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ABSTRACT

This paper presents a type-safe model of quantum computing,
building upon the model introduced by Sabry in Haskell. By
applying type-level programming techniques, we extend the
model to constrain invalid operations and states at compile
time. Our implementation enforces the no-cloning theorem
at the type level via memory access patterns, while main-
taining expressiveness via monadic composition of quantum
operations. The implementation serves both as an introduc-
tion to quantum computing fundamentals and as a case study
in enforcing physical constraints through a functional pro-
gramming type system.
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1 Introduction

Quantum computing represents a paradigm shift from clas-
sical computing by applying the principles of quantum me-
chanics. It has been proven that it can solve several computa-
tional problems with asymptotic speedup. The fundamental
unit of quantum information, the qubit, exhibits unique phys-
ical properties such as superposition, entanglement, and in-
terference [8]. Quantum algorithms are developed to exploit
these characteristics.

Since Shor’s [11] work on a quantum algorithm for integer
factorization in polynomial time, significant progress has
been made in the field of quantum computing. Much of the
existing literature focuses on the physical aspects of quantum
computing or low-level quantum programming. Considering
another point of view, this work is about high-level frame-
works and abstractions for quantum programming. In this
context, Sabry [10] proposes a model of quantum comput-
ing in Haskell, i.e., functional programming abstractions for
programming quantum algorithms. Vizzotto [15] extends
this abstraction even further using the concept of arrows [6].
Both works provide a layer of abstraction that enables quan-
tum programming and circuit reasoning inside the functional
programming language Haskell.

Sabry’s didactic model of quantum computing, while a
valuable contribution to functional quantum emulation, faces
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scalability issues when dealing with more than a couple of
qubits. The model lacks a general way to handle all possi-
ble quantum memory sizes. More specifically, selecting the
desired target qubits to apply a quantum operation on is
verbose and requires a specific function definition in each
case.

An important observation is the extensive use of type-level
programming in functional programming languages. This
machinery allows properties and constraints to be verified
at compile time, enforcing correctness by design. Concepts
such as dependent types and singletons are well established
in the functional programming community, and significant
research has been done in this area [5, 7]. In the context of
quantum computing, these concepts prove to be particularly
useful for modeling invariants [3]. The compile-time checks
provided by such languages allow us to enforce quantum
computing principles, such as the no-cloning theorem, which
states that it is impossible to duplicate an arbitrary quantum
state.

In many quantum programming languages, the no-cloning
theorem is assured through linearity, strongly inspired by
the Linear Lambda Calculus [13, 14]. Languages such as QML
[1], Qimaera [3], and QWIRE [9] incorporate linear typing
to ensure quantum data is not duplicated. Linearity assures
that every function must use each parameter exactly once,
thereby not allowing state copying.

This article aims to rework Sabry’s model to generalize
qubit access in quantum memory while enforcing the cor-
rectness of quantum operations and states through compile-
time verification. Instead of relying on an explicit linear type
system, our approach encodes quantum constraints purely
on Haskell’s type system. More specifically, we statically
detect invalid memory access that violates the no-cloning
theorem via qubit selection patterns. Despite these rigor-
ous guarantees, expressiveness is achieved through monadic
composition of quantum operations.

This article is structured as follows: in Section 2, we present
Sabry’s model for qubits and quantum operations, which we
adapt to our purposes as a type-unsafe system. In Section 3,
we aim to create an abstraction layer that uses type systems
to provide safety and generalize selection of qubits. Section 4
is dedicated to the implementation of a monad that enhances
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the expressiveness of quantum algorithm definitions and
formalizes the typing rules for quantum operations. Finally,
in Section 5, we present the results and conclusions of the
work, suggesting potential future development to improve
the model. The full implementation is available on GitHub!.

2 Quantum Computing and Sabry’s Model

A qubit state, the unit of information in quantum comput-
ing, can be seen as a linear combination of the basis states.
Mathematically, a state is represented as |/) = «|0) + B|1),
where |0) and |1) are the basis states and @ and f are complex
numbers such that |a|? + || = 1.

Dirac notation, as it’s called, provides a mathematical
framework for reasoning about multiple qubit states. For
example, the state (|11) +{00))/V2 implies a 50% chance of a
measurement of the system resulting in an outcome of either
|11) or |00). Once measured, the quantum system collapses
to the value of the outcome. Since the qubits in this state are
entangled, it’s not possible to measure one of them without
affecting the other.

Using this idea, a quantum memory state (QV - Quantum
Value) can be modeled as a mapping between basis states and
complex amplitudes. In Haskell, this can be implemented
using a Map from lists of binary values to complex scalars.
We also present mkQV, for now, the standard function to build
a quantum state.

type PA = Complex Double

data QV a = QV {
qvSize :: Int,
qvMap :: Map [a] PA
}

:: Basis a = [([al, PA)] — QV a
pairs = QV (length $ fst $ head pairs)
(fromList pairs)

For convenience, Sabry’s model uses a typeclass to define
which types can form a basis of the complex vector space [10].
This approach introduces polymorphism into the implemen-
tation, enabling the simulation of systems like qutrits, for
example. We adapt this typeclass so that its function basis
depends directly on the number of qubits. Additionally, we
require that a basis type form a total order, as the implemen-
tation of Map relies on this property. This is equivalent to
defining an ordering for the basis states, such as |0) < |1),
|00) < |01) < |10) < |11), and so on.

-- 0 and 1
data Bit = 0 | I deriving (Ord, Read, Num)

class Ord a = Basis a where
basis' :: [a]

instance Basis Bit where
basis' = [0, 1]

Lhttps://github.com/Fleivio/Well-Typed-Qubits
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The basis function generates the complete basis set for an
n-qubit system by performing a Cartesian product between
the fundamental basis states.

:: Basis a = Int — [[a]]
0= [[]

n=1[b: bs | be basis', bs € basis (n-1)]

A quantum gate is mathematically defined as a matrix
with complex entries. We model the quantum operation (OP)
as a mapping between pairs of basis states and complex am-
plitudes. A pair (([a], [al)) is an index to the matrix’s
rows and columns, and the complex quantity entries rep-
resent the probability amplitude of transitioning between
the indexing states. The structure also stores the number of
qubits associated with the operation. The function appOP
implements the matrix-vector multiplication required for a
quantum gate application on a QV.

data OP a = OP {
opSize :: Int,
opMap :: Map ([a], [a]) PA
}

:: Basis a > 0P a —»> QV a —» QV a
qop qv
= mkQV [(b, prob b) | b € basis (opSize qop)]
where
prob b = sum [qop ~“getOpProb” (a, b) X qv “getProb™ a
| a € basis (opSize qop)]

The controlled-not gate is a two-qubit operation that ap-
plies a bit flip to the target qubit if and only if the control
qubit is |1). Its behavior can be summarized using the classi-
cal exclusive or (XOR) operation: C-NOT |xy) = |x)®|x @ y).
The C-Not gate (controlled-not) in our current implementa-
tion, can be defined as follows:

:: OP Bit

= mkOP [(([0,01,[0,01),1),
((f0,11,[0,11),1),
(([1,01,[1,11),1),
(([1,11,[1,01),1)]

Quantum systems, as already mentioned, exhibit nonlocal
effects. This characteristic allows operations that are seem-
ingly local to affect the entire memory state. To abstract this
global effect, we introduce a new type QR (Quantum Refer-
ence) that maintains a pointer to the memory and can be
shared between different parts of the program. The function
observeQR performs a projective measurement on a quan-
tum reference at a given index, collapsing the entire state
according to the outcome.

type QR a = (IORef (QV a))

: Basis a = QR a — Int — I0 a
ref index = ...

This datatype will be used to ensure that quantum mea-
surements applied (seemingly) to a few qubits have an effect
on the entire system.
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3 Type-Level Safety and Generalization

Although the presented implementation is strictly correct, it
has limitations.

First, without a type-level checking, there is nothing pre-
venting one from defining invalid quantum states. On quan-
tum computing, mixing states from different bases has no
meaning. A quantum state is composed of different basis
states in superposition. Since all these superposition states
refer to the same physical system, they must agree on the
qubit count.

Consider the following examples:

1 1 _ 1 1
[(l1,11, @), (fo,01, E)] = $|11)+$|OO)

This corresponds to a properly entangled state of two
qubits.

1 1 1 1
[([11, ), (10,01, )1 = J 1)+ 5 o0)

In contrast, this is a invalid mixing of a 1-qubit state and a
2-qubit state. Currently, we can create such a ill-formed state
since the linked list length is not known at compile time.

Second, we need to define actual virtual values that make
use of the QR type introduced earlier. A virtual value acts as
a subset of the quantum memory and can translate quantum
operations performed on a few qubits into their correspond-
ing effects on the entire system. Sabry [10] achieved this by
using adaptors — functions that decouple and join values
using tuples. However, this approach becomes impractical as
the memory size grows, since a new adaptor must be defined
for each tuple size.

In this section, we present a mechanism that solves both
problems by using lists instead of tuples, reworking the qubit
access strategy, and implementing compile-time checks to en-
force quantum computing invariants, as a result preventing
the generation of invalid states. The typing rules regarding
the quantum gates and measurements will be addressed in
section 4.

3.1 Type-Level Programming

Type-level programming is a technique where logic and
data are encoded on types to enforce compile-time guar-
antees. Haskell’s supports this paradigm though extensions
such as TypeFamilies, GADTs and DataKinds. In particular,
DataKinds allows values to be lifted to the type level. This
means that any ordinary term-level definition can be used
on type signatures.

For example, consider a datatype Natural, representing
natural numbers in Peano’s form:

data Natural = Zero | Succ Natural

In this context, Zero and Succ can be used both as terms
and types. Just as values are promoted to types, the type
Natural itself is promoted to something higher than a type
— a kind. Via the DataKinds extension, programmers can
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introduce custom kinds into Haskell’s type system. By de-
fault, Haskell provides two kinds: Type (the kind of types)
and Constraint (the kind of type classes constraints).

Another key concept to understand type-level program-
ming in Haskell is singletons. A type is a singleton type
when it’s inhabited by only one value [7]. This establishes
a direct correspondence between the value and type levels.
This technique allows us to emulate dependent typing in
Haskell, enabling the types of expressions to depend on the
values they contain.

For example, to work with the previously defined Natural
kind, we need a way to create values that hold the types Zero
and Succ n. We define a singleton type SNat (short for Single-
ton Natural) that mirrors the structure of the Natural type.
The key difference is that SNat encodes the natural number
it represents on its type, using the promoted constructors
Zero and Succ n presented earlier.

data SNat (n :: Natural) ::
SZero :: SNat Zero
SSucc :: SNat n — SNat (Succ n)

Type where

The relationship between these types and other common
Haskell kinds is illustrated in Figure 1.

Promoted Section

‘9&% Type Natural
VA
&é&% 2 3 True Succn Zero SSuccv  SZero

Figure 1. Hierarchy between terms, types and kinds. The
dashed arrow highlights that the kind of n in SNat’s defini-
tion is Natural.

To support preexisting types at the type level, Haskell’s
base package provides the GHC. TypeLits module. This mod-
ule includes essential definitions for natural numbers, sin-
gletons, type-level strings and lists, user-defined type errors,
and a variety of useful type families. From this point forward,
we will use this module in our code, meaning the previously
defined Natural and SNat types will no longer be used.

By including this module, along with the TypeApplications
extension, singleton values can be expressed concisely. Ad-
ditionally, the module allows us to use type-level decimal
literals, as shown below.
>k 1
1 :: Natural

> :t SNat @2
SNat @2 :: KnownNat 2 = SNat 2

The first query asks for the kind of the type 1, which is
Natural. The second query constructs a singleton natural by
applying the type 2 on it.
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3.2 Singleton Lists and Constraints

To ensure the rigor of quantum operations, we make use of
an extension to the conventional linked list implementation.
Applying concepts from type-level programming, we can
store additional information about the list within its type.
This information can then be used to restrict the range of
functions that can be applied to the value. Doing so, we can
verify whether a quantum state is well-defined and determine
which quantum gates can be applied to it. This approach
allows us to embed the mathematical constraints of quantum
computing directly into the Haskell type system.

One of these structures, particularly useful for our pur-
poses, is a list whose size is encoded in its type. In Haskell,
this structure is usually called a vector. This datatype can be
implemented by defining a list type that maintains its length
concisely through its constructors. By induction, an empty
list has a type that holds a size Zero, while the cons operation
(:>) increments the size by one for each value appended.
type Vec :: Natural — Type — Type
data Vec n a where

VNil :: Vec O a

(:>) ::a > Vecna— Vec (n+ 1) a
infixr 5 :>

For example,
> it 'a':>'b':>VNil
'a':>'b':>VNil :: Vec 2 Char

is a vector-2 of characters.

Another key datatype we need to introduce is the SList.
We define the SList (short for Singleton-List or Selection-
List, as we will use it later) to be a singleton type for a list
of natural numbers. At type level, a SList represents a list
of natural numbers, allowing static type checking about the
contained values. At the value level, a SList keeps a list of
SNat values, which can be easily converted to a list of Ints
for runtime operations.
type SList :: [Naturall — Type
data SList as where

SNil :: SList []

(:=) :: SNat a — SList as — SList (a : as)
infixr &5 :-

The SList type serves as a selector for our quantum mem-
ory. Since it keeps type-level information about all its ele-
ments, we can perform compile-time checks to verify the
correctness of a selection. For a selection list L to be a valid
selector over an n-qubit memory, it must satisfy three condi-
tions: (i) All values in L must be less than or equal to n; (ii)
All values in L must be greater than 0; (iii) L must not contain
any repeating values, assuring the no-cloning theorem.

The no-cloning theorem states that there does not exist
a quantum operation capable of cloning an arbitrary qubit
state. This constraint has profound implications for quantum
algorithm design, and a strongly-typed quantum program-
ming language must detect rule-breaking implicit cloning
attempts. In our implementation, such implicit cloning would
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look like an index appearing multiple times in a selection
list. That is exactly what the rule (iii) watches for.

Unlike ordinary type constraints, TypeError allows us
to produce custom, human-readable error messages when
a constraint is violated. It works by defining a constraint
that always fails, and instead of a generic type mismatch
message, the compiler emits the specified error content. This
mechanism is especially useful for guiding the user when a
quantum state or operation is invalid, as we can precisely
indicate which rule has been broken and why. Each of the
three individual constraints (BoundCheck, NoZeroCheck, and
NoCloningCheck) uses TypeError to provide meaningful
feedback when a selector fails to meet the required condi-
tions.

type BoundCheck :: Natural -> [Natural] -> Constraint
type BoundCheck n xs
= If (Maximum xs <=7 n) Q)
(TypeError (

Text "Index out of bounds on Qubit selection"
:$$: Text "You got " :<>: ShowType n :<>: Text "
qubits" :$$: Text "But tried to select qubits "
:<>: ShowType xs))

type NoZeroCheck :: [Natural] -> Constraint

type NoZeroCheck xs
= If (HasZero xs)
(TypeError (
Text "Zero qubit selection is not allowed" :$$:

Text "The qubit selection list starts from 1"

) O

type NoCloningCheck :: [Natural]l -> Constraint

type NoCloningCheck xs
= If (HasDupl xs)
(TypeError (
Text "No Cloning Theorem Violation" :$$:
Text "You tried to select qubits with repetition
" :<>: ShowType xs
) 0O

To express conditional logic at the type level, we rely on
the If type family provided by the Fcf (First-class Families)
package. This type-level If behaves similarly to an ordi-
nary if expression in term-level Haskell: it evaluates the
first argument (a type-level boolean), and selects between
the second and third branches accordingly. For instance, in
the BoundCheck constraint, If (Maximum xs <=? n) ()
(TypeError ...) means that if the maximum index in xs is
less than or equal to n, the constraint succeeds (represented
by ()); otherwise, the constraint fails with a custom error
message provided by TypeError.

type ValidSelector :: [Natural] — Natural — Constraint

type ValidSelector xs n = (BoundCheck n xs, NoZeroCheck
xs, NoCloningCheck xs)

The ValidSelector constraint combines all three neces-
sary verifications and throws a compile-time error if any of
the conditions are violated.
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3.3 Virtual Values

A virtual value is an abstraction over the quantum mem-
ory, allowing us to refer to some subset of it while keeping
the quantum nonlocal effects. The type Virt contains: (i)
A pointer QR to the whole quantum memory; (ii) A list of
integer numbers indexing qubits in that memory; (iii) At
type level, the abstraction length, equal to the size of the in-
dexing list, enabling the static checks defined in the previous
sections to be applied.

data Virt (a :: Type) (n :: Natural) ::
Virt :: QR a — [Int] — Virt a n

Type where

We define the necessary functions to work with the Virt
type. It is important to note that we hide the type constructor
Virt and expose the mkQ function in the module. This design
ensures that users must provide a Vec type, inferring the
type-level length without explicitly specifying it in the type
constructor. The Vec type also provides us a simple way to
check whether the user is providing a valid mapping between
basis and complex values, preventing the mixture of different
quantum vector spaces. By default, all qubits are indexed
with the list [1..s], which covers the entire quantum memory
sequentially.

:: (KnownNat s, Basis a)
= [(Vec s a, PA)]

— I0 (Virt a s)

pairs = do

qr « qrFromList pairs

return $ Virt qr [1..fromIntegral $ natVal (Proxy @s)]

Analogous to the QR observe function, the measureVirt
function provides a measurement implementation for the
Virt datatype. The difference is that functions operation on
virtual values acts only on the selected qubits.

: Basis a = Virt a s — Int — I0 a
(Virt qr acs) ix = ...

In a similar fashion, the appV function performs a quantum
operation on the chosen qubits, as if they were a separated
quantum state. The qubits not selected for the computation
are left untouched. When a unitary operator U is applied to
a specific subset of qubits (denoted by acs), the full operation
can be expressed as Uges ® Lgs.

:: Basis a = 0P a — Virt a s — I0 Q)
U (Virt ref acs) = do

qv « readIORef ref

writeIORef ref $ adaptOp “appOP” qv

where adaptOp =

mkOP [ ((ua, ub), U ~“getOpProb™ (a, b))
| ua € basis s, ub € basis s
, let (a, na) = decompose acs ua
(b, nb) = decompose acs ub
, na == nb]

To select a portion of the quantum memory, we define
the function selectQ, which takes a selection list (SList)
and applies it to the current indexes of a virtual value. The
function also adjusts the length of the virtual value to match
the length of the selection list.
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:: SList nacs
— Virt a n
— Virt a (Length nacs)
sl (Virt ref acs)
= Virt ref (((acs !!) . pred) <$> sListToList sl)

: ValidSelector nacs n
SList nacs

=
— Virt a n
— Virt a (Length nacs)
= unsafeSelectQ
To illustrate the selection functionality, consider the fol-
lowing virtual value on the state |01).

> mem « mkQ [(0:>1:>VNil, 1)] = |01)

One possible selection on this value is a rearrangement of
the values.

> revMem = selectQ (SNat ©2:-SNat @1:-SNil) mem = |10)

Another possibility is selecting only the first qubit.

> firstQ = selectQ (SNat @1:-SNil) revMem = |1)|10) subsystem

Notice that the selection of the first qubit does not truly
discard quantum information. Instead, it abstracts the unse-
lected qubits to comfortably work with slices of the quantum
memory. In the last example, the full quantum state is still
retained in the reference, but we have access to a projection
on the designated indexes.

To ensure the selection is valid, we constrain the function
with our ValidSelector checker. For instance, attempting
to select the same qubit twice violates the rule (iii) of the
constraint, triggering a type error:
> 1 = selectQ (SNat @1:-SNat @1:-SNil) mem

= error: No-cloning theorem violation

Similarly, trying to access out-of-bound indexes is not
allowed.
> 1 = selectQ (SNat ©10:-SNat ©5:-SNil) mem

= error: Index out of bounds on qubit selection
selectQ can be used directly on virtual values with type
safety. However, we still need to address the typing of quan-
tum gates, and the current implementation remains quite
verbose. For example, a quantum adder can be implemented
as follows:
10 I0 O
= do
mem «— mkQ [(1:>0:>0:>0:>VNil, 1)]

q_124 = selectQ(SNat @1:-SNat ©2:-SNat ©4:-SNil) mem
q_12 = selectQ(SNat @1:-SNat ©2:-SNil) mem
q_234 = selectQ(SNat ©@2:-SNat @3:-SNat ©4:-SNil) mem
q_23 = selectQ(SNat ©2:-SNat ©3:-SNil) mem

appV toffoli q_124
appV cnot g_12
appV toffoli q_234
appV cnot q_23
appV cnot g_12

printQ mem



SBLP’25, September 22-26, 2025, Recife, PE

In the snippet above, toffoli represents a 3-qubit controlled-

not gate:

:: OP Bit

= mkOP [(([0,0,0],[0,0,01),1),
((fo,0,11,[0,0,11),1),
((fo,1,01,[0,1,01),1),
((fo,1,11,[0,1,11),1),
(([1,0,11,[1,0,11),1),
((f1,0,01,[1,0,01),1),
(([1,1,01,(1,1,11),1),
(([1,1,1],[1,1,01),1)1]

We can pinpoint the sources of syntax overhead. Each
operation requires explicit selection of qubits from the mem-
ory, leading to an overwhelming repetition of the selectQ
function prior to defining the circuit logic. This issue is mag-
nified since each selection involves a large singleton list, the
definition of which itself requires many individual single-
tons.

4 QAct Monad

In this section, we introduce a monadic type designed to
reduce the syntactic overhead of quantum operations and
provide a safe way to define and apply quantum gates ans
measurements. We conclude the section presenting an im-
plementation example of Grover’s algorithm.

We introduce the monad QAct b s a constructed as a
ReaderT monad transformer that holds a memory of s qu-
dits, where b represents the dimension of each qudit (usu-
ally being 2-dimensional, for qubits). The type a represents
the return value of the computation performed within the
monad context. Since accessing a virtual value involves an
I0 operation, we use the monad transformer to compose the
Reader and IO monads. The evaluation function runQ is sim-
ply runReaderT, which takes the initial quantum memory
state as a virtual value.

type QAct :: Type — Natural — Type — Type
type QAct b s a = ReaderT (Virt b s) I0 a

type QBitAct s a = QAct Bit s a

:: QAct b s a — Virt b s — 10 a
= runReaderT

From that definition, we present four basic functions that
build a QAct. Later on, we use these building blocks to extend
the framework.

For applying a standard quantum gate, we use the function
gActMatrix. Here, a Matrix represents a quantum logic gate
(OP), which is constructed using Vecs. The use of Vec en-
sures that the size of the operation is known at compile time,
preventing runtime errors related to dimension mismatches.
This function uses the ask operation from the Reader monad
to access the wrapped quantum state, and then applies the
operation within the I0 monad.
type Matrix s b = [((Vec s b, Vec s b), PA)]

:: Basis b = Matrix s b — QAct b s O
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mat = do
let op = mkOP mat
vV <« ask
1iftI0 $ appV op vv
For example, the Hadamard gate — a fundamental single-
qubit gate — creates an equal superposition of states when
applied to a computational basis state:

1 -1
O+ 101
V2 V2
In Haskell, the definition is similar to the matrix definition
of the Hadamard gate:

11 QBitAct 1 ()
= gActMatrix [

H|0) =

((0:>VNil, 0:>VNil), %),
. SVNi L >VNi XL
((0:>VNil, 1:>VNil), ‘1&)’
((1:>VNil, 0:>VNil), $1),
((1:>VNil, 1:>VNil), —%)

]

Using gActMatrix to define a C-NOT in our implementa-
tion looks like the following:

11 QBitAct 2 O

= gActMatrix [
((0:>0:>VNil, 0:>0:>VNil), 1),
((0:>1:>VNil, 0:>1:>VNil), 1),
((1:>0:>VNil, 1:>1:>VNil), 1),
((1:>1:>VNil, 1:>0:>VNil), 1)

]

Currently, we do not statically check whether a matrix
is unitary. To accomplish such a check, we would need to
model singleton complex numbers and perform type-level
arithmetic, which is not possible in Haskell due to the lack
of type-level floating-point numbers and its inherently pre-
cision problems.

Two of the other constructors for a QAct are sample and
measure. The sample function serves as a debugging tool:
it prints the current state of the quantum memory without
collapsing it. In contrast, the measure function performs a
measurement on the quantum system, collapsing the state
and returning the obtained value.

:: Show b = QAct b s ()
= do

virt < ask

1iftI0 $ printQ virt

:: (KnownNat ix, Basis b, ValidSelector '[ix] n)
= SNat ix — QAct bn b
sn = do
virt < ask
1iftI0 $ measureVirt virt sn
The app function is arguably the most important construc-
tor for QAct. It plays a crucial role in the modularity of the
implementation by allowing the application of a QAct com-
putation to a subset of the quantum state. Specifically, app
takes a selection list (SList acs) and a QAct computation
to be performed on the resulting value of the selection. The
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selection list defines how to extract a subset of the quantum
state from the virtual value kept under the current Reader
monad. This approach enables the combination of QActs of
different sizes, as long as the selection list is a valid map
between them.
:: ValidSelector acs n
= SList acs
— QAct b (Length acs) a
— QAct bn a
sl act = do
qv « ask
let adaptedValue = unsafeSelectQ sl qv
1iftI0 $ runReaderT act adaptedValue

Using the Hadamard (h) and controlled-not (cnot) gates
defined earlier, we can define an entangle QAct as such:
: QBitAct 2 O
= do
app (SNat @1 :- SNil) h
app (SNat @1 :- SNat @2 :- SNil) cnot
Given the composable nature of the QAct monad, the
entangle operation can be used as a building block within
more complex quantum circuits:
:: QBitAct 3 ()
= do
app (SNat @1 :- SNat @2 :- SNil) entangle
app (SNat @2 :- SNat @3 :- SNil) entangle
Also, direct composition of quantum gates is simply ex-
pressed as monadic binding. For example, consider the VNOT
gate:
:: QBitAct 1 ()
= gActMatrix [

((0:>VNil, 0:>VNil), 1),
((1:>VNil, 1:>UNil), 0 :+ 1)]

:: QBitAct 1 ()
=h >> s > h
As both the Hadamard and S gates work on a single qubit,
the expression is well-typed and requires no explicit selection
connecting the operations.

4.1 Quoters and Labels

To improve the expressiveness of the implementation, we can
use overloaded labels and quasi-quotations to build singleton
lists and type-level naturals.

The QuasiQuotes extensions allow us to define a domain-
specific language for building our program. For our purposes,
it can be used to create a syntax sugar for SLists, which
is then desugared by the compiler into the standard SList
constructors.

We define the quasi-quoter gb to desugar as follows:
[gbl1 2 3|] = SNat @1 :- SNat @2 :- SNat @3 :- SNil

Using the same idea, we build quoter for Vecs and Virts
values:

[n1]1 1 0]] =1 :>1 :>0 :> VNil
[mkqll 1 0] = mkQ [(1 :> 1 :> 0 :> VNil, 1)]
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In a similar manner, the OverloadedLabels allows us to
use identifiers whose interpretation depends on their text.
Labels always have a hash prefix (#) and, in this context, are
used to simplify the construction of SNat values:

#1 = SNat o1

Deutsch’s algorithm is a quantum procedure that decides
whether a function f : Bit — Bit is constant [4]. The algo-
rithm exploits quantum parallelism to evaluate the given
function on all possible inputs simultaneously and then mea-
sures the control qubit. If the observed result is 0, then
the function is constant. Using the improved syntax, the
Deutsch’s algorithm can be modeled as follows:

:: QBitAct 2 a — QBitAct 2 Bit
uf = do

app [gbl1l] h

app [gbl2]] h

app [gbl1l 2|] uf

app [gbl1l] h

measure #1

20 10 O
= do

mem « [mkq|O 1]]

r « runQ (deutsch cnot) mem

case r of

0 — print "cnot is constant"
1 — print "cnot is balanced"

In this example, we execute the Deutsch’s algorithm on
the cnot operation. Since the algorithm expects a 2-qubit
transform (one target and one control), the expression type-
checks. This ensures that mismatches between the arity of
operations are caught at compile time.

4.2 Oracles and Grover’s Algorithm

Oracles are crucial operations for many quantum algorithms.
They encode problem-specific information in a unitary gate,
acting as a black box[8]. Oracles play a significant role on
quantum algorithms speedup. As noted by Simon [12], for
certain problem, within a bounded error probability, there
exists a quantum oracle that can solve it in polynomial time,
whereas any classical Turing machine would require expo-
nential time to achieve the same result [2].

A oracle may be defined in terms of a classical function.
A specific oracle type is the phase oracle, whose inner func-
tion is use to decide wether the input qubits will suffer a
phase flip. More precisely, given a function f : Bit” — Bit,
the phase oracle definition is Zy [x) = (-1)®) |x). In our
implementation, a phase oracle builder function is shown
bellow.

: (Basis b, KnownNat n)
= (Vec n b — Bool)
— QAct bn O
f = do
let op = mkOP [((b,b), if f b then -1 else 1)
| b € basis n)]
vv « ask
1iftI0 $ appV op vv
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For example, consider the phase oracle zAny that is built
upon the function f |x) = |x) # [000).

: QBitAct 3 ()
= phaseOracle ([nl|0 0 0[] #)

We can evaluate the zAny oracle on different possible en-
tries, and, as expected, all entries except |000) suffer a phase
shift.
> runQ zAny =<< [011) = —|011)

> runQ zAny =<< |010) = —010)
> runQ zAny =<< |000) = |000)

Grover’s algorithm presents a powerful use case for or-
acles. By evaluating an oracle on superposition states, we
can perform searches on unstructured data. The algorithm
starts by creating a uniform superposition state by applying
a Hadamard gate on each qubit (i.e., appAll h = H®"). The
oracle is then evaluated on this state, effectively searching
over all entries simultaneoulsy via quantum parallelism.

Next, the Grover’s Diffusion Operator — implemented as
appAll h >> zAny >> appAll h, corresponding to the
transform H ®”ZanyH ®n) performs a reflection relative to the
average system’s state. At the end of this step, the amplitude
of the phase-shifted state is increased. By repeating this pro-
cess L%\/N | (N being the number os possible inputs) times,
Grover’s algorithm maximizes the probability of measuring
the desired state.

In the implementation bellow, we define the grover opera-
tion for three qubits. Notice that the diffusion step is repeated
L%‘/Z_ﬂ = 2 times utilizing the replicateM_ function.

: QBitAct 3 () — QBitAct 3 (Vec 3 Bit)
zf = do

let targets = [gbl1l 2 3]]

appAll h

replicateM_ 2 (
zf >> appAll h >> zAny >> appAll h
)

measureN targets

1 I0 O
= do
outcome « [mkq|0 0 0]
>>= runQ (grover $ phaseOracle ( == [nl|1 0 1] ))

print outcome

The testGrover function initializes the virtual value for
the memory, and applies the algorithm. When executed, it
prints the result of the measurement, which is expected to
be |101) with high probability.

5 Conclusion

This work presented a type-safe model of quantum comput-
ing in Haskell by reworking Sabry’s original framework. Our
main contribution is the introduction of a general mecha-
nism for accessing and manipulating quantum memory slices
while not relying on a built-in linear type system. The im-
plementation allowed managing the state of quantum values
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with type safety and expressiveness. We have written sev-
eral algorithms other than Grover’s and Deutsch’s presented
earlier.

Our implementation reinforces the use of strong type sys-
tems for formal verification of invariants. It prevents invalid
operations such as out-of-bounds selections, violations of
the no-cloning theorem, and operation size mismatches at
compile time. Moreover, the monadic structure of our ab-
straction enables clean composability of quantum operations,
making the development of quantum algorithms ergonomic
and extensible.

While previous approaches such as the use of Arrows [15]
and linear type systems [1, 3, 9] provide powerful abstrac-
tions for quantum computation, our solution offers an alter-
native without requiring linearity or category-theoretic over-
head. These features make our approach not only suitable
for practical quantum algorithm prototyping on non-linear
type systems but also a valuable introduction to advanced
functional programming and type-level programming,.

Nonetheless, the current implementation assumes a fixed
memory size. This limits the ability to write algorithms poly-
morphic over the number of qubits. As a result, it limits the
operability of many important algorithms — such as Shor’s,
Deutsch-Jozsa’s, and Grover’s — which are designed to work
over inputs of varying sizes.

As future work, we consider the following extensions:

e Polymorphism over memory size: Currently, ev-
ery QAct must have a fixed size. As mentioned, this
would have significant impact on Deutsch-Jozsa’s and
Grover’s algorithm design.

e Operation History: By using monad transformers,
we can combine additional monads alongside Reader
and I0. We suggest incorporating the Writer monad
to store the quantum operations performed. This ap-
proach could enable the exploration of quantum algo-
rithm reversibility [13] or circuit visualization.

The repository containing the full implementation, along
with examples and documentation, is available on GitHub
(see link in the introduction). We hope that the repository
will be both a handy practical resource for developing quan-
tum algorithms, as well as a source for interested researchers
in the interface between quantum computation and type-
level programming.
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