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Abstract

Parallel computation is necessary in order to process massive
volumes of data in a timely manner. There are many parallel
programming interfaces and environments, each with their
own idiosyncrasies. This, alongside non-deterministic errors,
make parallel programs notoriously challenging to write.
Great effort has been put forth to make parallel programming
for several environments easier. In this work, we propose a
DSL for Rust, using the language’s source-to-source trans-
formation facilities, that allows for automatic code genera-
tion for distributed environments that support the Message
Passing Interface (MPI). Our DSL simplifies MPI’s quirks,
allowing the programmer to focus almost exclusively on
the computation at hand. Performance experiments show
nearly or no runtime difference between our abstraction and
manually written MPI code while resulting in less than half
the lines of code. More elaborate code complexity metrics
(Halstead) estimate from 4.5 to 14.7 times lower effort for
expressing parallelism.

Keywords: Programming Languages, Parallel Programming,
Stream Processing, Distributed Systems

1 Introduction

As the computing requirements to solve complex problems
increase, programmers begin to seek parallelism to meet com-
putation demands [29]. Parallelism may come in the form of
multiple processes in the same machine (multi-threading),
multiple processes distributed over a network of machines
(distributed computing or cluster computing), or through the
usage of specialized hardware (Graphical Processing Units -
GPUs, or other accelerators). Writing parallel programs is no-
toriously tricky [4]. These three forms of parallelism involve
radically different programming constructs and concerns.
Patterns for structured parallel programming [5, 23] amelio-
rate that by presenting known-to-work parallel procedures
with higher-level descriptions (pipeline, map-reduce, and so
on). However, the programmer still must be aware of each
platform’s specific characteristics and programming models
to be able to use them efficiently.

We have observed a significant research effort in the past
years to provide high-level parallel programming abstrac-
tions, mainly in the C++ language community. Parallel pat-
terns are instantiated via C++-based template libraries with
classes and predefined functions. Examples of abstractions

that support linear pipelines are TBB [25], FastFlow [1], and
GrPPI [6], where only FastFlow and GrPPI support the dis-
tributed execution of linear pipelines. More higher-level ab-
stractions are those that design internal Domain-Specific
Languages (DSLs) such as SPar [14], which offers C++ an-
notations to express stream parallelism, mainly in the form
of linear pipelines beyond other parallelism types[22]. It
also provides a source-to-source compiler for automatic par-
allel code generation [13]. SPar annotation methodology
preserves the sequential code structure, and the programmer
may choose to execute it in parallel for distributed mem-
ory [15, 28], diverse shared memory runtime systems[19,
20, 22], or GPU [31]. SPar’s approach demonstrated to re-
duce significantly programmability metrics with respect to
template-based approaches such as FastFlow and TBB [2].
Rust is a relatively new and modern low-level program-
ming language designed to be safe and performant [21].
Recent works have shown Rust’s capabilities for high-
performance computing (HPC) in shared memory environ-
ments [3, 26, 27, 30, 36] analogous to FastFlow and TBB
programming abstractions. Thus, a research question was
raised motivated by the programmability benefits shown
in C++ [2]. Could SPar’s annotation-based approach be
extended to the Rust language environment? An initial
effort was made in [8], by identically following the SPar’s
annotation methodology with automatic source-to-source
transformations for shared-memory architecture targeting
the Rust-SSP as the runtime system [27]. That research
focused on understanding the challenges and mechanisms
of Rust for source-to-source code transformation. Although
inspired by SPar annotations, this work proposes a new
annotation methodology and a new automatic source-to-
source code generation for distributed memory architectures,
targeting MPI as the runtime system. To the best of our
knowledge, we are the first research initiative to provide
higher-level abstractions in Rust for distributed HPC clusters.
Therefore, our scientific contributions are the following:

e A new high-level programming abstraction for express-
ing linear pipelines in Rust with automatic source-to-
source code generation. Although a proof-of-concept
is made with MPI, this internal DSL and code gener-
ation technique can be used to target other runtime
systems and parallel architectures.

e A new annotation-based method whose main ideas and
approaches could be ported into other programming
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languages with metaprogramming capabilities, to ease
and simplify parallel programming.

o A source-to-source transformation strategy targeting
MPI with procedural macros in Rust.

e A comparative analysis of programmability and per-
formance using several benchmark implementations
for distributed HPC clusters in Rust.

Section 2 presents the essential theoretical background to
understand our research implementations. Section 3 contains
the full explanation of how our programming abstraction
works. To showcase how general its central ideas are, and for
didactic purposes, we also include a shared memory, multi-
threaded implementation. To switch between the two, the
end user potentially has to change just a single keyword.
In Section 4, we show programmability and performance
metrics that indicate our programming abstraction signifi-
cantly reduces code intrusion effort while incurring minimal
execution time overhead. We discuss related work in Section
5 and finalize with our conclusions in Section 6.

2 Background

Parallelism exploitation is necessary for computer scien-
tists and engineers since computing problems are becoming
more complex, and computer architectures are fully parallel,
ranging from cell phones to personal computers and HPC
clusters. Multithreading is ultimately limited by hardware;
there are only so many independent executing threads one
can design a CPU chip to run. As problems and requirements
grow larger still, eventually one turns away from the multi-
threading architecture and reaches for parallelism without
shared memory: a distributed system, typically communicat-
ing through message passing. Often, the Message Passing
Interface (MPI) specification is used for programming in this
environment.

MPIL. MPI is a message-passing specification used in dis-
tributed environments to facilitate their parallel program-
ming. Programming in MPI can be challenging, as it forces
the developers to think about low-level communication de-
tails and manually implement all the details of the desired
parallel pattern or algorithm [23]. A possible solution for this,
as this work proposes, is to create higher-level abstractions
around MPI that already implement the underlying patterns,
allowing the programmers to only think about the specifics
of the problem at hand without worrying about the details
of the parallel execution model.

Linear Pipelines. A linear pipeline is a parallel pattern
described by a directed acyclic graph that represents the flow
of a computation [23]. Figure 1 shows an example of a linear
pipeline. The pipeline pattern explores parallelism in two
ways:

1. As Figure 1 shows, within the stages of a pipeline,
we can replicate the vertices so that they operate on
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Figure 1. An example of a linear pipeline.

different units of work at the same time. For example,
vertex 0 could split the problem into 5 distinct units of
work and send each one of those to a different vertex
with label 1. Those five vertices would then work at
the same time, in parallel.

2. Asthe pipeline fills up, the vertices working at different
stages correspond to multiple steps necessary to solve
the problem being worked on at the same time. For
instance, after the five 1-labeled vertices finish their
work, they will send their results to five 2-labeled ver-
tices. Then, the 0-labeled vertex can send more than 5
units of work to the 1-labeled vertices. After that, we
would have 10 nodes in the graph working in parallel
at the same time: five at stage 1, and five at stage 2.

In a linear pipeline such as this, the nodes that begin and
end the pipeline are often also called, respectively, source
and sink.

Rust. Rust is a relatively new, low-level programming
language with a focus on performance and safety. Since the
use of parallelism in a distributed environment usually arises
from a scalability issue, a performant low-level is a natural
choice. Indeed, MPI applications are traditionally written in
C/C++ because of this. Rust safety guarantees ensure that
many categories of bugs in C/C++, particularly the ones re-
lated to undefined behavior, are impossible. Examples include
use-after-free, buffer overflows, and null pointer dereferenc-
ing. Rust also offers more robust metaprogramming features
than C/C++, with a macro system that gives the programmer
limited access to the abstract syntax tree (AST), which they
can use to perform arbitrary code transformations. This sys-
tem can be used to implement custom syntax and Domain
Specific Languages (DSL).

DSL. A DSL is a computer programming language of lim-
ited expressiveness, focused on a particular domain [10].
DSLs are often used in diverse and highly specialized do-
mains because they allow for more personalized treatment of
the problems common to that domain than general purposes
languages [24]. In our case, we are proposing a small DSL
for the domain of parallel programming with distributed
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systems. The DSL uses a very similar set of keywords to SPar
[13, 14], a DSL originally made for C++, oriented towards
stream processing. Because stream processing is usually mod-
eled as a pipeline, adapting the DSL for the simpler case of a
linear pipeline is straightforward. Section 3 explains this in
further detail.

3 Proposed Abstraction

We start this section by formalizing a linear pipeline, which
will then guide our implementation. We will begin by defin-
ing a series of interfaces complying with our formalization.
Then, we will automatically generate parallel code that uses
these interfaces. To this end, we make use of Rust’s trait sys-
tem and metaprogramming features, but that is ultimately
just an artifact; the same underlying formalization could
be used to implement the same ideas in other program-
ming languages with metaprogramming support. The over-
all ideas aim to be so general that we have also created a
multi-threaded implementation using the same interfaces
and function transformations. Many of the code examples
given are for the multi-threaded version because they are
cleaner and easier to understand. They are followed by a
brief explanation of what changes with regard to the one
targeted for MPL. The DSL’s programming interface design
is internal since we aim to compile it with the host language
and cause minimal interference in the source code.

3.1 Linear Pipeline Formalization

Let the graph G represent a linear pipeline with V vertices
and E edges. Each vertex corresponds to a unit of computa-
tion, while each edge represents the communication between
them. V contains two special vertices, V; and V¢, which stand
for the sink and the source, respectively (the f in Vr stands
for “final”). The operations performed by the sink and the
source are unique, meaning they cannot be duplicated in any
other vertex in V. Any other computation performed by any
other vertex may be duplicated indefinitely. We represent
this by annotating the vertices with the same number, as we
have done in Figure 1. We may also say that vertices with
the same number belong to the same stage of the pipeline.

Because the final goal is to implement this in a statically
typed programming language, let us consider what happens
in the pipeline in terms of datatypes. Since the edges repre-
sent simple communication between independent processes,
no edge e can change the underlying type of the data they are
transferring. On the other hand, because the vertices stand
for arbitrary computation, they can change the underlying
datatypes. Specifically:

Remark 1. All vertices labeled with the same number con-
sume the same type of input and produce the same kind of
output.

This puts constraints on how edges and vertices can be
connected to build the linear pipeline. All edges that lead to a

vertex must be transferring data of the same type. Similarly,
for all edges leading from a vertex. More formally:

Remark 2. Let (v1,0;) represent an edge that starts at v1
and ends in v2, and vy is an arbitrary vertex. Given a vertex
v €V, all edges (v, vy) must transfer the datatype v, expected
as input, and all edges (vy, v) must transfer the datatype vy
generated as output.

Remark 3. Because edges do not transform data, Remark 2
implies that, for every edge (v1,v2), v1’s output must be of the
same type as vy’s input.

Given the internal computations of V, Remarks 1-3 are
sufficient to fully specify the types of every element of G. To
see why, consider a more straightforward pipeline, without
any replication. It would be equivalent to just using the top
nodes in Figure 1. Once the programmer has specified which
computations will occur in each stage, with their inputs
and outputs, the type of every edge is forced by Remark
2. If one stage’s input does not correspond to its previous
stage’s output (in other words, if Remark 3 is false), that is a
detectable type error made by the developer. To transform
the simplified pipeline into the one in Figure 1, we can simply
create more vertices at any stage between the source and
the sink that will execute the exact same code as the other
vertices with the same label, and fill in the edges as necessary.
Remark 1 guarantees that if we have a valid implementation
for one vertex, we can simply replicate it for all vertices in
the same stage, and the pipeline will still be valid.

3.2 Trait based implementation

Using what we have presented in Section 3.1, we can create
Rust traits representing all mentioned constraints. A trait in
Rust is similar to an interface in other languages: it defines
a series of functions that all data types that implement the
trait must have. We can then use the trait as parameters to
generic functions, which the compiler will monomorphize
during compilation — essentially, creates a different version
of the function for every necessary type. We will present an
overview of the several traits implemented that conform to
our formal specifications. For the sake of clarity, they will be
slightly simplified from our actual implementation, though
they will retain the general idea. Furthermore, because the
MPI implementation is too verbose to transcribe in this paper,
we give examples of the multi-threaded implementation and
then explain the differences between the two.

3.2.1 Edges. To represent an edges’ ability to send and
receive data, we have the Sender and Receiver traits (List-
ing 1). Note that the type T that Sender and Receiver com-
municate, as well as Sender and Receiver themselves, must
all implement the Send trait. Send is a marker trait that indi-
cates these types can be safely sent across thread boundaries,
which will be necessary for the multi-threaded implementa-
tion. Now, one needs only implement these traits for a given
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data type. As an example, the multi-threaded implementation
can be found in Listing 2.

pub trait Sender<T: Send>: Send + Clone {
type Error: std:fmt::Debug;
fn send(&mut self, elem: T) —> SendResult<Self:Error>;

}
pub trait Receiver<T: Send>: Send {
type Error: std:fmt:Debug;
fn recv(&mut self) —> ReceiveResult<T, Self:Error>;

Listing 1. Sender and Receiver traits

pub struct MtSender<T: Send> { sender: mpsc:Sender<T> }
impl<T: Send> Sender<T> for MtSender<T> {
type Error = ();
fn send(&mut self, elem: T) —> SendResult<Self:Error> {
match self.sender.send(elem) {
Ok(()) => SendResult::Ok,
Err(_) => SendResult::End,

}

pub struct MtReceiver<T: Send> { receiver: mpsc:Receiver<T> }
impl<T: Send> Receiver<T> for MtReceiver<T> {
type Error = ();
fn recv(&mut self) —> ReceiveResult<T, Self:Error> {
match self.receiver.recv() {
Ok(elem) => ReceiveResult::Ok(elem),
Err(_) => ReceiveResult::End,

Listing 2. Multi-threaded Sender and Receiver

The MPI implementation is more involved. Since we need
to send values through the network, we must serialize them
somehow. To do this, we have made use of the serde and
bytecode libraries. This means that, to use the MPI ver-
sions of these functions, type T must also implement the
Serialize and Deserialize traits from serde. Then, our
implementation sends an unsigned 64-bit integer indicating
the length of the serialized data, followed by the data itself.
A length of 0 means the channel has closed.

3.2.2 Workers. Now that we can communicate, we must
perform the actual computations. We will define, in Listing 3,
a Worker as a data type that has a Receiver and a Sender
of independent types (since, as discussed, nodes can perform
arbitrary code transformations).

It is important to note that this trait specification does
not include the actual computation performed by the worker
as part of its definition. Instead, run accepts a function (or
lambda) declared elsewhere, which will take the Worker as an
argument. This function then would have to use the worker’s
sender and receiver methods to communicate with the rest
of the pipeline.
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pub trait Worker<In: Send, Out: Send>: Sized {
type R: Receiver<In>;
type S: Sender<Out> + 'static;
///  returns this worker's sender
fn sender(&self) —> &Self::S;
///  returns this worker's receiver
fn receiver(&mut self) —> &mut Self:R;
/| execute the worker's code. Note we accept a function that
//]is defined elsewhere as an argument.
fn run<F: FnOnce(Self) + Send + 'static>(self, f: F);

Listing 3. Worker trait

Furthermore, the specification does not include a way of

replicating workers. This is because replication of indepen-
dent execution units is highly dependent on the environment
we are developing for. For instance, multi-threaded appli-
cations can simply fire new threads anywhere within their
code, while all units of execution for an MPI environment
are created all at once, globally, when the environment is
initialized.
3.2.3 Replicating Workers. To replicate workers for the
multi-threaded case, as mentioned, we can simply fire a new
thread. The multi-threaded Worker implementation can be
found in Listing 4.

pub struct MtWorker<In: Send, Out: Send> {
thread_pool: ThreadPool, // any implementation will do
receiver: MtReceiver<In>,
sender: MtSender<Out>,

}

impl<In: Send + 'static, Out: Send + 'static> Worker<In, Out>
for MtWorker<In, Out> {
type R = MtReceiver<In>;
type S = MtSender<Out>;
/// " runs the code in a separate thread
fn run<F: FnOnce(Self) + Send + 'static>(self, f: F) {
std::thread:spawn(move || f(self));

}

/// spawns a new unit of execution
fn spawn<F: FnOnce() + Send + 'static>(&self, f: F) {
self.thread_pool.spawn(f);

}

fn sender(&self) —-> &Self:S{ &self.sender}
fn receiver(&mut self) —> &mut Self:R{ &mut self.receiver }

Listing 4. Multi-threaded Worker

There are only two traits missing: Source and Sink.
Source is the same as Worker, but does not have a Receiver.
Sink, on the other hand, has just a method to turn itself into
a Receiver, so we can call recv on it to retrieve the data
that is exiting the pipeline.

With this, the multi-threaded implementation is complete.
To create a linear pipeline, one must simply call and con-
catenate the implementations together. In order to facilitate
this, we created a declarative macro called to_stream. A
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declarative macro in Rust is a macro declared inline (later,
we will see that procedural macros are defined in a separate
program instead) that performs text substitution. Let F be a
set of functions, fy, fi, f2, ..., fi, where f; and f; are the source
and sink logic, respectively. f and f; must accept as their first
arguments a type that implements Source and Sink, while
all other functions must accept a multi-threaded Worker as
their first argument. Any function except the Sink may have
any number of extra arguments (this is just an implemen-
tation artifact; Sink could theoretically be made to accept
extra arguments). Then, to_stream is called as depicted in
Listing 5, generating roughly the code in Listing 6.

to_stream!(multithread: [
f 0 (/* extra args for f 0 */),
(f_1(/* extra args for f 1 */), /* number of workers */),

(f_2(/* extra args for f 2 */), /* number of workers */),
£ i,
Listing 5. to_stream multi-thread example

let (snd_0, rcv_1) = create_sender_receiver_pair();
let f 0 = SequentialSource:new(snd_0);
f 0.run(f 0, (/* args for £ 0 */));

let (snd_1, rcv_2) = create_sender_receiver_pair();
let worker =

MultiThreadedWorker::new(/* number of workers */, rcv_1, snd_1);
worker.run(move |w| f_1(w, /* extra args for f 1 */));

let (snd_2, rcv_3) = create_sender_receiver_pair();
let worker =
MultiThreadedWorker::new(/* number of workers */, rcv_2, snd_2);

worker.run(move |w| f 2(w, /* extra args for f 2 */));

let sink = SequentialSink:new(rcv_i);

sink // sink is returned at end

Listing 6. to_stream multi-thread generated code

To generate MPI code instead, one would simply change
in Listing 5 the token multithread to mpi. Now, because
MPI can not simply fire a new process from an arbitrary code
location, to_stream’s MPI implementation must do more
work to ensure the right amount of replication. It creates
one worker per replication amount and uses the processes’
rank to determine what code they should run. For example,
if Listing 5 had i = 3, a level of replication of 2 for both its
workers, and was generating MPI code, it would assign f_0
and f_3 to process of rank 0, f_1 to processes [1 — 2], and
f_2 to processes [3 — 4]. This implies an MPI world size of
at least 5, which we validate during startup, exiting with
an error if it is not the case. Communication between the
processes is done in a round-robin fashion, starting at an
offset according to the process’s rank. In the example given,
process 1 would send to processes [3, 4] while the process

2 would send to [4, 3]. This is done to minimize contention
over the communication channels.

The final generated code in Listing 6 will automatically
validate our pipeline according to Remarks 1-3 by virtue
of simple type checking. Now, at this point, we are still de-
manding the programmer write the set of functions F taking
into consideration this implementation since their first argu-
ments must accept types that implement the relevant traits
we have presented. If we can eliminate this final hurdle, we
will have a nearly completely transparent abstraction that
lets programmers build pipelines while specifying just “nor-
mal” functions.

3.3 Procedural macro function transformation

Procedural macros in Rust are separate programs written
by the developer that perform code transformations. During
compilation, when one of these macros is called, the com-
piler will execute the respective program and feed the parsed
Rust AST as input, expecting a stream of valid Rust tokens
as output. Within the procedural macro, the developer can
do any arbitrary computation. It is possible to, for example,
generate code conforming to a specification contained in
a separate file, detect special hardware features, adjust the
generated code accordingly, and so on. There are 3 types
of procedural macros according to the Rust Reference [35].
We will be using attribute macros to perform function trans-
formations. When used in this way, attribute macros look
very similar to annotations in other programming languages
such as C++ and Java. Our ultimate goal is to allow the devel-
oper to write sequential function implementations and then
transform those into functions that execute in parallel using
the traits we implemented in the previous section. Listing 7
shows what that will look like.

We will call the original function f, and the generated
function f;. We must not change f,’s internal semantics,
lest the results differ from their sequential implementations.
This is trivially handled by simply copying f;’s body into f;.
Furthermore, because f; will use types that implement the
traits we discussed in the previous section, the exact same
function transformations work for any implementation, both
multi-threaded and distributed. We will now consider what
transformations we must do to each function in Listing 7,
starting with the stage.

#[source]

fn source(/*inputs*/) —> /*outputs*/ {/* sequential source logic */}

#[stage]

fn stage(/*inputs*/) —> /*outputs*/ {/* sequential stage logic */}

#[sink]
fn sink(/*inputs*/) —> /*xoutputs*/ {/* sequential sink logic */}

// later, the developer calls to_stream!(), using these functions

Listing 7. Desired application level code
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3.3.1 Stage. For this function, f; will accept a Worker im-
plementation with a Receiver that will receive a tuple con-
sisting of f,’s input and a Sender that will send the same
type as f,’s output. In between them, we execute f, to per-
form the desired computation. Listing 8 shows the result of
that.

fn stage(worker: impl Worker<(/*inputs*/), /*outputs*/>) {
let mut r = worker.receiver().recv();
whiler != ReceiveResult:End {
let output = { /* Runf o with what we received in 'r' */ };
worker.sender().send(output);
r = worker.receiver().recv();

Listing 8. stage’s transformed function

3.3.2 Source. The source function has an extra require-
ment to let us transform it: it must return an iterator as
its output. If it does not, the procedural macro returns an
error (this is trivially detectable since we only need to see if
the function’s signature output begins with Iterator). This
corresponds to the notion that the source function must cre-
ate the units of work that will be sent through the pipeline.
A function that simply returns an integer does not make
sense for the source of a pipeline. Since source must return
an iterator, f; just executes f, and iterates over its results,
sending each of those to a worker in the next stage in the
pipeline.

3.3.3 Sink. While the source’s f, function must return an
iterator, the sink, being the opposite of source, generates an
fg that returns an iterator. This allows the developer to iterate
over the results outputted by the pipeline. The iterator’s
implementation will call receiver.reco() to get the next item,
executing f, before returning it to the caller.

3.4 Ordering and stateful computations

There are two last considerations to finalize our abstraction:
ordering constraints and stateful computations.

3.4.1 Ordering. Some data streams demand the processed
items be outputted in the same order as they were inputted.
A typical example is video frames. This means our sink’s f;
must allow for that. We implemented the algorithm described
in [16] to order the output. It works by tagging each item in
the source with a monotonically increasing integer. Then,
in the sink, we use a priority queue to determine which
item should be outputted next. The current implementation
is not robust against data losses throughout the pipeline (it
would wait for the missing data forever), though that could
be improved in future works. To specify that we want the
output to be ordered, we use #[sink(Ordered)].

3.4.2 State. Some workers may benefit from having some
sort of immutable state for performing their computations.
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For example, they could read a specification from a file. If
we do not allow f; to receive extra variables representing
that state, f, would have to read the specification on ev-
ery execution, which would clearly be sub-optimal. To ac-
commodate stateful computations, sink and stage accept
an optional State(args) argument (#[stage(State(vari,
var2, ...))]). These correspond exactly to the “extra ar-
guments” in the to_stream! implementation we explained
in Section 3.2.3.

4 Results

This Section discusses the results of the MPI implementation
explained in Section 3. We created distributed implementa-
tions for the 4 programs in RustStremBench' provided by [27]:
bzip2 - performs compression with the bzip2 algorithm;
micro-bench - calculates a mandelbrot set; eye-detector
— uses OpenCV to detect people’s eyes from a video; and
image-processing — applies a series of filters to a list of
images. Their execution graph can be found in Figure 2a.
We slightly changed eye-detector from the original work,
introducing an extra computation stage.

There are two distributed implementations: one using raw
MPI calls and one using our abstraction. We implemented
both versions, and the raw MPI one was written to mimic
the generated code as closely as possible. To make the nec-
essary calls to MPI, we used the rsmpi library [12, 32], with
openMPI as its underlying implementation [11]. When it
was necessary to serialize certain data types, we copy-pasted
the code into both implementations to make sure this would
not affect our results.

We begin with an analysis of code intrusion effort since
our primary goal with our implementation was to make dis-
tributed parallel programming easier. We then proceed to
evaluate its impact on the final program’s performance. We
show that our abstraction leads to considerable programma-
bility benefits with negligible performance overhead.

4.1 Programmability

The primary reason for creating a higher-level abstraction
is to simplify the programmer’s activity. Therefore, it is im-
portant to measure programming complexity in some form,
so that we may confidently state we have achieved our goal.
To measure programmability, we compare significant lines
of code, as reported by the scc tool?, and Halstead com-
plexity metrics [17] between the sequential and distributed
implementations. Table 1 shows the results.

Discussion. Table 1 indicates our abstraction has greatly
simplified the act of implementing a parallel pipeline com-
pared to using raw MPI calls. The extra lines of code and
complexity we observe in Eye Detector and Image Process-
ing are mostly due to the extra code necessary to implement

Isource code available at https://github.com/GMAP/RustStreamBench
Zavailable at https://github.com/boyter/scc
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the serialization of the datatypes we need to communicate
between the workers. We do not need to do that for Bzip2 and
Micro-Bench because Bzip2 only needs to communicate raw
data, and Micro-Bench’s structures are simple enough that
we can use serde’s default serialization methods. Comparing
the multithreaded version of the programs to their MPI coun-
terparts shows how programability between the applications
that do need complex serialization is almost identical . Hal-
stead estimations differences between the raw MPI and our
abstraction’s implementation are explained by the fact that
raw MPI leads itself to very branch-happy code. To give each
process its role, we must branch on its MPI-given rank. This
inflates Halstead’s estimations since it considers branches to
increase code complexity. By contrast, the branching part of
MPT is completely hidden away when using our abstraction,
which greatly reduces Halstead’s estimated complexity.

Bzip2 Micro Bench | Eye Detector | Image Processing
SLOC | Hours | SLOC | Hours | SLOC | Hours | SLOC Hours
Sequential 190 39.50 37 1.37 50 3.06 26 0.76
This Work (MT) 226 46.65 100 10.50 108 8.66 64 2.14
Pure MPI 504 178.77 | 213 27.93 370 60.10 287 47.29
This Work (MPI) 226 46.65 103 10.49 199 19.87 112 5.64

Table 1. Programmability metrics in terms of significant
lines of code (SLOC), and Halstead estimated development
time in hours. “MT” stands for “multi-threaded”.

4.2 Performance

Distributed computing is often used not only for increased
reliability but also for increased scalability. Thus, we should
make sure our abstraction does not negatively affect execu-
tion time. This section measures the throughput in items
per second of the 4 programs presented at the beginning
of this Section. The “item” in questions changes for each
application: for bzip2, it is a chunk of 900kB, from a Fedora
Core 6 ISO file; for micro-bench, it is each row of the fi-
nal 4096x4096 image; for eye-detector, it is the frames of
the video from a 450 frames video with many faces; and
for image-processing it is each image in a set of 1000
small (640x427) images. The results are presented in Figure 2,
where “0” replicated stages represent the original sequential
program.

We conducted our experiments in a cluster with 4 ma-
chines, connected through 1Gb ethernet, each equipped with
two Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz, and 32GB
of RAM, for a total of 48 physical cores. We applied a constant
factor of parallelization for every stage of the pipeline, which
explains why the x-axis values change for each graph. For
example, micro-bench has 2 stages, which means we can
only execute with 2n replicated stages, plus 1 extra process
for each sequential sink and source. This was done purely
to avoid bottlenecks between stages; as Section 3 demon-
strated, changing the amount of replication for each stage
in our abstraction is trivial.

Discussion. eye-detector and image-processing are
the applications with the highest number of stages (3 and 5,
respectively). The proposed abstraction and MPI performed
roughly the same in these circumstances. The other applica-
tions show a visible difference between the implementations,
with bzip2 favoring raw MPI, and micro-bench favoring us.
bzip2’s raw MPI has the advantage that, since in a compres-
sion algorithm, we are working with raw bytes, no serializa-
tion needs to be done. But our abstraction always serializes
the data. Even if, in this case, the serialization consists of a
simple copy, when done over large amounts of data, the costs
add up. This also explains why there is a much larger differ-
ence in decompression: there is less work for the CPU, and
so the extra copying of data makes a more significant impact.
micro-bench’s difference is so tiny it could be explained by
variations in the network. Overall, we see our abstraction
significantly increased execution times only for the most
straightforward application, which had the least number of
stages (only 1) and needed not serialize its data. All other
applications that involved more complicated pipelines and
data serialization show either no or a very small difference.

5 Related Work

Rust has had many abstractions for executing parallel code
in shared memory environments. From academic efforts [3,
27, 34], to non-academic, though widely used, ones [30, 36].
These developments will likely continue since Rust offers
distinctive benefits to multi-threading programming (no data
races and a standard library with many efficient synchroniza-
tion primitives). Although we implemented a version of our
library for shared memory, it was only done as a way of val-
idating that our abstraction was generic enough to support
multiple parallel environments. Our main contribution lies
in the MPI, the distributed implementation. Our work also
distinguishes itself from other academic works that lever-
age Rust’s metaprogramming capacities [7, 18, 33] because
they do not focus on generating code to run in distributed
environments.

Specifically, regarding MPI, there are the works of Tronge,
Pritchard, and Brown [37, 38]. In [37], the authors reimple-
mented core components of Open MPI used for intra-node
communication in Rust, showing its performance is close
to the existing C code. In [38], the authors examined ways
to implement or use point-to-point communication within
memory-safe programming languages. To this end, they’ve
datatype implemented type matching on top of Open MPI,
and a UCX-based library written in Rust. Both of these works
are lower-level than ours, focusing on programming feasi-
bility and low-level performance. In theory, our abstraction
could have been built on top of their work, rather than rsmpi.
This could be done in possible future works.
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Figure 2. RustStreamBench with handwritten MPI implementations vs. automatic parallelization using this work.

RStream [9] is a data-processing platform written in Rust
whose results are competitive with custom MPI implementa-
tions. The authors created a platform for stream processing,
directly comparing their work’s performance with Flink’s.
Our work proposes just a library (not a platform), based on
code transformations to deal with the specific case of a linear
pipeline, and with a greater focus on ease of programming.
Moreover, our ideas presented in Section 3 are generic and
abstract, such that they may be implemented in nearly any
programming language with metaprogramming support and
for multiple parallel environments.

6 Conclusion

In this work, we presented a new internal DSL for expressing
linear pipelines with minimal code intrusion in Rust. We also
performed source-to-source transformations targeting HPC
clusters using MPI as a runtime system. We demonstrated
that our proposed abstraction is general enough to target
multi-threaded or message-passing implementation with the
same annotation interface. We collected programmability
metrics in the form of SLOC and Halstead estimations to
demonstrate how our DSL simplifies the implementation of
parallel code. Furthermore, we have presented performance
measurements showing that the generated code is competi-
tive with the raw MPI equivalent, except for the case where

the data does not need to be serialized since the raw MPI
code can then omit an extra copy of the data.

Although the results are promising, this work’s validation
is limited to the application set and computing environment.
More experiments are necessary in the future to general-
ize the achievements. We plan to evaluate our DSL in dif-
ferent cluster environments using the Infiniband network
and newer servers, as well as test other workloads. Also, as
mentioned in Section 5, we aim to use another underlying
communication protocol or an alternative MPI implemen-
tation, making use of prior work like [37] or [38]. We want
to provide another work distribution with an on-demand
scheme, as opposed to its current round-robin, measuring
performance differences. We could also investigate the pos-
sibility of detecting when we can bypass serialization, thus
improving Bzip2’s performance. Finally, we plan to use the
same programming abstraction approach to implement easy-
to-use parallelization for GPUs or other similar accelerators.
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