
Classifying C++ Solutions Based on Their Energy
Profile

Marcelo Borges Nogueira
marcelo.nogueira@ufrn.br

Federal University of Rio Grande do Norte
Natal, RN, Brazil

Sérgio Queiroz de Medeiros
sergio.medeiros@ufrn.br

Federal University of Rio Grande do Norte
Natal, RN, Brazil

Abstract
The algorithm classification problem consists of findingwhich
algorithm a program implements among a given finite set of
algorithms. We propose a novel classification strategy using
the power slope that best represents an algorithm energy
consumption profile. Thenwe classify a set of solutions by us-
ing a greedy approach to match two sets of solutions that are
aimed to solve the same problem. To evaluate our approach,
we used sets of random C++ solutions for 32 problems from
CSES, a programming competition site. We executed two
datasets twice in two different machines. In one machine, we
restricted the classification task to a subset that varies from
14 to 16 CSES problems (a reduction of at least 50% in the
search space). In the other one, we could reach a reduction
in the search space that varied from 38% up to 53%.

CCS Concepts: • Software and its engineering → Com-
pilers; Software performance.

Keywords: program classification, energy profile, C++

1 Introduction
The correct understanding of the meaning of a program is
crucial for programming language processing [14], although
it is impossible to exactly determine it [19]. Usually, the
algorithm classification problem consists of finding which
algorithm a program implements among a given finite set of
algorithms.

We propose a novel approach to classify sets of programs
independent of source code. It relies only on the energy con-
sumption profile of executable programs. We use Intel’s Run-
ning Average Power Limit (RAPL) interface to measure the
energy consumption of a set of problems and then calculate,
via linear regression, the power slope that best represents
its energy consumption profile.
In our research, we constructed a dataset of randomly

picked C++ solutions from Code Submission Evaluation Sys-
tem (CSES), a popular programming competition site. Then
we performed experiments in two different machines, where,
we could restrict the classification task to a subset that varies
from from 38% up to 53% depending on the machine.
The rest of this paper is organized as follows: next

section explains our methodology, while Section 3 presents
our results. Section 4 discusses related work, and Section 5
presents our conclusions.

Config. ELITE THINK

CPU i5-7500 @ 3.40GHz i5-2400 @ 3.10GHz
RAM 8G DDR4 @ 2400 MHz 4G DDR3 @ 1333 MHz
L3 cache 6 MB 6 MB
OS Ubuntu 22.04.3 LTS Ubuntu 22.04.2 LTS
g++ 11.4.0 11.4.0

Table 1. Configuration of Machines Used in the Experiment.

2 Methodology
CSES [9] is a programming competition site with 300 prob-
lems. Each problem has a set of test cases that consists of
an input and its corresponding output. A user solution for a
problem is accepted only when it produces, for each test case,
the expected output. Moreover, a solution for a CSES prob-
lem usually must give the correct answer for a test case in at
most one second and must use at most 512 MB of memory.
From CSES, we selected 32 problems of different topics

(e.g., sorting and graphs). For each problem, we chose 100
accepted C++ solutions at random and we picked the inputs
that would demand more running time from a solution. Our
study focuses on C++ as it is the most used language in CSES
and in programming competitions in general. To compile
them we used the g++ flags std=c++17 and -O2.

We used the RAPL interface provided by Intel [20] to get
the energy consumption of the C++ solutions. We adapted
a framework already used in previous works [15, 16, 18] to
also measure the CPU time of C++ solutions through the
time command provided by the operating system.

We measured the energy consumption and execution time
of each solution for a certain problem by executing it, for each
corresponding selected input, 10 times. Then we dropped the
lowest and highest energy consumption (to remove potential
outliers), resulting in 8 measurements.

The same measurements were performed in two different
desktop computers with Intel x86-64 processors, which we
labeled as ELITE and THINK. In Table 1 we describe the
configuration of each computer.
For each one of the 32 problems, we divided their 100

gathered solutions into two groups: a training group, with
70 solutions, and a control one, with 30 solutions. Then, we
followed the same approach of our previous work [18] to
compute the power slope for each group of solutions. In short,

https://orcid.org/0000-0003-4747-0811
https://orcid.org/0000-0002-0759-0926


SBLP 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Marcelo Borges Nogueira and SérgioQueiroz de Medeiros

Figure 1. Maximum and Minimum Slopes for ELITE and
THINK Considering the Control Dataset First Measurement.

Control 1 Control 2 Training 1 Training 2

ELITE 40.8% 33.9% 39.2% 34.4%
THINK 15.7% 13.8% 15.0% 14.5%

Table 2. Normalized difference between the set of problems
with the greatest power slope and the lowest one in each
machine and for each measurement.

given the 8 measurements for each solution, we computed
mean execution time, 𝑡 , and mean energy consumption, 𝑐 .
With the mean values of all the solutions of a group (training
or control) of a given problem, we fitted the function 𝑐 = 𝑎𝑡

using ordinary least squares [3].
For the classification task, given a set 𝑆 of programs that

solve a particular problem 𝑃 , we tried to indicate, from a finite
set of problems, a restrict subset which includes problem 𝑃 .
Notice that we have a uni-dimensional feature vector (the
power slope) for each problem, and that to compute the
power slope of a problem we need a fair number of solutions,
such as 20. In our case, we will compute the slope of each
problem belonging to the two groups mentioned previously:
control and training. Hence, we did not use any machine
learning methods, but just a simple greedy approach.

We will associate set 𝑆 (from the control group) to the set
𝑆1 (from the training group) with the nearest power slope.
Let 𝑃1 be the problem that 𝑆1 solves, in case 𝑃1 ≠ 𝑃 , we will
check the set 𝑆2, with the second nearest power slope, and
see if 𝑃2, the problem solved by 𝑆2, is equal to 𝑃 . We keep
doing this until finding a set of solutions 𝑆𝑁 that solves 𝑃 . In
case the subset formed by {𝑃1, 𝑃2, ..., 𝑃𝑁 } is smaller than the
original set of all problems, then we were able to reduce the
search space. So, the smaller the 𝑁 , the better the solution.

C1 x T1 C1 x T2 C2 x T1 C2 x T2

100% 22 (16) 19 (14) 22 (16) 19 (14)
90% 9 (9) 12 (11) 11 (10) 12 (9)
80% 6 (7) 9 (8) 8 (8) 7 (8)
70% 6 (6) 6 (6) 6 (6) 6 (6)
60% 4 (4) 6 (5) 5 (5) 5 (5)
50% 2 (2) 4 (3) 3 (3) 4 (3)

Table 3. # of Trials to Classify the 32 Problems for ELITE.

C1 x T1 C1 x T2 C2 x T1 C2 x T2

100% 19 (19) 15 (15) 20 (20) 17 (16)
90% 13 (13) 13 (12) 12 (11) 12 (12)
80% 11 (10) 9 (9) 11 (10) 9 (9)
70% 9 (9) 6 (6) 9 (10) 6 (6)
60% 6 (7) 5 (5) 6 (7) 4 (5)
50% 5 (5) 4 (4) 5 (6) 4 (4)

Table 4. # of Trials to Classify the 32 Problems for THINK.

3 Results and Discussion
In this section we will present and discuss our results. First,
we will discuss the difference in the energy consumption
profile of sets of programs aimed to solve different problems.
The related artifacts are available online [2].

Consider the power slope variation among the different
datasets. Figure 1 shows the minimum and maximum of such
slopes for the first measurement of the control dataset in
machines ELITE and THINK. Figure 1 suggests that compu-
tational solutions for different problems may have different
energy consumption profiles, as there is a reasonable dis-
tance between the lines.

Table 2 shows the normalized difference between the max-
imum and minimum power slope for each machine in differ-
ent measurements. According to it, it seems that there is a
clear difference between the lowest and the greatest power
slope. We can also see that this difference is more relevant
in machine ELITE than in machine THINK. Although there is
such difference, the energy consumption profile of a set of
solutions to a given problem might not be unique.
Regarding the classification task, we tried to find which

problem each one of the 32 control sets tried to solve based
solely on its associated power slope. Table 3 shows our re-
sults when running the experiment at machine ELITE, while
Table 4 encompasses the results for THINK. The values en-
closed by parentheses should be ignored for now. We will
explain them later.

Aswe performed themeasurements twice for both datasets,
we compared each measurement for the control dataset
against each measurement for the training one. We used
C1 and C2 to refer to the first, respectively to the second,
measurement for the control dataset. Accordingly, we used



Classifying C++ Solutions Based on Their Energy Profile SBLP 2024, September 30–October 04, 2024, Curitiba, PR, Brazil

T1 and T2 when referring to the first, respectively to the
second, measurement for the training dataset.
We can see that to correctly classify all the problems in

ELITE it was necessary between 19 and 22 trials, while this
amount varied from 15 up 20 for THINK. In both machines,
it was possible to correctly classify at least 90% of problems
with at most 13 trials.

When analysing the results for ELITE, we identified some
long-running programs with an energy consumption pattern
different from the faster programs, as we can see in Figure 2,
which shows the linear regression calculated for the training
dataset of problem 1668.

The slowest program is an outlier, according to our classi-
fication presented in [18]. We could see that this tail outlier
also occurred in the training dataset of other problems (e.g.,
1666, 1669). We then decided to recompute the power slope
after removing these tail outliers. We performed this only
when slowest program of a given dataset is an outlier and
its execution time is at least 50% greater than the execution
time of the second slowest program of the dataset.

Tables 3 and 4 show between parentheses the result after
discarding tail outliers. By removing them, it was possible
to correctly classify all the problems in at most 16 trials.
There are some factors that might affect the quality or

validity of our acquired data, analysis, and conclusions. We
performed all tests in terminal mode, after restarting the
system and killing some background processes, such as net-
work and Xserver. Nevertheless, other OS processes are still
running and could affect the measurements. However, as the
time command considers only the CPU time used by the
C++ solution being measured, we believe we have mitigated
this issue.
RAPL reads Machine-Specific Registers (MSRs) once ev-

ery 1 ms to update the energy measurements, which may
lead to not-so-accurate results in case of short-running code
paths [5]. We mitigated this by picking programs that would
run for at least 10 ms, but the measurements of short-running
programs may be affected by transient factors, such as sched-
uler decisions, OS services, and CPU temperature. We mit-
igated this issue by taking actions such as restarting the
machines and taking cool down periods. Moreover, the en-
ergy consumption measurements were consistent.
We randomly selected 100 solutions for each of the 32

problems and we randomly split them between the control
and the training sets. A different split of the solutions be-
tween these two sets could lead to different results, but we
consider that it would not invalidate the approach.

4 Related Work
The interest in the energy consumption of computer appli-
cations increased in the last decade [8, 10, 11, 17], mainly
after the release of Intel’s RAPL [20], as it simplified the
task of measuring their energy efficiency [7]. In newer Intel

Figure 2. Linear Regression for 1668 - Training at ELITE
showing a tail outlier.

processors, RAPL energy measurements are nearly equal
to plug power readings [7], enabling the emergence of sev-
eral energy profiling tools on top of it [1, 6, 13, 18], and it
was used in many works focused on the energy efficiency of
computational applications.

Lately, several approaches, such as [12], based mainly on
machine learning techniques, tried to solve the algorithm
classification problem [4]. They take as input a representa-
tion derived from the source code of a program (such as its
LLVM intermediate representation) and try to relate it to a
given finite set of problems. Our classification approach has
a similar goal, but it does not depend on a program source
code, it relies only on the energy consumption profile pro-
duced by an executable program. On the other hand, our
approach classifies problems for a particular machine config-
uration and also needs a set of solutions for a single problem
to be able to compute its power slope, while approaches
based on some form of source code could provide a more
machine-independent classification and use a single solution.

5 Conclusions and Future Work
We presented a new approach to classify a set of problems
based on its energy consumption profile. Our approach com-
putes the power slope for a control set with several solutions
for a given problem and tries to associate it with a training
set that has a similar power slope.
Our results indicate that this approach could be useful

to reduce the search space of possible matches for a given
problem. Overall, we were able to reduce the search space
by more than one third, and often by 50%.
We believe that our approach could be combined with

other ones to help them to solve the classification problem
more efficiently. As future work, we want to improve the
accuracy of our method and to apply it in the context of
other programming languages, such as Python and Java.



SBLP 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Marcelo Borges Nogueira and SérgioQueiroz de Medeiros

References
[1] Dirk Beyer and Philipp Wendler. 2020. CPU Energy Meter: A tool for

energy-aware algorithms engineering. In Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020,
Proceedings, Part II 26. Springer, 126–133.

[2] Marcelo Borges Nogueira and Sérgio Queiroz de Medeiros. 2024.
Dataset and Software Supporting the Paper "Classifying C++ Solu-
tions Based on Their Energy Profile". https://doi.org/10.5281/zenodo.
13235026

[3] Richard Burden and J. Douglas Faires. 2016. Análise numérica (3ª edição
ed.). Cengage Learning.

[4] Thaís Damásio, Michael Canesche, Vinícius Pacheco, Marcus Botacin,
Anderson Faustino da Silva, and Fernando M. Quintão Pereira. 2023. A
Game-Based Framework to Compare Program Classifiers and Evaders.
In Proceedings of the 21st ACM/IEEE International Symposium on Code
Generation and Optimization (Montréal, QC, Canada) (CGO 2023). As-
sociation for Computing Machinery, New York, NY, USA, 108–121.
https://doi.org/10.1145/3579990.3580012

[5] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. 2012.
Measuring energy consumption for short code paths using RAPL. ACM
SIGMETRICS Performance Evaluation Review 40, 3 (2012), 13–17.

[6] Jaimie Kelley, Christopher Stewart, Devesh Tiwari, and Saurabh Gupta.
2016. Adaptive power profiling for many-core HPC architectures. In
2016 IEEE International Conference on Autonomic Computing (ICAC).
IEEE, 179–188.

[7] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen,
and Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL
for Power Measurements. 3, 2 (2018), 1–26. https://doi.org/10.1145/
3177754

[8] Lukas Koedijk and Ana Oprescu. 2022. Finding Significant Differ-
ences in the Energy Consumption when Comparing Programming
Languages and Programs. In 2022 International Conference on ICT for
Sustainability (ICT4S). 1–12. https://doi.org/10.1109/ICT4S55073.2022.
00012

[9] Antti Laaksonen, Roope Salmi, and Topi Talvitie. 2015. Code Submission
Evaluation System. https://cses.fi/

[10] Luís Gabriel Lima, Francisco Soares-Neto, Paulo Lieuthier, Fernando
Castor, Gilberto Melfe, and João Paulo Fernandes. 2019. On Haskell
and energy efficiency. Journal of Systems and Software 149 (2019),
554–580. https://doi.org/10.1016/j.jss.2018.12.014

[11] Charalampos Marantos, Lazaros Papadopoulos, Christos P Lamprakos,
Konstantinos Salapas, and Dimitrios Soudris. 2022. Bringing Energy
Efficiency closer to Application Developers: An Extensible Software
Analysis Framework. IEEE Transactions on Sustainable Computing
(2022).

[12] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional
neural networks over tree structures for programming language pro-
cessing. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (Phoenix, Arizona) (AAAI’16). AAAI Press, 1287–1293.

[13] Adel Noureddine. 2022. PowerJoular and JoularJX: Multi-Platform
Software PowerMonitoring Tools. In 2022 18th International Conference
on Intelligent Environments (IE). 1–4. https://doi.org/10.1109/IE54923.
2022.9826760

[14] Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke, Di He, and Tie-
Yan Liu. 2021. How could neural networks understand programs?. In
International Conference on Machine Learning. PMLR, 8476–8486.

[15] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, and João Saraiva. 2017. Energy Efficiency across
Programming Languages: How Do Energy, Time, and Memory Relate?.
In Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering (Vancouver, BC, Canada) (SLE 2017).
Association for Computing Machinery, New York, NY, USA, 256–267.

https://doi.org/10.1145/3136014.3136031
[16] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,

João Paulo Fernandes, and João Saraiva. 2021. Ranking programming
languages by energy efficiency. Science of Computer Programming 205
(2021), 102609.

[17] Gustavo Pinto and Fernando Castor. 2017. Energy Efficiency: A New
Concern for Application Software Developers. Commun. ACM 60, 12
(nov 2017), 68–75. https://doi.org/10.1145/3154384

[18] Sérgio Queiroz de Medeiros, Marcelo Borges Nogueira, and Gustavo
Quezado Gurgel Magalhães. 2023. Analyzing the Time x Energy Re-
lation in C++ Solutions Mined from a Programming Contest Site. In
Proceedings of the XXVII Brazilian Symposium on Programming Lan-
guages (SBLP ’23). Association for Computing Machinery, New York,
NY, USA, 64–72. https://doi.org/10.1145/3624309.3624312

[19] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and
their decision problems. Transactions of the American Mathematical
society 74, 2 (1953), 358–366. https://doi.org/10.1090/S0002-9947-1953-
0053041-6

[20] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph,
Piotr Luszczek, Dan Terpstra, and Shirley Moore. 2012. Measuring
energy and power with PAPI. In 2012 41st international conference on
parallel processing workshops. IEEE, 262–268.

https://doi.org/10.5281/zenodo.13235026
https://doi.org/10.5281/zenodo.13235026
https://doi.org/10.1145/3579990.3580012
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1109/ICT4S55073.2022.00012
https://doi.org/10.1109/ICT4S55073.2022.00012
https://cses.fi/
https://doi.org/10.1016/j.jss.2018.12.014
https://doi.org/10.1109/IE54923.2022.9826760
https://doi.org/10.1109/IE54923.2022.9826760
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3154384
https://doi.org/10.1145/3624309.3624312
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1090/S0002-9947-1953-0053041-6

	Abstract
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Related Work
	5 Conclusions and Future Work
	References

