
Towards Random Elixir Code Generation
Bernardo Beltrame Facchi
bernardobf[at]outlook.com.br

Universidade Federal da Fronteira Sul
Chapecó, SC, Brazil

Andrei de Almeida Sampaio Braga
andrei.braga[at]uffs.edu.br

Universidade Federal da Fronteira Sul
Chapecó, SC, Brazil

André Rauber Du Bois
dubois[at]inf.ufpel.edu.br

Universidade Federal de Pelotas
Pelotas, RS, Brazil

Samuel da Silva Feitosa
samuel.feitosa[at]uffs.edu.br

Universidade Federal da Fronteira Sul
Chapecó, SC, Brazil

ABSTRACT
Developers expect compilers to be correct. Unfortunately, these
tools are not entirely bug-free. A failure introduced by the compiler
could compromise a critical system and consequently have cata-
strophic consequences, specially in applications of great complexity,
affecting both end users and developers. Such failures can lead to
significant financial losses, security vulnerabilities, and a loss of
trust in the software’s reliability. Therefore, testing and validating
all the compiler functionalities to assure its correctness is essential
given their importance in software development. In light of the
given context, this paper describes a random code generation tool
using Haskell that generates well-typed Elixir code by adhering
to a specified syntax and typing rules, which serves as input for
property-based tests, striving to contribute to the overall quality
and dependability of software systems built using Elixir.

KEYWORDS
Code generation, Elixir Compiler, Property-based Testing

1 INTRODUCTION
The Elixir programming language has quickly become a powerful
tool in modern software development, known for its scalability,
concurrency, and functional programming capabilities [2]. Its Ruby-
influenced syntax offers a user-friendly experience while maintain-
ing efficiency and reliability for complex, real-time applications.
This combination has led to its increasing adoption in various do-
mains, from web development to embedded systems.

As Elixir’s popularity grows, ensuring the compiler’s correctness
is crucial. Manual testing of compilers is often inefficient and can
overlook edge cases, leading to potential failures in software. To
address this, random code generation automates the creation of
diverse test cases, allowing for more embrancing testing of the com-
piler’s functionality [7]. This approach helps cover a larger subset
of the language and test various functionalities more systematically.

Developing a random code generation tool is challenging due to
the need to adhere to the language’s syntactical and type system
constraints. The paper investigates a bottom-up, goal-oriented ap-
proach [1, 5, 7] to generate randomized programs using Haskell, a
language well-suited for code generation. The quality of the gener-
ator is measured through code coverage and property-based testing
with the QuickCheck library, ensuring the generated code is well-
typed and covers a wide range of scenarios. The paper also outlines
the steps to generate Elixir programs, presents a prototype imple-
mentation, and discusses related works and future directions.

𝑐 : 𝑐 (cst)
Γ ⊣ 𝑥 : 𝑡
𝑥 : 𝑡 (var)

𝑒1 : int 𝑒2 : int
𝑒1 + 𝑒2 : int

(+)
𝑥 : 𝑠 ⊢ 𝑒 : 𝑡

𝜆(𝑥 .𝑒) : 𝑠 → 𝑡
(𝜆)

𝑓 : 𝑠 → 𝑡 𝑒 : 𝑠
𝑓 (𝑒) : 𝑡

(app)
𝑒 : 𝑡

{𝑒} : {𝑡}
(tuple)

𝑓 : int 𝑒 : {𝑡0, . . . , 𝑡𝑛}
𝜋𝑓 (𝑒) : 𝑡𝑖

(proj)
𝑓 : 𝑠 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡
let 𝑥 : 𝑠 = 𝑓 in 𝑒 : 𝑡

(let)

𝑒1 : 𝑠 Γ, vars(𝑝, 𝑠) ⊢ 𝑒2 : 𝑡
Γ ⊢ case 𝑒1 do 𝑝𝑔 → 𝑒2 : 𝑡

(case)

Figure 1: Type system considered for expressions.

2 ELIXIR LANGUAGE
The Elixir functional programming language, created by José Valim,
had its first version released to the public in 2014, and runs on
top of the Erlang Virtual Machine (BEAM). Elixir offers productive
programming for secure and maintainable distributed applications
by leveraging the virtual machine resources on which it is based [8].
Elixir is functional, process-oriented, scalable, concurrent, and fault-
tolerant [3].

2.1 Syntax and Type System
Most Elixir constructors are syntactic sugar based on function
application and pattern matching. Types in Elixir are polymorphic,
set-theoretic, and recursively defined. The syntax this project was
based upon is described in Castagna et al. [2], including types,
expressions, patterns, guards, and selectors.

Both statically and dynamically typed programming languages
have a type system. Its purpose is to define how the language
constructions can be used besides its grammar. This process is
carried out through a set of rules. Figure 1 presents a formal subset
of the Elixir type system [2].

Each rule determines how the type of a specific term should be
verified by the compiler. A term is valid if its premises are in accor-
dance with the type system restrictions. Considering the approach
of generating code by following each rule, we guarantee that the
randomly generated code will be correct, allowing the code to be
compiled and executed.



SBLP ’24, September 30 – October 04, 2024, Curitiba, PR Facchi et al.

3 CODE GENERATION
The process of generating random, well-typed Elixir code is divided
into three key steps: (i) randomly generating a valid Elixir type, (ii)
randomly generating an expression in an abstract representation,
and (iii) compiling the generated expression into Elixir concrete
syntax. On this basis, the generated type is used as input to the
expression generation process, which uses the typing rules as con-
straints to create valid expressions based on a bottom-up approach,
where to satisfy the conclusion of a rule, it is necessary to respect
their premises. This process gives rise to an expression generation
judgment, as follows.

Definition 1. Expression generation judgment. Γ;𝑇
exp
===⇒ 𝑒

Given a Γ context containing the free variables, and a type 𝑇 , a
new expression e is generated by selecting a syntactical constructor at
random respecting the typing rules.

The generation technique we use is derived by interpreting the
typing rules from Figure 1 backwards. In essence, to produce an
expression that appears as the result of a rule, one must initially
create expressions that form the rule’s premises and then merge
them. Consequently, the process of generating a term may recur-
sively need the creation of sub-goals. Employing the typing rules
guarantees that the generated terms are correctly typed.

All the code produced for this article was developed in Haskell
(version 8.6.5), using the QuickCheck library (version 2.12.6.1) for
property-based testing1.

3.1 Type Generation
The first step was to define all the valid Elixir types according to
the language syntax in Haskell using Algebraic Data Type (ADT)
constructors. We implemented the primitive types (int and atom),
tuple type and function type. The process of generating types is en-
tirely based on syntax, which implies that it’s unrestricted and any
valid type can be generated at random. The type generation follows
a recursive process. If the selected type is final, i.e., a primitive type,
the return is immediate. Otherwise, we recursively continue the
generation. To avoid non-termination due to the recursive approach,
we decrement a fuel on each recursive call so that when it reaches
zero, only terminal types can be created, forcing the generation to
stop.

3.2 Expression Generation
The expression generation process is similar to the type generation
process. The difference is that it must be guided by the typing rules
presented in Figure 1 to generate type-correct expressions.

The objective of the expression generation is to create a well-
typed expression at random that should be evaluated to a specific
type. To guarantee that the expression is well-typed, we respect
the restrictions imposed by the typing rules during the generation
process. For this reason, to generate an expression of a specific type,
only a subset of the typing rules can be considered. For example, the
tuple rule can only be used when the expected type is a tuple, the
lambda rule can only be used when the expected type is a function

1https://anonymous.4open.science/r/Elixir-Generator-840F

type, the arithmetic addition rule can only by used when an integer
type is expected, and so on.

As shown by the process generation judgment (Definition 1),
for the generation of each expression, it is expected the use of
two inputs: (1) a context (initially empty) containing variables that
might be used during the generation of sub-expressions2 that is fed
during the generation process with new variables when they are
created; and (2) a type, that defines what the expression should be
evaluated to. Note that during the generation of sub-expressions
their return type might not be the same as the return type of the
initial expression.

The generation process uses a bottom-up approach, where to
generate an expression, we must satisfy the expression typing rule’s
premises, which might require the generation of sub-expressions.
Hence, the generation method explored in this paper is recursively
defined and guided by the type system. This approach guarantees
that the expressions created are well-typed.

To understand how the typing rules are used to guarantee the
generation of type-correct expressions, let’s consider the following
example.

Example 1. Using the expression generation judgment to create a

new expression of type int. Γ; 𝑖𝑛𝑡
𝑒𝑥𝑝
====⇒ 𝑒

A typing rule can be formatted using the question mark ? as a
placeholder for that expression, representing the first generation step,
as follows:

Γ ⊢ ? : 𝑖𝑛𝑡 (1)
Suppose the rule for arithmetic addition (+) was selected at random.

Then, the second generation step would look like:

Γ ⊢ ?1 : 𝑖𝑛𝑡 Γ ⊢ ?2 : 𝑖𝑛𝑡
Γ ⊢ ?1 + ?2 : 𝑖𝑛𝑡

(+) (2)

The question marks (?1 and ?2) represent the sub-expressions that
will be generated as sub-goals.

To generate each sub-goal, the generation judgment should be used
recursively for each placeholder. It means that other typing rules can
be selected.

Suppose that, for short, each sub-goal selected the rule for constants
(cst). Then, the third generation step would be:

2 : 𝑖𝑛𝑡 (cst) 5 : 𝑖𝑛𝑡 (cst)

Γ ⊢ 2 : 𝑖𝑛𝑡 Γ ⊢ 5 : 𝑖𝑛𝑡
Γ ⊢ 2 + 5 : 𝑖𝑛𝑡

(+)
(3)

As can be noted, since only terminal rules (without premises) were
selected, the generation process finished producing a new expression
(2 + 5) of type 𝑖𝑛𝑡 .

The approach presented in Example 1 was used to generate
correctly typed literals, variables, arithmetic operators, lambda
expressions and applications, tuples and projections, and pattern
matching through case expressions with guards and selectors, in
accordance with the typing rules specified by Castagna, Duboc, and
Valim [2]. Given that the code produced conforms to a valid Elixir
program, we believe that they can be further studied for testing
purposes.
2A sub-expression is part of an expression that is by itself an expression.



Towards Random Elixir Code Generation SBLP ’24, September 30 – October 04, 2024, Curitiba, PR

4 PROPERTY-BASED TESTS
To provide a proof-of-concept of our work, we implemented an
Elixir random code generator tool using Haskell based upon the
ideas presented in Section 3 and a simple test suite also using
Haskell and QuickCheck. To ensure the validity of our generated
Elixir code, we implemented a property designed to verify that
all generated test cases compile successfully. This property estab-
lishes that the code generated by our tool is both syntactically
valid and correctly typed. For each generated program, the process
involves writing the code to disk and subsequently invoking the
Elixir compiler to compile the program and report back whether
the compilation was successful or if any error was found.

This property-based approach left us confident that each gen-
erated test case is valid, and in addition it also provided us with
a mechanism for continuously validating the overall effectiveness
and reliability of our code generator. The tested property ensures
that our tool consistently produces valid, compilable code, which
is a fundamental prerequisite for any further semantic testing or
execution of the generated programs.

We used the test suite to run ten batches of 1000 tests. Each
batch generated, compiled and executed all programs in roughly 6
minutes on a computer with an Intel(R) Core i7-10700k CPU (5,00
GHz x 8) running Ubuntu 20.04.6 LTS onWindows 11 throughWSL.
It is worth noting that all generated programs compiled successfully,
confirming that we are indeed generating onlywell-typed programs,
meaning that our code generation and testing framework were
reliable in validating the generated Elixir code. It indicates that the
generated programs can be used in other test scenarios.

We also generated programs and compared them across different
versions of Elixir by looking at their outputs. We conducted ten sets
of 1000 tests, each taking around 18 minutes. The versions we used
were 1.15.0, 1.16.3, and 1.17.1, all of which utilized Erlang OTP/25.
We employed asdf to manage multiple Elixir versions. During test
execution, no differences in output were found between the versions
we tested. Some tests, however, could not be completed due to the
compilation process taking more than 10 seconds, which forced us
to reduce the generated code size.

Additionally, we employed the Haskell Program Coverage (HPC)
tool to assess the diversity of the generated programs and pro-
vide detailed insights into the execution paths taken by our code
generation logic. Given that our approach to code generation is
randomized, we have no control over what branches the algorithm
will take during execution, it is crucial to ensure that this random-
ness adequately explores all syntactical constructs and does not
inadvertently miss any critical paths or edge cases.

Upon analyzing the statistics report provided by HPC, we ob-
served that 100 percent of the syntactical constructors were covered
in a batch of 1,000 test cases. This result is significant as it demon-
strates that our random code generationmethod effectively explores
all possible code patterns within defined constraints. Achieving
full coverage means that our tool can generate a wide variety of
valid Elixir programs, ensuring that no syntactical edge cases are
overlooked, which implies that our program generation approach
can be trusted to test the full spectrum of valid Elixir syntax.

By ensuring that all syntactical constructs are represented in
the generated programs, we can state that our tool provides good

inputs for testing purposes, which is important for further tests,
increasing the probability of identifying and addressing potential
bugs.

5 RELATEDWORKS
Although the concept of random code generation originated in the
early 1960s [9], it continues to be a challenge to this day. Palka;
Claessen; Russo; Hughes [7] tested the Haskell compiler (GHC)
by generating lambda terms to locate errors in the target com-
piler. Livingskii; Babokin; Regehr [6] developed YARPGen for C
and C++, which tested the GCC, LLVM, and Intel® C++ Compiler.
Feitosa; Ribeiro; Bois [4] provided a Java program test generator
specification using the Featherweight Java (FJ) formalism to gener-
ate well-typed programs. Yang; Chen; Eide; Regehr [10] developed
CSmith, a random code generation tool for the C language targeting
the GCC and LLVM compilers. These studies employ varied code
generation techniques, which could be further investigated within
the Elixir compiler testing framework.

6 FINAL REMARKS
In this paper, a random code generator was presented based on a
formalization of Elixir’s syntax and type system to generate type-
correct Elixir programs. We reasoned that the generation method is
sound concerning a subset of Elixir’s type system, which includes
primitive types and operators, several expressions, and pattern
matching with guards. Furthermore, we used the QuickCheck li-
brary to perform a preliminar evaluation, and the HPC tool to pro-
duce an analysis of the Elixir code coverage through the generation
and execution of the generated programs.

ACKNOWLEDGMENTS
This work was partially funded by Universidade Federal da Fronte-
ria Sul under process number PES-2023-0183.

REFERENCES
[1] Elton M. Cardoso, Daniel F. Pereira, Regina M. A. De Paula, Leonardo V. S. Reis,

and Rodrigo G. Ribeiro. 2022. A Type-Directed Algorithm to Generate Random
Well-Formed Parsing Expression Grammars. In Proc. of SBLP’22. ACM, New York,
NY, USA, 8–14. https://doi.org/10.1145/3561320.3561326

[2] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2023. The Design Princi-
ples of the Elixir Type System. arXiv:2306.06391 [cs.PL]

[3] Elixir. 2023. Elixir. https://elixir-lang.org/
[4] Samuel Feitosa, Rodrigo Ribeiro, and Andre Du Bois. 2019. Generating Random

Well-Typed Featherweight Java Programs Using QuickCheck. ENTCS (apr 2019),
3–20. https://doi.org/10.1016/j.entcs.2019.04.002

[5] Samuel Feitosa, Rodrigo Ribeiro, and Andre Du Bois. 2020. A type-directed
algorithm to generate random well-typed Java 8 programs. Science of Computer
Programming 196 (2020), 102494. https://doi.org/10.1016/j.scico.2020.102494

[6] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing for
C and C++ Compilers with YARPGen. Proc. ACM Program. Lang. 4, OOPSLA,
Article 196 (nov 2020), 25 pages. https://doi.org/10.1145/3428264

[7] Michał H. Pałka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing
an Optimising Compiler by Generating Random Lambda Terms (AST ’11). 91–97.
https://doi.org/10.1145/1982595.1982615

[8] PetSI. 2018. ELIXIR: uma linguagem de programação brasileira em sistemas
distribuídos do mundo. http://www.each.usp.br/petsi/jornal/?p=2459

[9] Richard L. Sauder. 1962. A general test data generator for COBOL. In Proceedings
of the May 1-3, 1962, Spring Joint Computer Conference (San Francisco, California)
(AIEE-IRE ’62 (Spring)). 317–323. https://doi.org/10.1145/1460833.1460869

[10] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. SIGPLAN Not. 46, 6 (jun 2011), 283–294.
https://doi.org/10.1145/1993316.1993532

Received 24 June 2024; revised 3 August 2024; accepted 3 August 2024

https://doi.org/10.1145/3561320.3561326
https://arxiv.org/abs/2306.06391
https://elixir-lang.org/
https://doi.org/10.1016/j.entcs.2019.04.002
https://doi.org/10.1016/j.scico.2020.102494
https://doi.org/10.1145/3428264
https://doi.org/10.1145/1982595.1982615
http://www.each.usp.br/petsi/jornal/?p=2459
https://doi.org/10.1145/1460833.1460869
https://doi.org/10.1145/1993316.1993532

	Abstract
	1 Introduction
	2 Elixir Language
	2.1 Syntax and Type System

	3 Code Generation
	3.1 Type Generation
	3.2 Expression Generation

	4 Property-based tests
	5 Related Works
	6 Final Remarks
	References

