
A Snapshot of OpenMP Projects on GitHub
Cristian Carvalho Quevedo
Universidade Federal de Pelotas

Pelotas, Brazil
ccquevedo@inf.ufpel.edu.br

Marcos Antonio de Oliveira Jr.
IFFar - Instituto Federal de Educação, Ciência e

Tecnologia Farroupilha
Santa Maria, Brazil

marcos.oliveira@iffarroupilha.edu.br

André Rauber Du Bois
PPGC - Universidade Federal de Pelotas

Pelotas, Brazil
dubois@inf.ufpel.edu.br

Gerson Geraldo H. Cavalheiro
PPGC - Universidade Federal de Pelotas

Pelotas, Brazil
gerson.cavalheiro@inf.ufpel.edu.br

ABSTRACT
This paper presents a mapping of the use of the OpenMP
API in open-source projects hosted on GitHub. A case study
collected data on using OpenMP directives following a min-
ing process in repositories developed in C and C++ with
OpenMP. The study analyzed the use of OpenMP resources
to support critical sections and exploit data parallelism. The
analysis reveals usage patterns of such resources that limit
the parallelization potential obtainable with this program-
ming tool. The results contribute to understanding how the
community uses this tool and provide insights for develop-
ing better practices and tools to support the use of OpenMP
and improve the teaching of parallel processing. All soft-
ware artifacts developed for this study are available to foster
reproducibility and further research.

CCS CONCEPTS
• Software and its engineering→ Software libraries and
repositories; Parallel programming languages;

KEYWORDS
OpenMP, Parallel Programming, Minning Software Reposi-
tories, GitHub, Reprodutibility

1 INTRODUCTION
Mining software repositories is crucial for understanding
and improving review processes in open-source projects. It
allows extracting data on people, processes, and products,
enabling analysis and enhancement of quality and efficiency.
This data, coupled with techniques and tools related to code
review, can advance knowledge and optimize software design
processes [13].

In this context, mining software repositories offers a valu-
able approach to understanding how projects utilize specific
technologies and paradigms, such as concurrent program-
ming with OpenMP [5]. OpenMP is an API that supports

multi-platform shared memory multiprocessing program-
ming in C, C++, and Fortran, providing a straightforward
interface for parallel application development. It is also an
essential tool incorporated into undergraduate courses, pro-
viding students with a practical understanding of parallel pro-
gramming in individual and distributed systems [11]. While
reference documents exist to guide the use of OpenMP di-
rectives (commands for parallelizing program execution),
these directives are not always employed correctly or effi-
ciently. Analyzing OpenMP directive usage in real-world
projects can shed light on programmer practices and inform
strategies for improving OpenMP’s effectiveness.

The practice of mining repositories allows for the extrac-
tion of meaningful code-related data, offering insights into
the dynamics of open-source projects. By analyzing this in-
formation, we can identify collaboration patterns, assess
process effectiveness, and enhance project quality. Beyond
social aspects like team collaboration and information flow,
repository mining also uncovers technical details, such as file
organization and common issues faced by the community.
Thus, it is a crucial tool for understanding and optimizing
concurrent programming practices.

This paper presents a mapping of OpenMP usage in open-
source projects available on GitHub, a web-based platform
for version control and collaborative software development.
The primary goal is to survey the current state of OpenMP
adoption in software projects, along with aspects inherent
to concurrent programming. The main contributions of this
research are the quantification of different OpenMP directive
usage in public GitHub repositories and the software artifacts
for mining and analyzing case studies.

2 RELATEDWORKS
Mining Software Repositories (MSR) is a complex task with
many challenges and can be conducted for different purposes
[8]. Some works focus on analyzing existing source codes to
facilitate the development of new codes, while others seek

https://orcid.org/0009-0001-4852-7683
https://orcid.org/0000-0001-7160-3720
https://orcid.org/0000-0002-6790-5184
https://orcid.org/0000-0002-4314-3429


SBLP ’24, Sept 30–Oct 04, 2024, Curitiba, PR Quevedo, C.C., et al.

to extract and organize data from repositories [6]. Notable
papers related to these approaches include [12], which ad-
dresses challenges in using the GitHub REST API for MSR
studies, such as API limitations, language misclassification,
and the inclusion of non-software artifacts. The authors de-
velopedG-Repo, a tool that assists researchers in creating and
cleaning datasets by querying GitHub, cloning repositories,
checking programming languages, and detecting the spoken
language of repositories. G-Repo is shown to be an effective
tool for overcoming common hurdles in data gathering and
preparation, making it valuable for general MSR work.
In addition to G-Repo, other tools like git2net [7] and

the Boa dataset [1] contribute to MSR research. git2net is a
Python tool for extracting fine-grained and time-stamped
co-editing networks from large Git repositories, offering
insights into collaboration patterns and developer effort al-
location not captured by coarser-grained methods. The Boa
dataset, curated for Data Science software developed using
Python, provides a valuable resource for understanding de-
velopment practices in data-intensive Python projects. Fur-
thermore, [9] presents reaper, a tool that automatically evalu-
ates repositories to predict whether they contain engineered
software projects, achieving higher recall than stargazer-
based methods.

While these contributions advance the field of MSR, there
remains a gap in specialized research focused on concurrent
programming and the use of tools like OpenMP.

3 MINING OPENMP PUBLIC
REPOSITORIES

APython script was developed to automatemining onGitHub
using the PyGithub library [10]. The script interacts with
the GitHub REST API and uses the Pandas library1 for out-
put generation. It clones C or C++ repositories tagged with
“openmp.” After authenticating via an access token, it searches
for repositories sorted by stars, indicating popularity.
The script handles GitHub’s paginated search results (30

results per page) and dynamic rate-limiting by waiting 15
seconds when the request limit is reached. Once repositories
are cloned, files containing the #pragma omp directive are
retained, while others are removed. The script also collects
repository data, including stars, forks, number of files, and
collaborators. The output includes a directory for each repos-
itory, named by its unique GitHub ID, containing files with
OpenMP directives. A separate file lists repository details:
ID, name, description, stars, forks, URL, languages used, and
filenames with OpenMP calls.
Data extraction was conducted in May 2023. The script

was executed to find repositories tagged with “openmp” and

1Pandas library, available at https://pandas.pydata.org/, accessed on May
27, 2024.

developed in both C and C++. The search returned 1,312
repositories (592 developed in C, 720 in C++) with a total of
13,343 files containing OpenMP directives. Table 1 presents
the repositories’ stratification based on stars, forks, files, and
collaborators. After mining, files containing OpenMP were
prepared for processing. The dos2unix utility was used to
standardize them to Unix format, followed by the stream
editor sed to remove double-spacing characters from lines
with “#pragma omp” for easier pattern identification.

The mined data reveals that most repositories have up to
10 collaborators, besides the owner. C++ repositories gener-
ally have more stars, particularly in the (10-100] and (100-
1,000] ranges. Two repositories exceed 1,000 stars: one in C
with 7,761 stars and 1,878 forks, and one in C++ with 3,159
stars and 883 forks. Most repositories have 10 stars and forks
or fewer.

This higher star rating correlates with the number of forks,
consistent with findings by [3, 4]. A Pearson’s r test shows a
strong positive correlation between stars and forks (r(1310)
= 0.9872, p ≤ 0.001). Excluding two outlier repositories, the
correlation remains strong (r(1308) = 0.8484, p ≤ 0.001). No
other metric combinations showed significant correlation.
Thus, stars and forks are correlated, but no other significant
relationships between metrics were found.
The file preparation stage also revealed that some repos-

itories were incomplete projects or small experiments, but
they were not discarded because the methodology used in
this study did not include such filtering.

4 ANALYSIS OF MINING RESULTS
The main tools for extracting code information were sed
for file preparation and awk for identifying directive use
cases. Only files with the extensions .c, .h, .C, .H, .cpp,
.hpp, .cxx, .hxx, and .inl were considered. Repository
files were initially adjusted to simplify pattern identifica-
tion in directive use. Leading whitespace and tabs were
removed, with OpenMP sentinels #pragma omp placed at
the beginning of lines. Lines starting with an OpenMP sen-
tinel and ending with an escape character (“\”) were con-
catenated with the following line, with the escape char-
acter removed. Finally, all lines containing #pragma omp
were standardized to use a single space to separate words.
Scripts were then developed to identify patterns in OpenMP
directive use for each case considered in the study. The ar-
tifacts and data used in this study are available at https:
//github.com/Nheeboranga/OpenMPSnapshot, enabling ver-
ification of the information and promoting reproducibility.
This repository includes the Python script for mining, awk
scripts for pattern searching, instructions for using these
scripts, as well as the grep and sed command lines employed.

https://pandas.pydata.org/
https://github.com/Nheeboranga/OpenMPSnapshot
https://github.com/Nheeboranga/OpenMPSnapshot


A Snapshot of OpenMP Projects on GitHub SBLP ’24, Sept 30–Oct 04, 2024, Curitiba, PR

Table 1: Frequency of metrics by range of values.

Metric
C and C++ C++ C

0 (1-10] (10-100] (100-1,000] > 1,000 0 (1-10] (10-100] (100-1,000] > 1,000 0 (1-10] (10-100] (100-1,000] > 1,000

Stars 653 515 111 31 2 333 278 79 29 1 320 237 32 2 1
Forks 906 339 56 10 1 471 197 43 9 0 435 142 13 1 1
Files 0 851 460 1 0 0 426 293 1 0 0 425 167 0 0
Collaborators 42 1,241 26 3 0 22 674 22 2 0 20 567 4 1 0

Table 2: Usage Percentage by Category with Detailed
Breakdown for Parallelism Control

Category Usage

Parallelism Controla
Loop 66.12%

59.16%Task 13.48%
Implicit Task 13.37%
SIMD 7.04%

Synchronization 19.44%
Teams and Distribution 8.75%
Metaprogramming and Requirements 1.91%
Data Privacy and Sharing 0.36%
Execution Control and Debugging 0.03%

aNot considering parallel directive alone.

4.1 Code inspection
The data show that repositories using OpenMP with C++ as
the primary language are about 20% more numerous than
those using C, and they also have higher numbers of stars and
forks. Originally developed for C (and Fortran), OpenMP has
always been usable with C++, though with C-like limitations.
Starting with OpenMP 3.0, support for C++ features such as
container manipulation and iterators was added. The latest
version, OpenMP 5.2, extends this support to modern C++
features like lambda expressions and std::array references,
enhancing integration with idiomatic C++ code [2]. The
complexity of handling class instances and using iterators in
parallel loops exemplifies this evolution.

Given the specifics of using C++ with OpenMP, a manual
analysis of 10 repositories was conducted, with five having
300-900 stars and five having 90-150 stars to avoid extremes
in project reputation2. The investigation focused on excep-
tion handling, class instances in private, first/lastprivate,
and reduction clauses, and parallel loops controlled by it-
erators. The analysis revealed that only one repository used
all the investigated features and had the highest number
of stars, while another, with the second-highest number of
stars, used object instances in the clauses. Additionally, four
repositories utilized exception handling mechanisms.

2Repository IDs: 81815495, 94275048, 6987353, 38410417, 40821917, 73826981,
84174010, 58775556, 69450880, 322989201.

Table 2 presents the proportion of directives within each
category, highlighting the extensive use of directives for
parallelism exploration in loops. Additionally, while concur-
rency exposure clauses provide directives for parameterizing
task construction and address space sharing, the critical
and atomic directives are also notably used. The table also
reveals a growing trend among developers to embrace newer
OpenMP features, particularly offloading computations to
specialized hardware, and leveraging vectorization capabil-
ities. However, directives related to data privacy and exe-
cution control remain underutilized, suggesting potential
areas for further education and tool development within the
OpenMP ecosystem.

4.2 Dealing with shared data
Critical sections ensure consistency in accessing shared data,
with OpenMP providing atomic and critical directives
for this purpose. The atomic directive, used 2,485 times, al-
lows atomic operations on data types like integers or pointers
without the need for additional synchronization mechanisms.
It is implemented with hardware instructions such as fetch-
and-add and compare-and-swap. The most frequently used
clause is update, applied in 1,193 cases, supporting atomic
read-write access. Other clauses like write and read also
followed the expected patterns, though some complex con-
structs involved non-guaranteed atomic access. The capture
clause, introduced in OpenMP 5.1, was rarely used, and the
newer compare and hint clauses were only found in one
repository each, mainly for feature testing.

4.2.1 Usage of the critical Directive. The critical di-
rective, used 1,414 times, with 293 instances having labels,
showed potential for optimization. Data indicated that 730
critical sections could have utilized atomic instead, with 508
using read or write clauses and 222 using update. Long
critical sections often involved loops, if statements, or data
collections. The use of critical could be improved to re-
duce performance impacts by minimizing synchronization
granularity and replacing some sections with atomic to de-
crease contention.

4.2.2 Parallel loops. Parallel loops, facilitated by directives
such as parallelfor and simd, are the most exploited form



SBLP ’24, Sept 30–Oct 04, 2024, Curitiba, PR Quevedo, C.C., et al.

of parallelism in the analyzed repositories. Out of 16,468 in-
stances of these loops, 8,306 employed the schedule clause,
with static and dynamic being the most common sched-
uling strategies. The dynamic strategy showed the highest
rate of imbalance in computational costs, while static was
frequently used by default. The analysis also identified fre-
quent occurrences of nested parallelfor directives and
explored the use of the simd directive for vector parallelism,
indicating a broad adoption but with room for improved
implementation and optimization.

4.3 Limitations and Threats to Validity
This study presents a snapshot analysis of OpenMP usage
in GitHub repositories, focusing on directive application
without in-depth code quality or performance analysis. Lim-
itations include reliance on repository tags and potential
inclusion of test or academic repositories. The pattern-based
identification approach, while useful, may miss or misinter-
pret some code snippets. Manual inspections were performed
to ensure adequacy, but they are subject to interpretation
and error. Despite these limitations, the methodology’s repro-
ducibility offers a valuable framework for assessing OpenMP
utilization.

5 CONCLUSION
This work presented a snapshot of OpenMP usage in C and
C++ projects on GitHub, based on data from 1,312 reposito-
ries. The analysis of for-loop parallelization and data sharing
reveals opportunities for optimization, such as improving
scheduling strategies for parallel loops and reducing the use
of critical sections. The study deepens the understanding
of how OpenMP is used in real-world projects, providing
insights for best practices, educational resources, and tools
to support OpenMP development. This report serves as a
valuable case study for mining public repositories and for
designing parallel programming curricula. Despite the limi-
tations of repository mining, the methodology and artifacts
developed offer a strong basis for future research. The pub-
licly available resources foster reproducibility and further
exploration, advancing parallel programming practices and
education.

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Fi-
nance Code 001.

REFERENCES
[1] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. 2019.

Boa Meets Python: A Boa Dataset of Data Science Software in Python
Language. In 2019 IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR). 577–581. https://doi.org/10.1109/MSR.
2019.00086

[2] OpenMP Architecture Review Board. 2021. OpenMP Application
Programming Interface Specification 5.2. https://www.openmp.org/
specifications/

[3] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub
Star? Understanding Repository Starring Practices in a Social Coding
Platform. Journal of Systems and Software 146 (2018), 112–129. https:
//doi.org/10.1016/j.jss.2018.09.016

[4] Hudson Silva Borges, André C. Hora, and Marco Túlio Valente.
2016. Understanding the Factors That Impact the Popularity of
GitHub Repositories. 2016 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME) (2016), 334–344. https:
//api.semanticscholar.org/CorpusID:184135

[5] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff Mc-
Donald, and Ramesh Menon. 2001. Parallel Programming in OpenMP.
(2001).

[6] Mário André de F. Farias, Renato Novais, Methanias Colaço Júnior,
Luís Paulo da Silva Carvalho, Manoel Mendonça, and Rodrigo Oliveira
Spínola. 2016. A Systematic Mapping Study on Mining Software
Repositories. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing (Pisa, Italy) (SAC ’16). Association for Computing
Machinery, New York, NY, USA, 1472–1479. https://doi.org/10.1145/
2851613.2851786

[7] Christoph Gote, Ingo Scholtes, and Frank Schweitzer. 2019. git2net -
Mining Time-Stamped Co-Editing Networks from Large git Reposito-
ries. In 2019 IEEE/ACM 16th International Conference onMining Software
Repositories (MSR). 433–444. https://doi.org/10.1109/MSR.2019.00070

[8] Victor A. Luzgin and Ivan I. Kholod. 2020. Overview of Mining
Software Repositories. In 2020 IEEE Conference of Russian Young Re-
searchers in Electrical and Electronic Engineering (EIConRus). 400–404.
https://doi.org/10.1109/EIConRus49466.2020.9039225

[9] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagap-
pan. 2017. Curating GitHub for engineered software projects. Empirical
Software Engineering 22 (2017). https://doi.org/10.1007/s10664-017-
9512-6

[10] PyGithub. 2023. PyGithub documentation. https://pygithub.
readthedocs.io/en/stable/introduction.html Disponível em https://
pygithub.readthedocs.io/en/stable/introduction.html, versão v3.

[11] Rajendra K. Raj, Carol J. Romanowski, John Impagliazzo, Sherif G.
Aly, Brett A. Becker, Juan Chen, Sheikh Ghafoor, Nasser Giacaman,
Steven I. Gordon, Cruz Izu, Shahram Rahimi, Michael P. Robson, and
Neena Thota. 2020. High Performance Computing Education: Cur-
rent Challenges and Future Directions. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science
Education (Trondheim, Norway) (ITiCSE-WGR ’20). Association for
Computing Machinery, New York, NY, USA, 51–74. https://doi.org/
10.1145/3437800.3439203

[12] Simone Romano, Maria Caulo, Matteo Buompastore, Leonardo Guerra,
Anas Mounsif, Michele Telesca, Maria Teresa Baldassarre, and
Giuseppe Scanniello. 2021. G-Repo: a Tool to Support MSR Stud-
ies on GitHub. In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). 551–555. https:
//doi.org/10.1109/SANER50967.2021.00064

[13] Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Iida.
2016. Mining the modern code review repositories: a dataset of people,
process and product. In Proceedings of the 13th International Conference
on Mining Software Repositories (Austin, Texas) (MSR ’16). Association
for Computing Machinery, New York, NY, USA, 460–463. https://doi.
org/10.1145/2901739.2903504

https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.1109/MSR.2019.00086
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016
https://api.semanticscholar.org/CorpusID:184135
https://api.semanticscholar.org/CorpusID:184135
https://doi.org/10.1145/2851613.2851786
https://doi.org/10.1145/2851613.2851786
https://doi.org/10.1109/MSR.2019.00070
https://doi.org/10.1109/EIConRus49466.2020.9039225
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://pygithub.readthedocs.io/en/stable/introduction.html
https://pygithub.readthedocs.io/en/stable/introduction.html
https://pygithub.readthedocs.io/en/stable/introduction.html
https://pygithub.readthedocs.io/en/stable/introduction.html
https://doi.org/10.1145/3437800.3439203
https://doi.org/10.1145/3437800.3439203
https://doi.org/10.1109/SANER50967.2021.00064
https://doi.org/10.1109/SANER50967.2021.00064
https://doi.org/10.1145/2901739.2903504
https://doi.org/10.1145/2901739.2903504

	Abstract
	1 Introduction
	2 Related Works
	3 Mining OpenMP Public Repositories
	4 Analysis of Mining Results
	4.1 Code inspection
	4.2 Dealing with shared data
	4.3 Limitations and Threats to Validity

	5 Conclusion
	Acknowledgments
	References

