
The expression problem in platform-aware
programming

Francisco Heron de Carvalho Junior
heron@dc.ufc.br

Departamento de Computação, Universidade Federal do Ceará
Fortaleza, Brazil

Abstract
Platform-aware programming involves making assumptions
about specific features of the target execution environment
to improve performance. We restate a fundamental prob-
lem in software extensibility called The Expression Problem
for platform-aware programming to show how a solution
based on dynamic multiple dispatch over platform types may
improve such a performance engineering practice.

1 Introduction
Architectural independence is a basic design premise of pro-
gramming languages. It promotes high-level abstractions and
delegates to compilers the problem of running a program
on multiple computer architectures, contributing to dealing
with the increasing complexity of software in the face of
the rapid evolution of hardware. Architectural independence
was possible due to the Von-Neumann architecture and in-
dustry efforts to consolidate standards for designing hard-
ware components. However, architectural independence con-
stitutes a performance bottleneck in many high-performance
computing (HPC) applications.

HPC emerged in the 1970s with the first supercomputers,
today represented by clusters and MPPs1 [6]. HPC system de-
signers have introduced several features to build ever-faster
parallel computers, including vector processing, multiproces-
sors with deepmemory hierarchies, low-latency interconnec-
tions for distributed-memory parallelism, and heterogeneous
computing. Programming for HPC systems became a task for
performance engineering experts as architectural dependence
proved necessary to exploit their performance.
In recent years, performance engineering concerns have

reached application niches of wider interest, such as Artifi-
cial Intelligence (AI). Most of the success of machine learn-
ing through Deep Neural Networks (DNNs) is devoted to
GPUs. Distributed computing also plays a key role in the
most challenging deep learning tasks, and the first super-
computers aimed at AI have been deployed, such as Intel’s
Aurora, Microsoft Azure’s Eagle, and NVIDIA DGX Super-
POD [6]. In HPC research, heterogeneous computing chal-
lenges and the HPC/AI convergence dominate debates. In
the hardware industry, the most relevant HPC players are
working on designing AI processors and accelerators, as
well as quantum computing devices, drawing attention to
1Massive parallel processors.

the Von-Neumann bottlenecks and motivating predictions
that its predominance is coming to an end [9].

We argue that the improvement of programming practices
for HPC has been hampered by strict assumptions regarding
architectural independence in the design of programming
languages, which leads to a concentration of efforts on high-
level abstractions and compilation techniques to hide the nat-
ural architectural heterogeneity of HPC systems. In turn, ef-
forts to improve the practice of platform-aware programming,
i.e., writing code that makes assumptions about features of
the target execution environment, are rare. However, the
relevance of platform-aware programming tends to increase
as computer system designers continue to develop new ac-
celerator architectures and instruction set extensions for
general-purpose processors to address specific application
requirements. So, we draw the programming language com-
munity’s attention to the problem of improving high-level
programming languages for platform-aware programming
by looking for structured ways of writing platform-aware
code without performance losses and satisfying software
modularity and extensibility requirements.
This paper contributes to this issue by proposing, in Sec-

tion 2, a restatement of the expression problem, a well-known
problem in programming language design, for platform-
aware programming. Then, in Section 3, it presents an at-
tempt to address this problem in the Julia programming
language [3] based on multiple dispatch over platform types.
Finally, Section 4 discusses the limitations and drawbacks of
this approach and lines for further work.

2 Platform-aware expression problem
In a post on the Java Genericity mailing list in 1998, Phil
Wadler coined the term expression problem to refer to a fun-
damental problem in software extensibility [2, 11]. How
programming languages solve the expression problem is
a measure of their expressiveness. We restate the expression
problem for platform-aware programming by adding the
notion of platform to data types and operations.
Let D be a set of cases in the definition of a variant data

type and O be a set of operations over them, i.e., each op-
eration has a definition for each case. By taking cases as
rows and operations as columns of a decomposition matrix,
the original expression problem concerns how a program-
ming language can support adding new cases (rows) and

https://orcid.org/0000-0003-2286-2376


SBLP’2024, October 1–4, 2024, Curitiba, PR, Brazil de Carvalho-Junior, F. H.

operations (columns) without recompiling existing code and
preserving static type safety, i.e., without dynamic casts.
W. Cook has identified two basic decompositions: proce-

dural data abstraction (PDA), based on type cases (rows), and
abstract data types (ADT), based on operations (columns) [2].
Object-oriented and functional programming languages are
the most influential representatives of these two decomposi-
tions, respectively, and, for this reason, they will be used as
references in the following discussion.

In a functional program, an operation (function), specified
by scrutinizing the cases of a data type, can be added with-
out modifying other functions or the data type definition.
This is not true when adding a new type case, potentially
requiring modifying all the functions over the type. In an
object-oriented program, a new class specifies a new type
case and the definition of the operations for it (methods).
However, adding a new operation requires modifying all the
classes that define each data type case to add the new opera-
tion. The literature describes many solutions to the extensi-
bility limitations of functional and object-oriented languages
regarding the expression problem (e.g., [5, 8, 10, 12, 13]).

For the restatement of the expression problem for platform-
aware programming, we add P, a set of platforms, so that,
to describe a platform-aware program comprising a set of
operations over the cases a data type to run efficiently on
a set of target execution platforms, we now have a three-
dimensional decomposition grid, with data type cases in the
𝑥-axis, operations in the𝑦-axis, and platforms in the 𝑧-axis. In
architecture-independent programming, P is useless since
there is a single platform with minor assumptions about
specific characteristics, if any, which compilers may handle.

A platform is defined as a set of features that specify char-
acteristics that can be exploited in implementing operations
to maximize its performance regarding some objective, such
as reducing execution time, minimizing memory usage, and
increasing power efficiency. For example, features specifying
the presence and characteristics of GPU accelerators may
be used to reduce execution time. Also, in programming for
distributed-memory parallel computers, features that char-
acterize the interconnection topology linking processing
nodes may be used to minimize communication overhead
and increase parallelism efficiency. However, platform-aware
programming is not only for accessing hardware features
through low-level APIs and system calls. For example, the
choice between parallel algorithms having different scala-
bility properties is driven by parallel computing platforms
features like the number of processing elements and the
performance of their interconnection [4].

As far as we know, no programming language supports a
platform abstraction. Platform-aware programming relies on
ad-hoc techniques to address platform assumptions statically,
requiring recompilation for each target platform. This leads
to the modularity and extensibility issues discussed below,

isolated by assuming the original expression problem, i.e.,
for the x and y axis, is resolved.

In platform-based decomposition, a program comprises a
set of co-existing versions for each target platform in sepa-
rate modules. Assuming that the features of target computers
may change over time, the correct platform version will be
loaded at the program startup. This is a realistic assumption
in programs running in containers or virtual machines in
cloud-based environments, where the underlying execution
platform may vary between executions. In such a decom-
position, adding new operations or data type cases requires
modifying all the platform versions. However, adding new
platforms may also be problematic in practice because only
some operations and data type cases need platform-specific
implementations, and distinct platform features may be con-
sidered for different combinations of data type cases and
operations. Therefore, platform-based decomposition tends
to suffer from a large amount of architecture-independent
code duplication over a large set of platforms based on a
slightly different set of features.
In a functional language or anyone based on functional

decomposition, kernel functions are a small subset of the func-
tions in a platform-aware program that make assumptions
about execution platform features, are aware of or detect
them, and behave accordingly. Adding a new platform or
changing platform assumptions (e.g., to exploit features of a
new accelerator) could be problematic, as it requires modify-
ing the code of all kernel functions.
Object-oriented languages suffer from analogous issues,

requiring modifications to all subclasses representing data
type cases if a new platform is added or platform assumptions
are modified. This scenario tends to become more problem-
atic because, in platform-aware programs, platform assump-
tions are more commonly applied to implementing opera-
tions than to implementing data type cases. While changes
are restricted to a single subclass in the latter case, they are
required across all subclasses in the former.

3 Case study: platform types for Julia
We have introduced the PlatformAware.jl package [3] to the
ecosystem of the Julia programming language [1], aimed
at structured platform-aware programming. There are three
reasons for having adopted Julia. First, it facilitates the im-
plementation of language extensions through metaprogram-
ming. Second, it addresses HPC requirements by promoting
performance engineering practices that achieve performance
comparable to C and Fortran. Third, it supports a rich type
system to enable dynamic multiple dispatch [7].
PlatformAware.jl uses dynamic multiple dispatch over

platform types to address the platform-aware expression
problem in Julia. Platform types are formally distinguished
from data types used to implement a platform abstraction.
They encode platform assumptions and features using Julia

https://github.com/PlatformAwareProgramming/PlatformAware.jl


The expression problem in platform-aware programming SBLP’2024, October 1–4, 2024, Curitiba, PR, Brazil

abstract types, with subtyping relations defining specializa-
tion/generalization between them.

The following code presents signatures of twomethods for
a convolution function called imfilter, with regular param-
eters img and kern, making assumptions about features of
the target execution platform through platform parameters:
@platform aware function imfilter({ accelerator_count::@atleast(2,𝐴),

accelerator_architecture::Hopper },
img, kern) where𝐴

@platform aware function imfilter({ node_count::@atleast(8, 𝑁 ),
processor_core_count::@between(16,32, C),
processor_simd::AVX512,
accelerator_count::@just(0) },

img, kern) where𝐴

The firstmethodwill be selectedwhen at least twoNVIDIA
Hopper GPUs are available, while the second one will be
selected in a cluster with at least eight compute nodes, each
having between at least 16 and at most 32 cores, processors
supporting the AVX512 ISA extension, and no accelerators.
The variables 𝐴, 𝑁 , and 𝐶 refer to each method’s actual
quantities of GPUs, nodes, and cores.

Thus, to work with PlatformAware.jl, the developer must
first identify kernel functions, like imfilter, and write their
platform-aware methods by using the @platform aware
macro. Platform-specific assumptions are encoded in the
method signature of each kernel method through the plat-
form parameters (delimited by brackets), each typed by an as-
sumption type. The platform parameters will define the plat-
form type of the kernel method, which defines the method’s
target platform. They are chosen from a set of pre-defined
platform parameters currently supported by PlatformAware.jl.
Each kernel function requires a fallback method free of

platform parameters. It is called if there is no kernel method
whose platform type is a supertype of the execution plat-
form’s platform type. They are declared using @platform
default, as follows (only signature):
@platform default function imfilter(img, kern)

While the program supplies data-typed parameters, platform-
typed parameters are supplied by the execution platform. So,
kernel function calls ignore platform parameters. The@plat-
form macro implicitly passes the platform arguments, which
encode the actual features of the execution platform. For that,
@platform aware rewrites the signature of kernel methods
to add all platform parameters, and @platform default cre-
ates the entry method, with only data-typed parameters and
making a call to the kernel function by passing the platform
arguments. The kernel method whose platform type best
meets the platform type of the execution platform, encoded
in platform arguments, is selected by multiple dispatch.

Ideally, platform arguments should be dynamically calcu-
lated through a feature detectionmechanism embedded in the
language runtime. However, this is challenging, requiring
non-portable tools outside the language environment. Also,
the lack of standard conventions and APIs for identifying
and classifying processors and accelerators from different
vendors makes it hard to specify a hierarchy of platform

types. For these reasons, PlatformAware.jl adopts a static
approach where platform arguments are described in a con-
figuration file called Platform.toml. It is manually editable by
users and possibly provided by infrastructure providers. In
addition, a function PlatformAware.setup() is offered for par-
tial automatic feature detection and fills the Platform.toml
file, but it works only for Linux environments.
Using dynamic multiple dispatch over platform types,

platform assumptions of individual kernel methods can be
added and modified independently, improving modularity
and extensibility by addressing the platform-aware expres-
sion problem. We argue this is an improvement over ad-hoc
platform-aware practices in Julia, where the programmer
may be required to discover and use one or more packages
to detect platform features, either interspersing detection
code within the code of platform-aware functions or creating
separate platform selector functions that must be modified
to add or modify platform assumptions, as shown in [3].
Although it is realistic to assume that platform assump-

tions are local to each kernel function, PlatformAware.jl also
supports specifying a set of platform types for all kernel
methods, representing target platforms of the application. In
such a global strategy, adding or modifying a platform ap-
plies to all corresponding methods for each kernel function,
still not interfering with the code of existing kernel methods.

4 Final remarks
The expression problem helps measure the programming
language’s ability to deal with software modularity and ex-
tensibility issues. It emerged under the architectural inde-
pendence premise in programming language design. How-
ever, the unprecedented performance requirements of AI and
data analytics applications have boosted the interest in HPC
techniques, such as parallel and heterogeneous computing,
bringing platform-aware programming practices to general
software development. This motivated us to restate the ex-
pression problem by breaking architectural independence.

PlatformAware.jl shows an approach to tackle the platform-
aware expression problem, but it draws attention to the dy-
namic feature detection problem, leading to the implementa-
tion of a static solution. Dynamic feature detection is useful
when the underlying physical platform may vary between
executions, such as when using containers and virtual ma-
chines in cloud-based environments, but it is challenging to
implement under current technology, as argued before.

We draw the programming language community’s atten-
tion to the need for initiatives to improve platform-aware
programming support. As the demand for computational
capacity increases due to AI applications, motivating the
emergence of special-purpose processors and accelerators,
the optimal use of computational resources becomes a com-
petitive differentiator in industrial and scientific applications.



SBLP’2024, October 1–4, 2024, Curitiba, PR, Brazil de Carvalho-Junior, F. H.

References
[1] J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek, and

L. Zoubritzky. 2018. Julia: Dynamism and Performance Reconciled
by Design. Proceedings of ACM Programming Languages 2, OOPSLA,
Article 120 (oct 2018), 23 pages.

[2] W. R. Cook. 1991. Object-oriented programming versus abstract data
types. In Foundations of Object-Oriented Languages, J. W. de Bakker,
W. P. de Roever, and G. Rozenberg (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 151–178.

[3] F. H. de Carvalho Junior, A. B. Dantas, J. M. Hoffiman, T. Carneiro, C. S.
Sales, and P. A. S. Sales. 2023. Structured Platform-Aware Program-
ming. In XXIV Simpósio em Sistemas Computacionais de Alto Desem-
penho (SSCAD’2023) (Porto Alegre, RS). SBC, Porto Alegre, Brazil, 301–
312. https://github.com/PlatformAwareProgramming/PlatformAware.
jl

[4] A. Grama, A. Gupta, J. Karypis, and V. Kumar. 2003. Introduction to
Parallel Computing. Addison-Wesley. 256 pages.

[5] Matthias Z. and Martin O. 2005. Independently Extensible Solutions to
the Expression Problem. In 12th International Workshop on Foundations
of Object-Oriented Languages (FOOL’2005). ACM.

[6] H. Meuer, E. Strohmaier, J. Dongarra, and H. D. Simon. 2013. Top 500
Supercomputer sites. http://www.top500.org

[7] F. Z. Nardelli, J. Belyakova, A. Pelenitsyn, B. Chung, J. Bezanson, and J.
Vitek. 2018. Julia Subtyping: A Rational Reconstruction. Proceedings of
the ACM Programming Languages 2, Article 113 (oct 2018), 27 pages.

[8] B. C. d. S. Oliveira. 2014. Functional programming, object-oriented pro-
gramming, and algebras!. In 10th ACM SIGPLAN Workshop on Generic
Programming (Gothenburg, Sweden). ACM, New York, USA, 1.

[9] N. C. Thompson and S. Spanuth. 2021. The decline of computers as a
general purpose technology. Communications of the ACM 64, 3 (feb
2021), 64–72.

[10] M. Torgersen. 2004. The Expression Problem Revisited. In ECOOP 2004
– Object-Oriented Programming. Springer, Berlin, Heidelberg, 123–146.

[11] P. Wadler. 1998. The Expression Problem. https://homepages.inf.ed.ac.
uk/wadler/papers/expression/expression.txt

[12] Y. Wang and B. C. d. S. Oliveira. 2016. The expression problem, triv-
ially!. In 15th International Conference on Modularity (Málaga, Spain).
ACM, 37–41.

[13] W. Zhang, Y. Sun, and B. C. d. S. Oliveira. 2021. Compositional Pro-
gramming. ACM Transactions on Programming Language Systems 43,
3 (sep 2021), 61 pages.

https://github.com/PlatformAwareProgramming/PlatformAware.jl
https://github.com/PlatformAwareProgramming/PlatformAware.jl
http://www.top500.org
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Abstract
	1 Introduction
	2 Platform-aware expression problem
	3 Case study: platform types for Julia
	4 Final remarks
	References

