elixir or GPotion. As Elixir
values are not valid in the GPU, we do not support vari-
able capture. Also, no Elixir functions can be called on Hok
anonymous functions, only Hok or CUDA functions can be
invoked.

In the next Section, we discuss how higher-order kernels
can be used to implement high-level abstractions for GPU
computing such as composable algorithmic skeletons and
array comprehensions.

3.3 High-level abstractions
3.3.1 Composable Algorithmic Skeletons. Algorithm skele-
tons [7, 10, 13, 14, 16, 28] are a high-level programming par-
adigm for parallel and distributed computing. Skeletons are
functions that encapsulate common patterns of parallel and
distributed computing. Programmers use skeletons by con-
figuring these functions with aspects specific to the program
being constructed. Skeletons hide the complex and platform
specific details of task coordination, giving to programmers
a simple interface where they have to focus only in the com-
putation details of the algorithm.
Languages that provide higher-order functions are the

perfect playground to experiment with algorithmic skele-
tons as the skeleton functions can be configured dynamically
with computations to be executed on parallel and distributed

1 Hok.defmodule Ske do
2 defk map2_kernel(a1,a2,a3,size,f) do
3 id =blockIdx.x * blockDim.x + threadIdx.x
4 if(id < size) do
5 a3[id] = f(a1[id],a2[id])
6 end
7 end
8 def map2(t1,t2,func) do
9 {l,size} = Hok.gmatrex_size(t1)
10 result_gpu =Hok.new_gmatrex(l,size)
11 t_block = 128;
12 n_blocks = div(size + t_block - 1, t_block)
13 Hok.spawn(&DP.map2_kernel/5,
14 {n_blocks,1,1},{t_block,1,1},
15 [t1,t2,result_gpu,size,func])
16 result_gpu
17 end
18 end

Figure 4. The map2 skeleton

hardware. The apply_k kernel from the previous Section
could be used to implement a skeleton commonly known
as map, which applies a function to all elements of an array
generating a new array. In Figure 4, we present the implemen-
tation of a binary map, a variant of the map skeleton (taken
from [13, 16]), which takes two input arrays and a function
with two arguments, applying the function to the elements
of the arrays in pairs. The skeleton is implemented using a
kernel (map2_kernel), which is similar to apply_k, and an
Elixir function map2, which is responsable for launching the
kernel.
It is important that skeletons receive and return GMa-

trexes so that skeletons can be composed together to generate
more complex computations on the GPU. For example, re-
duce is another common pattern of computation in functional
languages where the reduce function (also called foldr in
some languages) takes a list, an accumulator and a binary
function, and combines the elements of the list using the
binary function. We have implemented a reduce kernel in
Hok that executes on the GPU, and is launched by the skele-
ton, implemented as an Elixir function, defined in Figure 5.
The reduce skeleton first creates a new GMatrex with only
one position containing the accumulator, then it calculates
the number of blocks and threads to be used, and finally it
launches the reduce_kernel kernel, passing as parameters
the input array, the accumulator, the size of the input, and
the binary operation.
By making the map and reduce skeletons receive and re-

turn GMatrexes, it is possible to use Elixir’s pipe operator
(|>) to compose operations executed on the GPU. For ex-
ample, the dot product of two arrays can be implemented
by composing the map2 and reduce skeletons defined previ-
ously:



Hok: Higher-Order GPU kernels in Elixir SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR

1 def reduce(input, acc, f) do
2 {_l,size} = Hok.gmatrex_size(input)
3

4 result =Hok.new_gmatrex(Matrex.new([[acc]]))
5 thPerBlock = 128
6 bPerGrid = div(size + thPerBlock - 1,
7 thPerBlock)
8 Hok.spawn(&DP.reduce_kernel/4,{bPerGrid,1,1},
9 {thPerBlock,1,1},
10 [input, result, size,f])
11 result
12 end

Figure 5. The reduce skeleton

1 def dot_product(arr1,arr2) do
2 arr1
3 |> Ske.map2(arr2, Hok.hok fn (a,b)->a * b end)
4 |> Ske.reduce(Hok.hok fn (a,b)->a + b end)
5 end

Map and reduce skeletons appear in the literature with a
series of variations [7, 10, 13, 14, 16, 28], i.e., type of argument
function they take (unary, binary, or ternary), the shape of
the input (vectors or matrices) and how many input arrays
are available. We have implemented a library with different
map and reduce skeletons and have used it to implement
array comprehensions (see Section3.3.2) and a collection of
benchmarks presented in Section 5. In applications that store
structured data in arrays, each data element occupies more
then one contiguous memory space. As Hok only support
numerical arrays, we also provide a version of map that slices
the array, so that the function argument is mapped not to
single elements but to slices of the array.

3.3.2 Array Comprehensions. List comprehensions is
a programming abstraction, usually available in functional
programming languages, where programmers can describe
new lists, based on exiting lists, using a notation similar to
the one used in set theory.

For example, in Elixir one can describe a new list ln con-
taining the squared elements of an existing list le using a
comprehension of the form:
1 le = [1,2,3,4,5]
2

3 ln = for x <- le, do: x*x

A list comprehension usually contains at least one gener-
ator and a computation to be executed for each generated
element.
We can simulate a comprehension, similar to the Elixir

example presented before, but that runs on the GPU, by using
the comp function from Figure 6, which int turn uses a map
skeleton implemented using the apply_k kernel, to execute
the body of the comprehension on each element of the input
array.

Hence, the previous comprehension could be written as:

1 def comp(array,func) do
2 {l,size} = Matrex.size(array)
3

4 array_gpu = Hok.new_gmatrex(array)
5 result_gpu =Hok.new_gmatrex(l,size)
6

7 Ske.map(array_gpu, result_gpu, size,func)
8

9 r_gpu = Hok.get_gmatrex(result_gpu)
10 r_gpu
11 end

Figure 6. Executing a Comprehension

1 defmacro gpufor({:<-,_,[var,tensor]},do: b) do
2 quote do:
3 Comp.comp(unquote(tensor),
4 Hok.hok (fn (unquote(var))->(unquote b) end))
5 end

Figure 7.Macro for an array comprehension with a single
generator

1 le = Matrex.new(...)
2

3 ln = comp(le, Hok.hok fn x -> do x*x end)

Furthermore, it is possible to give a more high-level syntax
to the GPU comprehensions by using the meta-programming
features of Elixir. The macro on Figure 7, translates a list
comprehensionwith a single generator, into a call to the comp
function. Using this macro, the previous GPU comprehension
can now be expressed as:
1 le = Matrex.new(...)
2

3 ln = Hok.gpufor x<- le, do: x * x

We have implemented a library for GPU array comprehen-
sions over the Matrex library supporting different kinds of
generators (up to two), and have used it to implement some
of the programs of Section 5. For example, we can sum two
arrays on the GPU using a generator based on intervals:
1 ln = Hok.gpufor i <- 0..size, a1, a2 do
2 a1[i] + a2[i]
3 end

4 Implementation
4.1 GMatrex
An Elixir Matrex is internally represented as a contiguous
memory space, where its first two positions contain the num-
ber of rows and columns. Hence, when a GMatex is created,
we allocated memory on the GPU with cudaMalloc, using
the number of rows and collums to compute its size, and,
if the new GMatrex is based on an existing Matrex, copy
its data using cudaMemcpy. Similarly, the get_gmatrex func-
tion first allocates memory in the host for the new Matrex,



SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR André Rauber Du Bois, Tiago Perlin, Frederico Peixoto Antunes, and Gerson Cavalheiro

and then copies the existing GMatrex, using CUDAMemcpy,
from the device memory back into the host memory.
A GMatrex is represented internally as a new resource

in the Erlang/Elixir VM, and once a resource is not refer-
enced anymore, a destructor is automatically called for it.
For a GMatrex, the descructur calls cudaFree to liberate the
memory allocated for it.

4.2 Hok Modules
The Hok.defmodule primitive is implemented as a macro
in Elixir. Macros are special functions used for metapro-
gramming, which are executed only at compile time. Elixir’s
compiler first generates the Abstract Syntax Tree (AST) of
a program and then calls all defined macros which process
the AST possibly generating a new one. The Hok.defmodule
macro receives the AST of the Hok module being defined
and sends it to the Hok compiler. The first step in the Hok
compiler is performing type inference (see Section 4.3) for
untyped programs or type checking for typed ones. The
compiler then sends the module’s AST and type information
to the CUDA back-end, which in turn compiles the module
into a CUDA C shared library. Kernels and device functions
are directly translated by traversing the AST and emitting
equivalent CUDA constructs.
For each kernel, the compiler also generates an access

function, which is responsible for converting values from the
Elixir world to the C world, and also making the real kernel
launch with the proper arguments. For each device function
in the module, the compiler also generates a global pointer.
Higher-order kernels and higher-order device functions are
compiled into CUDA C functions that take function pointers
as arguments. When a higher-order kernel is executed, we
copy the function pointers of its function arguments from
the device memory to the host memory, and launch the
kernel with these pointers as arguments. Hence, at runtime,
a kernel receives a valid pointer to the device’s memory
where the function resides. This pointer can be directly used
as a function or forwarded to, and used by, other device
functions.
The Hok compiler also substitutes a Hok module by a

regular Elixir module that contains all the regular Elixir
functions defined by it plus Elixir versions of its kernels
and device functions. These versions are just regular Elixir
functions that represent kernels and device functions in the
Elixir world, so that they can be used as first class values.
These functions will generate an exception if called outside
of spawn.

All interaction between C and Elixir is implemented using
the NIFs library [1].

4.3 Type inference
For kernels and device functions, type inference can most of
the time detect types correctly by using control flow analysis.
As Matrex numerical arrays are internally represented as

arrays of floats, type inference is greatly simplified. Type
inference starts from source expressions to which types are
known, e.g, array index, array update, CUDA constants, lit-
erals etc., and then the type inference mechanism follows
the control flow, departing from these expressions and prop-
agating their types to their parent and subexpressions. Type
inference executes in passes, propagating type information,
and it stops when the types of all variables are known, or
when a pass does not change the mapping of variables to
types.

For example, the type inference mechanism can not detect
the type of x in the following anonymous function:
1

2 f = Hok.hok fn x -> x end
3

In such a case, the compiler stops and reports the error. Pro-
grammers can always insert type annotations in anonymous
functions as in the following example:
1 f = Hok.hok fn x -> type x integer
2 x
3 end

For unknown numerical types, type inference always as-
sumes the same type of the array content (float). When a
kernel is launched, it is typed checked at runtime against
its provided arguments to check that type inference has cor-
rectly detected types. If the types are not correct, an excep-
tion is raised so the programmer can insert type information
in the code.
We also provide a typed version of Hok, in which types

are declared in a similar way to the typed Elixir proposal [5].

4.4 Anonymous Functions
For each program, the Hok compiler generates a global
CUDA C module. This module contains the other Hok mod-
ules imported into the program (using Hok.include) plus
all the anonymous functions defined in the program. The
Hok.hok primitive is also implemented as a macro. This
macro compiles the anonymous function into a device func-
tion and its pointer and ads it to the global module. The
compiler leaves in the place of the anonymous function a
runtime representation of it that contains its name and type.
The name is used to access its global pointer, and the type
to type check it against the kernel type at kernel launch.

5 Experiments
The objective of this Section is to give some insight on the
performance of the architecture proposed to support higher-
order kernels in Elixir. We have implemented 5 programs in
Hok using skeletons and comprehensions: array sum (SM)
from Section 3.3.2, matrix multiplication (MM), dot prod-
uct (DP) from Section 3.3.1, Julia (JL), that generates im-
ages based on the Julia set (ported from [36]), and Nearest
Neighbor (NN) taken from the Rodinia Benchmark Suite [9].



Hok: Higher-Order GPU kernels in Elixir SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR

As a base for comparison, we have also implemented pure
Elixir versions of these programs using map, reduce and list
comprehensions. We used lists in the Elixir versions of the
programs for two reasons: first, we wanted to use similar ab-
stractions to the ones used in the Hok programs, and second,
due to immutability of data, it is usually faster to construct
a result list then to individually update a result array, as
each update to a position of the array results in a new array.
The times presented for the execution of each instance of an
application are the average of 30 executions. The times for
Hok include the time to transfer data to/from the device. The
experiments were executed on a machine with a 12th Gen
Intel(R) Core(TM) i7-12700K CPU @ 3.60GHz with 16 GB of
RAM, NVIDIA GeForce RTX 3070, Ubuntu 22.04.3 LTS, Elixir
1.16.1, Erlang OTP 26, and nvcc 12.3.107. Table 1 summarizes
the results of the experiments.

Table 1. Results of the experiments

Elixir (ms) Hok (ms) Speedup

SA 50M 776.8 313.9 2.5
SA 100M 1,998.4 380.2 5.3
SA 200M 13,922.4 531.3 26.2

MM 7K x 7K 100,333.0 854.3 117.4
MM 9K x 9K 215,192.1 1,471.5 146.2
MM 11K x 11K 397,310.6 2,464.5 161.2

DP 50M 2,322.1 315.9 7.4
DP 100M 7,073.2 386.9 18.3
DP 200M 13,211.2 527.1 25.1

JL 2048x2048 65,589.6 241.8 271.3
JL 4096x4096 288,827.7 376.1 767.9
JL 8192x8192 1,235,025.1 883.7 1,397.6

NN 50M 4,261.5 315.6 13.5
NN 100M 9,877.5 526.7 18.8
NN 200M 58,038.2 773.9 75.0

The sum arrays (SA) application is a micro-benchmark
that uses the array comprehension presented in Section 3.3.2
to sum two arrays. The Elixir version of the program uses a
list comprehension to sum two lists. Constructing a list by
summing the elements of other two lists is computed fast
in Elixir, and Hok achieved the lowest speedup in the 50M
instance. With smaller instances, the time to transfer data
to/from the device impacts the performance, but, as the size
of the input increases, also the difference between Hok and
Elixir increases, and Hok achieves a speedup of 26.2 with the
200M instance.

The matrix multiplication (MM) in Hok was implemented
as an array comprehension using two generators, and it is
translated into a 2D map. For the sequential version, we
are using an efficient implementation of matrix multiplica-
tion that comes with the standard Matrex installation, and
is implemented in pure C. This implementation avoids the

problem of immutability by allocating a single resulting ma-
trix that is updated in the C world, before being passed back
to Elixir. Matrix Multiplication is computationally intensive
as for each position of the result matrix a dot product must
be computed. In Hok, each position of the resulting matrix
is computed by a different thread resulting in speedups from
117.4 to 161.2.

The dot product (DP) application is implemented in both
Hok and Elixir as a composition of map and reduce, as can
be seen in the example of Section 3.3.1. DP presented similar
results to SAwith a low speedup of 7.4 in the smaller instance,
increasing to 25.1 in the largest instance of the problem.
The Julia (JL) benchmark was implemented as a map

where the configuring function takes as input a coordinate
x and y and computes a pixel of the resulting image. Julia is
more computationally expensive on the Elixir side, as it uses
an iterative equation to decide if a coordinate is in the Julia
set or not. This explains the slower sequential times and the
high speedup obtained.
Nearest Neighbor (NN), ported from the Rodinia bench-

mark [9], is implemented as a composition of map and re-
duce. The map, calculates the Euclidean distance from each
record, in a randomly generated data set, to a target posi-
tion. The reduce stage, computes the shortest distance from
all the computed Euclidean distances. The smallest speedup
obtained was 13.5 with 50M, and it increases to 75 with the
200M instance.
In general, for small instances of problems, where the

Elixir version runs at most in a few seconds, Hok obtained
the smallest speedups. For more computationally expensive
programs, the speedups were larger, and it increases when
the instance of problems also increases.

6 Related Work
In CUDA, one can implement higher-order kernels using
pointers to functions. A kernel can receive pointers to func-
tions but the programmer can not directly get the address of
a device function in host code. The workaround is to define
a global device pointer to the function and then copy the
content of this pointer to the host memory, before launching
the kernel. This is the approach taken by the Hok compiler
under the hood. For each device function and lambda ab-
straction, the Hok compiler generates a global pointer, and
at runtime, the content of this pointer is automatically copied
to the host when a device function or anonymous function
is referenced for the first time. The approach taken by Hok
is more high-level, as it hides the complexities of accessing
device functions, while CUDA makes them explicit.

There are many works on extending the Python program-
ming language for GPU programming, e.,g, [6, 26, 35, 42].
Closest to our approach are Parakeeet [35] and Copperhead
[6], which are high-level data-parallel languages embedded



SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR André Rauber Du Bois, Tiago Perlin, Frederico Peixoto Antunes, and Gerson Cavalheiro

in Python. In both DSLs, programmers write array computa-
tions that are made parallel by the use of skeletons like map
and reduce. Both languages allow users to define functions
that are automatically compiled for the GPU, but the user is
restricted to generate parallelism with the built-in skeletons.
Significant research has been conducted on embedding

domain-specific languages (DSLs) targeting GPUs within
the Haskell functional programming language, as seen in
works like [7, 27, 28, 40]. Nikola [27], for instance, is a DSL
designed for array processing in Haskell. It leverages type
class overloading to construct representations of computa-
tions described by the DSL, which are then processed and
compiled into CUDA C. Similarly, Accelerate [7, 28, 29] is
another embedded DSL in Haskell, aimed at array process-
ing on GPUs. Accelerate allows programmers to use higher-
order functions for array manipulation within a high-level
language framework. The array computations expressed in
Accelerate are compiled into skeleton calls implemented in
CUDA. Subsequently, new back-ends for both CPU and GPU
were developed for Accelerate by compiling it into the LLVM
architecture [29]. Besides Haskell, many other functional lan-
guage provide high-level skeletons for GPU programming,
as for example Futhark [19]. Although these languages pro-
vide composable abstractions that can be configured by user
defined functions, they are very high-level, hence the pro-
grammer can use and compose the provided abstractions,
but can not implement new ones.
In Besard et al. [4], a new infrastructure for extendable

compilers is proposed, and as a case study, the Julia func-
tional language is extended for NVIDIA GPU programming.
Julia provides higher-order abstractions for GPU program-
ming, such as map and reduce, that can be configured using
user defined functions but regular kernels are not higher-
order.

Numerous works investigated skeletons in different paral-
lel architectures, including GPUs. One state-of-art example is
the SkePUC++ framework, that was released in 2010 [13] and
is in continuous development, e.g, [13–16, 33]. The SkePU
framework provides a collection of skeletons targeting differ-
ent parallel architectures, GPUs included. In the first version
of SKePU, user functions had to be defined using special
C++ macros, that were expanded to implementations on dif-
ferent architectures. Users of the system were restricted by
the collection of macros provided since, user function sig-
natures need to match one of the available macros. SkePU
2 [16] and SkePU 3 [14] substitute the use of macros by a
source-to-source translator (precompiler) implemented us-
ing libraries from the Clang project. Our objective in this
paper was not to implement an efficient skeleton library, but
rather to demonstrate that the idea of skeleton programming
can be expressed by using the abstractions provided by Hok.

GPU programming within the Actors model has been pre-
viously explored in studies such as [18, 21, 22]. In [21] and
[22], an extension to the C++ Actor Framework (CAF) [8] is

introduced which shares similarities with our approach, as
it enables programmers to embed low-level OpenCL kernels
within Actors. The implementation of this system is facil-
itated by CAF being a C++ library, a language compatible
with OpenCL. Additionally, [18] describes the Ensemble Ac-
tors language which allows the incorporation of OpenCL
code within actors through an OpenCL dialect specific to En-
semble. Unlike CAF, Ensemble is a completely new language
and thus requires a dedicated compiler.

7 Conclusions and Future Work
This paper presented Hok, an extension of the functional
programming language Elixir for developing GPU programs.
Hok provides an abstraction of GPU arrays and a DSL for im-
plementing kernels. The main abstraction provided by Hok
are higher-order kernel, i.e., kernels that can take functions
as arguments. Hok allows device functions and anonymous
device functions to be referenced at host code, and used
to configure kernels when they are launched. Device func-
tions are first-class values, so they can be passed to kernels
or other device functions. We have demonstrated that Hok
can be used to implement high-level abstractions for GPU
programming, including algorithmic skeletons and array
comprehensions. The source code for Hok and the bench-
marks used in the experiments is available as free software
in a GitHub repository. 5
There are a number of lines for future work. In the near

future, we plan to investigate other high-level abstractions
using Hok, including abstractions for multi GPU program-
ming. We also want to investigate how to implement other
algorithmic skeletons available in the literature. Furthermore,
the Matrex library represents its numerical arrays internally
as arrays of floats, this simplifies type inference, and allows
the type system to be monomorphic. This also allows the
compiler to generate device code during compilation and
not at runtime. In future versions of the system, we plan to
provide compatibility with the Nx [2] library, and support
other array types. Type checking/type inference could be
performed in a similar way for different types of arrays. Mix-
ing arrays of different types is more challenging for type
inference, and in that case code generation for kernels could
happen at kernel launch, where we already know the types
of the arrays in use, and type specialization [35] can be per-
formed. Furthermore, we would like to compare Hok with
Nx, pure CUDA, and other GPU frameworks in the future.

Acknowledgments
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES)
– Finance Code 001.

5https://github.com/ardubois/hok

https://github.com/ardubois/hok


Hok: Higher-Order GPU kernels in Elixir SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR

References
[1] 2024. The NIFs library. WWW page, https://www.erlang.org/doc/

man/erl_nif.html.
[2] 2024. THe Nx library. WWW page, https://github.com/elixir-nx/nx.
[3] Joe Armstrong. 2003. Making reliable distributed systems in the presence

of software errors. Ph. D. Dissertation. Royal Institute of Technology,
Stockholm, Sweden.

[4] Tim Besard, Christophe Foket, and Bjorn De Sutter. 2019. Effective
Extensible Programming: Unleashing Julia on GPUs. IEEE Transactions
on Parallel and Distributed Systems 30, 4 (2019), 827–841. https://doi.
org/10.1109/TPDS.2018.2872064

[5] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2023. The
Design Principles of the Elixir Type System. The Art, Science, and
Engineering of Programming 8, 2 (Oct. 2023). https://doi.org/10.22152/
programming-journal.org/2024/8/4

[6] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011. Copper-
head: Compiling an Embedded Data Parallel Language. SIGPLAN Not.
46, 8 (feb 2011), 47–56. https://doi.org/10.1145/2038037.1941562

[7] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. Mc-
Donell, and Vinod Grover. 2011. Accelerating Haskell Array Codes
with Multicore GPUs. In Proceedings of DAMP 2011 (Austin, Texas,
USA). ACM, New York, NY, USA, 3–14.

[8] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2014.
CAF - the C++ Actor Framework for Scalable and Resource-Efficient
Applications. In Proceedings of the 4th International Workshop on Pro-
gramming Based on Actors Agents Decentralized Control (Portland,
Oregon, USA) (AGERE! ’14). Association for Computing Machinery,
New York, NY, USA, 15–28. https://doi.org/10.1145/2687357.2687363

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC). 44–54. https:
//doi.org/10.1109/IISWC.2009.5306797

[10] Murray I Cole. 1989. Algorithmic skeletons: structured management of
parallel computation. Pitman London.

[11] Andre Rauber Du Bois and Gerson Cavalheiro. 2023. GPotion: An em-
bedded DSL for GPU programming in Elixir. In Proceedings of the XXVII
Brazilian Symposium on Programming Languages (, Campo Grande,
MS, Brazil,) (SBLP ’23). Association for Computing Machinery, New
York, NY, USA, 1–8. https://doi.org/10.1145/3624309.3624314

[12] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. 2012. Compiling a High-Level Language for GPUs:
(Via Language Support for Architectures and Compilers). 47, 6 (2012).
https://doi.org/10.1145/2345156.2254066

[13] Johan Enmyren and Christoph W Kessler. 2010. SkePU: a multi-
backend skeleton programming library for multi-GPU systems. In
Proceedings of the fourth international workshop on High-level parallel
programming and applications. 5–14.

[14] August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph
Kessler. 2021. SkePU 3: Portable High-Level Programming of Hetero-
geneous Systems and HPC Clusters. Int. J. Parallel Program. 49, 6 (dec
2021), 846–866. https://doi.org/10.1007/s10766-021-00704-3

[15] August Ernstsson, Dalvan Griebler, and Christoph Kessler. 2023. As-
sessing Application Efficiency and Performance Portability in Single-
Source Programming for Heterogeneous Parallel Systems. Interna-
tional Journal of Parallel Programming 51, 1 (2023), 61–82.

[16] August Ernstsson, Lu Li, and Christoph Kessler. 2018. SkePU 2: Flexible
and type-safe skeleton programming for heterogeneous parallel sys-
tems. International Journal of Parallel Programming 46 (2018), 62–80.

[17] Tianyi David Han and Tarek S. Abdelrahman. 2011. hiCUDA: High-
Level GPGPU Programming. IEEE Transactions on Parallel and Dis-
tributed Systems 22, 1 (2011), 78–90. https://doi.org/10.1109/TPDS.
2010.62

[18] Paul Harvey, Kristian Hentschel, and Joseph Sventek. 2015. Parallel
Programming in Actor-Based Applications via OpenCL. In Proceedings
of the 16th Annual Middleware Conference (Vancouver, BC, Canada)
(Middleware ’15). ACM, New York, NY, USA, 162–172.

[19] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-
Programming with Nested Parallelism and in-Place Array Updates.
SIGPLAN Not. 52, 6 (jun 2017), 556–571. https://doi.org/10.1145/
3140587.3062354

[20] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Proceedings of
the 3rd International Joint Conference on Artificial Intelligence (Stanford,
USA) (IJCAI’73). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 235–245.

[21] Raphael Hiesgen, Dominik Charousset, and Thomas C. Schmidt. 2015.
Manyfold Actors: Extending the C++ Actor Framework to Heteroge-
neous Many-Core Machines Using OpenCL. In Proceedings of the 5th
International Workshop on Programming Based on Actors, Agents, and
Decentralized Control (Pittsburgh, PA, USA) (AGERE! 2015). ACM, New
York, NY, USA, 45–56.

[22] Raphael Hiesgen, Dominik Charousset, and Thomas C. Schmidt. 2018.
OpenCL Actors – Adding Data Parallelism to Actor-Based Program-
ming with CAF. In LNCS. Springer International Publishing, 59–93.

[23] Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven, and
Henri E. Bal. 2023. Optimization Techniques for GPU Programming.
ACM Comput. Surv. 55, 11, Article 239 (mar 2023), 81 pages. https:
//doi.org/10.1145/3570638

[24] Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and
Nicholas D. Matsakis. 2013. GPU Programming in Rust: Implementing
High-Level Abstractions in a Systems-Level Language. In 2013 IEEE
International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum. 315–324. https://doi.org/10.1109/IPDPSW.2013.173

[25] John Högberg. 2020. A brief introduction to BEAM. WWW page,
https://www.erlang.org/blog/a-brief-beam-primer/.

[26] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba:
A LLVM-Based Python JIT Compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC (Austin, Texas)
(LLVM ’15). ACM, New York, NY, USA, Article 7, 6 pages.

[27] Geoffrey Mainland and Greg Morrisett. 2010. Nikola: Embedding
Compiled GPU Functions in Haskell. In Proceedings of the Third ACM
Haskell Symposium on Haskell (Baltimore, Maryland, USA) (Haskell
’10). ACM, New York, NY, USA, 67–78.

[28] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and
Ben Lippmeier. 2013. Optimising Purely Functional GPU Programs.
SIGPLAN Not. 48, 9 (sep 2013), 49–60. https://doi.org/10.1145/2544174.
2500595

[29] Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and
Ryan R. Newton. 2015. Type-Safe Runtime Code Generation: Accel-
erate to LLVM. SIGPLAN Not. 50, 12 (aug 2015), 201–212. https:
//doi.org/10.1145/2887747.2804313

[30] Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen Teich, Mario
Körner, and Wieland Eckert. 2016. HIPAcc: A Domain-Specific Lan-
guage and Compiler for Image Processing. IEEE Transactions on Parallel
and Distributed Systems 27, 1 (2016), 210–224. https://doi.org/10.1109/
TPDS.2015.2394802

[31] Thomas Nelson. 2022. Introducing Microsoft Orleans. In Introducing
Microsoft Orleans: Implementing Cloud-Native Services with a Virtual
Actor Framework. Springer, 17–27.

[32] ROYUD Nishino and Shohei Hido Crissman Loomis. 2017. Cupy: A
numpy-compatible library for nvidia gpu calculations. 31st confernce
on neural information processing systems 151, 7 (2017).

[33] Tomas Öhberg, August Ernstsson, and Christoph Kessler. 2020. Hybrid
CPU–GPU execution support in the skeleton programming framework
SkePU. The Journal of Supercomputing 76, 7 (2020), 5038–5056.

https://www.erlang.org/doc/man/erl_nif.html
https://www.erlang.org/doc/man/erl_nif.html
https://github.com/elixir-nx/nx
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.1145/2038037.1941562
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/3624309.3624314
https://doi.org/10.1145/2345156.2254066
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1145/3140587.3062354
https://doi.org/10.1145/3140587.3062354
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1109/IPDPSW.2013.173
https://www.erlang.org/blog/a-brief-beam-primer/
https://doi.org/10.1145/2544174.2500595
https://doi.org/10.1145/2544174.2500595
https://doi.org/10.1145/2887747.2804313
https://doi.org/10.1145/2887747.2804313
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/TPDS.2015.2394802


SBLP ’24, Sept 30– Oct 4, 2024, Curitiba, PR André Rauber Du Bois, Tiago Perlin, Frederico Peixoto Antunes, and Gerson Cavalheiro

[34] Dinei A. Rockenbach, Júnior Löff, Gabriell Araujo, Dalvan Griebler, and
Luiz Gustavo Fernandes. 2022. High-Level Stream and Data Parallelism
in C++ for GPUs. In Proceedings of the XXVI Brazilian Symposium
on Programming Languages (Virtual Event, Brazil) (SBLP ’22). ACM,
41–49.

[35] Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman, and Dennis
Shasha. 2012. Parakeet: A Just-in-Time Parallel Accelerator for Python.
In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism
(Berkeley, CA) (HotPar’12). USENIX Association, USA, 14.

[36] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an
introduction to general-purpose GPU programming. Addison-Wesley
Professional.

[37] Satish Narayana Srirama, Freddy Marcelo Surriabre Dick, and Mainak
Adhikari. 2021. Akka framework based on the Actor model for ex-
ecuting distributed Fog Computing applications. Future Generation
Computer Systems 117 (2021), 439–452. https://doi.org/10.1016/j.future.
2020.12.011

[38] Satish Narayana Srirama and Deepika Vemuri. 2023. CANTO: An actor
model-based distributed fog framework supporting neural networks
training in IoT applications. Computer Communications 199 (2023),
1–9.

[39] Andrew Stromme, Ryan Carlson, and Tia Newhall. 2012. Chestnut: A
GPU Programming Language for Non-Experts. In Proceedings of the
2012 International Workshop on Programming Models and Applications
for Multicores and Manycores (New Orleans, Louisiana) (PMAM ’12).
Association for Computing Machinery, New York, NY, USA, 156–167.
https://doi.org/10.1145/2141702.2141720

[40] Joel Svensson, Koen Claessen, and Mary Sheeran. 2010. GPGPU kernel
implementation and refinement using Obsidian. Procedia Computer
Science 1, 1 (2010), 2065–2074. https://doi.org/10.1016/j.procs.2010.04.
231 ICCS 2010.

[41] Ruomeng (Cocoa) Xu, Anna Lito Michala, and Phil Trinder. 2022.
CAEFL: Composable and Environment Aware Federated Learning
Models. In Proceedings of the 21st ACM SIGPLAN International Work-
shop on Erlang (Ljubljana, Slovenia) (Erlang 2022). ACM, New York,
NY, USA, 9–20.

[42] Yonghong Yan, Max Grossman, and Vivek Sarkar. 2009. JCUDA: A
Programmer-Friendly Interface for Accelerating Java Programs with
CUDA. In Euro-Par 2009 Parallel Processing, Henk Sips, Dick Epema,
and Hai-Xiang Lin (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 887–899.

https://doi.org/10.1016/j.future.2020.12.011
https://doi.org/10.1016/j.future.2020.12.011
https://doi.org/10.1145/2141702.2141720
https://doi.org/10.1016/j.procs.2010.04.231
https://doi.org/10.1016/j.procs.2010.04.231

	Abstract
	1 Introduction
	2 Background
	2.1 Elixir and Actors
	2.2 GPU programming

	3 Hok
	3.1 GPotion kernels
	3.2 Hok: Higher-Order kernels
	3.3 High-level abstractions

	4 Implementation
	4.1 GMatrex
	4.2 Hok Modules
	4.3 Type inference
	4.4 Anonymous Functions

	5 Experiments
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

