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Abstract. Software development depends on Application Programming 
Interfaces (APIs) to achieve their goals. However, choosing the right APIs 
remains as a difficult task for software engineers. Considering that 
recommendation systems are emerging to support software engineers in their 
decision-making task and Games industry has a huge economic and cultural 
success, we proposed a technique that considers Game category from 
SourceForge and recommends APIs to software engineers with software in 
initial (not using APIs) or advanced (using some APIs) stage of software 
development. We used collaborative filtering technique along with frequent 
Itemset mining technique for generating the corresponding large and top-N lists 
of APIs recommended. We evaluated lists performance based on two 
classification accuracy metrics (precision and recall) and one efficacy metric 
(recall rate), obtaining promising outcomes. Thus, the results of evaluation 
metrics showed that our technique could make useful API recommendations for 
software engineers with Game software that used a small number of APIs or did 
not use any API. Besides, our technique was able to put relevant APIs even in 
high-ranking positions, even in small top-N lists of APIs recommended. 

1. Introduction 
Software development is inseparable from the use of Application Programing Interfaces 
(APIs) [Duala-Ekoko; Robillard, 2012] due to the advantages of reusing them. For 
instance, APIs provide cost effective way to build software with enhance in [Sun et al., 
2011]: i) productivity of programmers by providing variety of desired functions; and ii) 
software quality, as libraries are usually well-tested and fairly robust because of their 
massive and diverse user base. Nevertheless, the increasing size and number of APIs 
implies the developers must frequently learn how to use the unfamiliar APIs [Duala-
Ekoko; Robillard, 2012]. Hence, to reuse effectively and correctly APIs during the 
development is difficult for software developers [Acharya et al., 2007]. An alternative is 
to find API experts [Teyton et al. 2013], but hiring those experts implies human and 
financial high investment that could not be included in development planning. Several 
studies have addressed the issue of APIs usage in order to guide and support developers 
[Mileva et al., 2009; Duala-Ekoko; Robillard, 2012; Thung et al., 2013]. However, to 
choose right APIs remains as a difficult task for developers and Recommendation 
Systems (RSs) emerged for solving those tasks. 
 A Recommendation System in Software Engineering (RSSE) is a software 
application that provides information items considered as valuable for a software 
engineering task in a given context. RSSEs are emerging to assist developers in various 
activities [Robillard et al., 2010]. For example, decision-making about which software 
components (or APIs) to reuse. Among advantages of using RSs and RSSEs, we cited 
reduction in effort, increment of productivity in software engineering activities, and 
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supporting in users decision-making [Robillard et al., 2014]. Moreover, they allow 
discovering new content faster and more efficiently [Núnez-valdéz et al., 2012]. 
 A study base for this work proposed a hybrid approach to recommend APIs, 
combining association rule mining and nearest neighbor based on collaborative filtering 
recommendation technique [Thung et al., 2013]. In spite of the promising results 
presented in that study, we observed some limitations that motivated this current study. 
On the other hand, there are several repositories of software systems of open source 
(SourceForge, Google Code, Apache Software Foundation, and GitHub), which cluster 
those systems by application categories, programming languages, language, and/or user 
evaluation. We proposed a technique and we conducted empirical evaluations considering 
SourceForge software from Game category. 
 Therefore, the main motivation and differential of our recommender technique 
regarding other several studies found lies in considering: i) Java software (even Maven) 
developed in Eclipse-IDE; ii) Game category from SourceForge; iii) software in initial 
stage of development (in designing or with code but without use of APIs); and iv) 
software in advanced stage of development (with code and using few APIs). In addition, 
we simulated software engineers’ scenarios for initial and advanced stage of software 
development. Results using our technique demonstrated that it was possible to obtain 
useful large and top-N lists of APIs recommended for software engineers whose systems 
belonged to Game category and used a small number of APIs or did not use any APIs.  
 The remainder of this paper is organized as follows. Section 2 summarizes 
background concepts. Section 3 presents technique to recommend APIs. Section 4 
presents evaluation strategy. Section 5 shows the results. Section 6 discusses results. 
Section 7 presents some related work. Section 8 concludes and presents future work. 

2. Background 

2.1 Collaborative Filtering 
Collaborative Filtering (CF) is the most widely used and effective recommendation 
technique and it is based on the assumption that users who have agreed in the past tend 
to agree in the future [Anand; Bharadwaj, 2011]. CF has been used in many real systems, 
e.g. environmental sensing, financial services, and web applications [Thung et al., 2013]. 
 One of the most frequently cited algorithm and possibly the most widely 
implemented is the Nearest Neighbor (NN) algorithm [McLaughlin; Herlocker, 2004]. 
Assuming that an entity is an item or a user, a basic method to perform CF technique finds 
similarities among entities and selects the most similar entities as the NN of the target 
entity of recommendation. The key for NN algorithms is the similarity calculation 
[Dapeng et al., 2009]. Traditional similarity metrics (e.g., Cosine, Jaccard, and Pearson 
Correlation) can be used for computing that similarity [Dapeng et al., 2009; Bodadilla et 
al., 2011]. In this study, we used Jaccard, where similarity between two data sets of 
entities is the result of division between the number of common features and the number 
of properties [Niwattanakul et al., 2013]. Jaccard ranges between 0 and 1, where 0 means 
dissimilarity and 1 means total similarity. After computing similarity, we can find the top-
N highly ranked entities and return them as the top-N of entities recommended. In our 
context, an entity is one software and similarity is computed based on their APIs. 
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2.2 Frequent Item Set Mining 
Frequent item set mining (FIS) is a data mining technique, which efficiently finds 
frequent item sets in a dataset. FIS defines the support as the number of occurrences of a 
subset of items (sub-item set). A sub-item set is frequent if its support is greater than a 
specified threshold called minimum support. Thus, the support is the number of times a 
sub-item set happens in the item sets database [Maffort et al., 2013]. In this study, we 
computed the support of an API by counting the times that it is used in Game software. 

2.3 Evaluation Metrics 
The quality of Recommendation Systems (RSs) can be defined either in terms of system-
centric method, which are evaluated algorithmically (e.g., with classification accuracy 
metrics - precision and recall) or with user-centric experiments (e.g., users interact with 
RS and receive recommendations) [Cremonesi et al., 2013]. In order to have immediate 
results, in an independent and economical way, we decided to use system-centric method 
for evaluating recommendation technique, i.e., avoiding dependence of real users’ 
interaction. Consequently, we used an efficacy metric [Barbosa, 2011] and two 
classification accuracy metrics for measuring to what extent a recommendation system 
was able correctly to classify items as interesting or not [Robillard et al., 2014]. 
 The purpose of a classification task in the context of item recommendation is to 
identify the top-N most relevant items for users. Two best-known classification metrics 
are Precision, probability that a recommended item corresponds to the user’s preferences, 
and Recall, probability that a relevant item is recommended [Jannach et al., 2010]. These 
metrics are suitable for evaluating top-N lists. When a recommender algorithm predicts 
the top-N items that a user expected to find interesting by using recall, we can compute 
the percentage of known relevant items from the test set that appear in the N predicted 
items [Cremonesi et al., 2008]. On the other hand, recall rate@k is another useful metric 
for evaluating effectiveness of recommendation systems. Recall rate@k is proportion of 
top-k recommended lists, in the set of all recommendations (for all projects) that includes 
at least one relevant item recommended [Thung et al., 2013]. This metric has a different 
nature, it responds with what percentage of cases the answer was positive, i.e., measures 
the efficacy [Barbosa, 2011]. Then, for computing recall rate@k, where k is the number 
of the recommended items, we must assign value 1 if, at least, one of the k recommended 
items (e.g. API) is a member of relevant items or value 0, otherwise [Thung et al., 2013]. 

3. API Recommendation for Software from Game Category 
No reference architecture has emerged to-date for RSSEs [Robillard et al., 2014]. 
Nevertheless, there are three major processes in the RSs [Bigdeli; Bahmani, 2008]: i) 
object data collections and representations - consist in getting the items for analyzing; 
ii) similarity decisions - involve calculation of distance/similarity among data; and iii) 
recommendation computations - introduce and filter recommendation of relevant items. 
Thus, in a similar way, we established three main steps into a technique in order to support 
software engineers through large and top-N lists of APIs recommended for 
developing/maintaining software from Game category: i) Software Dataset; ii) Data 
Collection; and iii) Recommendation Engine. 
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3.1 Software Dataset 
We used Sourcerer repository in this study, which is part of the source code repository 
UCI [Bajracharya et al., 2009; Lopes et al., 2010]. It contains ~18,826 (~13,241 non-
empty) software from Apache, Java.net, Google Code, and SourceForge repositories. We 
decided to use SourceForge dataset, which has 9,969 (~6,632 non-empty) software among 
10 categories provided. Therefore, we determined other criteria to get relevant Game 
software. In this context, we determined as relevant software that: i) were developed in 
Java and Eclipse IDE platform; ii) used at least two APIs; iii) were independent (not 
embedded software); iv) had been registered for at least four years; v) whose last date of 
maintenance between 2010 and 2015; and vi) belonged exclusively from Game category. 
After filtering, we found 70 software and we stored them in a main repository. 

3.2 Data Collection 
It consists in getting the items for analyzing them. In our study, items are APIs from target 
software of recommendation and model software, both cases regarding software 
categories. Within Java software, there are different ways to capture API information, for 
example, by: i) corresponding binary files (.jar files); ii) importing statement in each .java 
file where the corresponding class term should be disregarded; and iii) declared tags of 
<dependency> via pom.xml files in Maven systems. 

 We decided to capture APIs through importing statement in the .java files. That 
statement allows reusing existing features, besides there are two ways to reference them 
[The Java Tutorials, 2014]: i) entire package using the ‘*’ character referencing all of the 
members (class or interface) contained in the package (e.g. import graphics.*); or ii) 
package members (class or interface) using their simplified name (e.g. import 
graphics.Circle). In addition, we determined to remove the statements corresponding to 
the package members (classes or interfaces), whereas a Java API is a collection of 
packages. Other main decision was to differentiate own system packages in the import 
statements and the external APIs packages in the import statements. 

3.3 Recommendation Engine 
We created two stages for the recommendation engine because we must consider the cases 
that were not possible to establish similarities. Therefore, the recommendation engine 
considers Game software and consists on strategies and techniques used to obtain the 
relevant APIs considering two stages of software development: i) Stage A: API 
Recommendation for software engineers in initial stage of software development (not 
using APIs); and ii) Stage B: API Recommendation for software engineers in advanced 
stage of software development (using some APIs). 
 For Stage A, recommendation techniques were not a good choice because there 
were no APIs to link between Game model software and the Game target software of API 
recommendation. In recommender systems that issue is known as cold-start problem 
[Schein et al., 2002; Park et al., 2006; Son, 2014]. However, in order to recommend APIs 
to developers with systems in initial stage of development, we decided to consider the 
popularity of APIs in Game category. One way to determine that popularity was using 
FIS technique for establishing the most common APIs in Game software and relating 
results to the target software of API recommendation. Once that popularity of APIs is 
computed, the final large list of APIs recommended can be generated along with the top-
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N lists. In both lists, APIs are sorted by its popularity value. Regarding Stage B, we used 
NN algorithm from CF in conjunction with FIS technique, i.e., considering model 
software from Game category. Thereafter, the API similarity is computed between the 
Game software and the target software of API recommendation. As a result, the nearest 
systems are found and the list of possible APIs to recommend can be generated. 
Afterward, FIS technique may be applied and union can be made between the lists from 
CF and FIS techniques. The final lists of APIs recommended can be generated along with 
the top-N list, which is sorted by every API popularity value. 

4. Evaluation Strategy 
We determined to evaluate our technique through system-centric evaluation, without real 
user’s interaction, because conducting empirical tests involving real users is difficult, 
expensive, and resource demanding. On the contrary, system-centric evaluation has the 
advantage to be immediate, economical and easy to perform on several domains and with 
multiple algorithms [Cremonesi et al., 2013]. We simulated software engineer scenarios 
for Stage A and Stage B of software development. Then, based on each stage, we did 
dataset partition of 5-fold cross validation [Cremonesi et al., 2008], i.e., we split dataset 
into 80% Training (Game model software) and 20% Test data (software to simulate 
users). Hereafter, we will call them as M-software and TS-software respectively. 

4.1 Evaluation of Stage A of API Recommendation 
We defined to remove the 100% from the TS-software in order to simulate software 
engineers in initial stage of software development or maintenance. We saved the removed 
APIs in .xml files and saved them as relevant APIs (APIs that we expect to recommend). 
In addition, we varied attributes the threshold (minSupport) value for FIS technique from 
0.1 to 0.9 and we found the best threshold value to use for generating corresponding large 
and top-N lists of APIs recommended. Afterwards, for evaluating the quality of our API 
recommendation technique, we applied recall, precision, and recall rate (evaluation 
metrics) based on the .xml files of APIs. Then, two recommendation lists generated (one 
list with large recommendations and the other list with the top-N recommendations). In 
case of Top-N lists, we varied N from 1 to 20 in order to study how early correct 
recommendations appear in the top-N recommendation. Metric values are generated in 
.xls files for further manual analysis. 

4.2 Evaluation of Stage B of API Recommendation 
We used the 5-fold cross validation method. Therefore, for each software from test set, 
50% of APIs were removed and saved in an .xml file as relevant APIs (APIs that we expect 
to recommend). As that removal is made randomly, we established to do five replicates 
of API recommendation for every software of the test set in every iteration. We used CF 
technique along with FIS technique; we needed to find the “best” value for each attribute. 
In case of minSupport, we varied minSupport value for FIS technique from 0.1 to 0.9 and 
we found the best threshold value to use for generating corresponding lists of APIs 
recommended by FIS technique. In case of CF technique, we varied the k number of 
nearest neighbors (kNN) in top-10 lists of APIs recommended from all iterations and 
replicates of 5-fold cross validation method in order to find the best kNN for generating 
the lists of APIs recommended lists by CF technique. Subsequently, the union between 
FIS and CF lists of APIs recommended is made, regarding that each list was already 
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sorted by support value. For that union, we assigned an equitable weight of 50% of 
relevance for every strategy. Two lists of APIs recommended are generated, one with the 
union of all API recommendations and the other with the top-N list of recommendation. 

5. Results 
In our empirical evaluation, we used a dataset of 70 software exclusive from Game 
category. In Table 1, we showed software and their number of APIs. In order to evaluate 
our recommendation technique for software engineers with software categorized in Game 
category regardless of the stage of software development, we did the 5-fold cross 
validation. Hence, in every iteration, we used 14 different software (20% of data) as test 
set and 56 software (80% of data) as training set. In that partitioning, we avoided 
overlapping, i.e., every software appears just once in test set. In this partitioning process, 
we saved .wst files of every iteration. The strategy for simulating software engineers’ 
behavior changes depending on the stage of software development. Hence, we applied 
the evaluation strategy for Stage A and Stage B separately. Then, we computed averaged 
recall, precision, and recall rate values in order to analyze the quality of our 
recommendation technique in every stage of API recommendations. 

Table 1. Baseline Data for Game Category 

 

5.1. API Recommendation for Game Software in Stage A 
In this Stage, in each iteration of the 5-fold cross validation, for each software from test set, 
all of APIs were removed and saved in one .xml file as relevant APIs (APIs that we expect 
to recommend). The core is the FIS technique; thus, we needed to find the “best” threshold 
(minSupport) value. So, we analyzed the effect of varying this value of FIS technique (from 
0.1 to 0.9) in top-10 lists of APIs recommended (Table 2). The minSupport values in 0.1 
and 0.2 presented same results with the highest recall. Hence, we chose minSupport = 0.1 
as the “best” minSupport value for FIS technique since choosing other value did not mean 
any significant improvement for precision or recall rate values. 
 After finding minSupport value, we used it for evaluating our technique for 
recommending APIs to software engineers whose software is from Game category and in 

# SOFTWARE NAME APIs # SOFTWARE NAME APIs # SOFTWARE NAME APIs
1 Sudoku 5 25 JEdits 13 49 Bomberman 22
2 go2 6 26 tweevoortwaalf 13 50 JTBRPG 22
3 lightsout 6 27 go-3 14 51 DarkWorld 23
4 jSweeper 6 28 PirateMoon 14 52 Ice Hockey Manager 24
5 Vana'diel Timer 6 29 dragonchess 15 53 Errare 24
6 tetris 6 30 JDStar 15 54 JMines 24
7 CarolSolitaire 7 31 ROOT 15 55 JurpeEclipse 25
8 mkchess 7 32 Zatacka Online 15 56 rcontrol 25
9 JHex 7 33 battlephone 16 57 Herzog3D 26
10 openjmud 7 34 TaroTux 16 58 puzzlebeans 26
11 Vorms 7 35 stonesthrow 16 59 SpaceWars 28
12 EnergyBolt 8 36 TwinSerpents 17 60 jake2 29
13 problematic 8 37 Xoridor-SF 18 61 kolmafia 30
14 NebulaCards 8 38 Tiffanys 18 62 rpg-mapgen 31
15 talisman 9 39 holdemcockpit 19 63 bertelConf 33
16 conwaygo 10 40 jcharmanager 19 64 mulifex 34
17 Blasteroids 10 41 robowars 19 65 universe 35
18 minesweeper 10 42 thud-1.4 19 66 Magellan 36
19 Chat 11 43 bobeira 20 67 au.com.kelpie.rcpplanner 50
20 momem 11 44 bzstats 20 68 de.battleforge 51
21 customsrpg 12 45 openkickoff 20 69 RouteRuler 58
22 freya-working 12 46 Olitext 20 70 ho_plugins 108
23 Jacoto 12 47 hogs 21
24 JOBS 12 48 PJShadowsFall 21
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Stage A of development when receiving large lists of APIs recommended as well as when 
receiving top-N list of APIs recommended. In the case of top-N, we evaluated the effect 
by varying N in 1, 3, 5, 7, 10, 13, 15, 17, and 20. 

Table 2. Effect of Varying minSupport Value in Top-10 Lists of APIs Recommended in 
Stage A of Game category 

 
 Regarding the evaluation when receiving large list of APIs recommended, we 
obtained the averaged evaluation results (recall, precision, and recall rate) from iterations 
of the 5-fold cross validation (Recall = 0.660; Precision = 0.337; Recall Rate = 1.000). In 
addition, for analyzing every iteration, we exposed the evaluation results in Figure 2. On 
the other hand, when receiving top-N lists of APIs recommended, we obtained the 
averaged evaluation results (recall, precision, and recall rate) from all of iterations of the 
5-fold cross validation (Table 3). In addition, we exposed the results of precision and 
recall (Figure 3), and recall rate (Figure 4) for analyzing each iteration. After obtaining 
the evaluation results, we identified APIs recommended in top-20 lists over all iterations. 
In Table 4, we showed number of recommended APIs, their name and their frequency 
value (number of times the API was recommended over the five iterations). 

 
Figure 2. Results of Evaluation Metrics for every Iteration of 5-Fold Cross Validation for 

Large Lists of APIs Recommended 
Table 3. Results of Evaluation Metrics when Varying N of Top-N Lists 

 

5.2. API Recommendation for Game Software in Stage B 
In this Stage, we used the 5-fold cross validation method. Therefore, for each software 
from test set, 50% of APIs were removed and saved in .xml file as relevant APIs (APIs 
that we expect to recommend). As that removal was made randomly, we did five replicates 
of API recommendation for every software of the test set in every iteration. We used CF 
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technique along with FIS technique. Both techniques have two main attributes: i) the 
minimum support value; and ii) the number of NN. Thereby, we needed to find the “best” 
value for each attribute. In case of minSupport, we used the same value of 0.1 found in 
Stage A, since we used the same data sample, technique, and evaluation method. On the 
other hand, we analyzed the effect of varying kNN, i.e., the number of NN in top-10 lists 
of APIs recommended from all iterations and replicates of 5-fold cross validation method 
(Table 5) and we found that varying kNN in 20 presented the best recall value. 
Consequently, we chose minSupport = 0.1 for FIS technique and kNN = 20 for CF 
technique in Game category. 

 
Figure 3. Precision and Recall Metric for every Iteration of 5-Fold Cross Validation when 

Varying N of Top-N Lists 

 
Figure 4. Recall Rate Metric for every Iteration of 5-Fold Cross Validation when Varying N 

of Top-N Lists 
Table 4. APIs Recommended in Top-20 Lists 

 
Table 5. Effect of Varying k, i.e., Number of NN in Top-10 lists of APIs Recommended 
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 After setting minSupport and kNN values, we used them for evaluating our 
technique for recommending APIs to software engineers in Stage B when receiving large 
and top-N lists of APIs recommended. In case of top-N, we evaluated the effect of varying 
N. Regarding the evaluation when receiving large lists of APIs recommended, we 
obtained the averaged evaluation results (recall, precision, and recall rate) from all of 
iterations and replicates of the 5-fold cross validation (Recall = 0.643; Precision = 0.241; 
Recall Rate = 0.994). In addition, for analyzing every iteration, we exposed evaluation 
results in Figure 5. On the other hand, when receiving top-N lists of APIs recommended, 
we obtained the averaged evaluation results (recall, precision, and recall rate) from all of 
iterations of the 5-fold cross validation (Table 6). In addition, for analyzing every 
iteration, we exposed average values of precision and recall (Figure 6), and recall rate 
(Figure 7) for each iteration. It is important to consider that in every iteration, we did five 
test replicates since the removal of the 50% of APIs was randomly. 

 
Figure 5. Results of Evaluation Metrics for every Iteration of 5-Fold Cross Validation for 

Large Lists of APIs Recommended 
Table 6. Results of Evaluation Metrics when Varying N of Top-N Lists 

 

 
Figure 6. Precision Metric for every Iteration of 5-Fold Cross Validation when Varying N 

of Top-N Lists 

 After finding evaluation results, we identified APIs recommended in top-20 over 
all iterations. As we made five replicates of the recommendation test for every target 
software, we decided to select top-20 lists from the replicate with best recall value. We 
found that replicates 3, 4, 5, 2, and 2 presented the best recall values for iterations 1, 2, 3, 
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4, and 5 respectively. In Table 7, we showed APIs and frequency value, where frequency 
is number of times the API was recommended in a top-20 list over the 70 TS-software. 

 
Figure 7. Recall Rate Metric for every Iteration of 5-Fold Cross Validation when Varying N 

of Top-N Lists 
Table 7. APIs Recommended in Top-20 Lists 

 

6. Discussion 
Our study showed that our technique could make useful API recommendations, even in 
small top-N lists of APIs recommended for software engineers whose software was 
categorized and in initial or advanced stage of software development. We discussed the 
results of every category, considering API recommendation for Stage A and Stage B. 
Besides, we discussed overall results regarding our study findings and their implications. 

6.1. API recommendation for Game software in Stage A 
When analyzing recommendation results for large lists (Table 3), we expected maximum 
recall and low precision values since many irrelevant items could be recommended. As 
expected, we obtained precision value equal to 33.7% and a recall value of 66.0%. 
Furthermore, when we requested for large lists of APIs, our recommendation technique 
could correctly recommend at least one relevant API for 100% of requests. 
 We also exposed evaluation results for every iteration of the 5-fold cross 
validation regarding large lists of APIs recommended (Figure 2). We inspected the 
number of APIs recommended in large lists from iterations 1 to 5 and 41, 35, 35, 33, and 
26 APIs were recommended, respectively. Therefore, those values explain why recall 
tended to get lower through iterations, as consequence of the inversely dependence among 
these metrics, precision tended to get higher. For instance, in iteration 1, 5 to 8 APIs were 
expected to be recommended; instead, 41 APIs were recommended where in averaged 
87.9% of them appeared in the lists of APIs recommended. Because of the sizes of lists, 
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more irrelevant APIs were recommended and in averaged precision was 10.9%. In 
iteration 5, 26 to 108 APIs were expected to be recommended; instead, 26 APIs were 
recommended. Because of that, for target software would not be possible to receive all 
the expected APIs in all tests, causing low recall value (43.8%) and consequently higher 
precision (42.0%). Furthermore, when we requested for large lists of APIs regarding 
iterations 1 and 3, our recommendation technique could correctly recommend at least one 
relevant API for 98.6% of the requests. For the remaining iterations, our technique could 
correctly recommend at least one relevant API for 100% of the requests. 
 On the other hand, when analyzing our recommendation regarding small lists, i.e., 
varying N in top-N lists of APIs recommended (Table 4), our recommendation technique 
was able to put relevant APIs even in high-ranking positions. For instance, when we 
requested recommendation lists with 1 or 3 APIs, i.e., N=1 and N=3, our technique could 
correctly recommend at least one relevant API for 98.6 and 100% of the requests 
correspondingly. Moreover, when we requested recommendation lists with larger sizes, 
i.e., from N=5 to N=20, our technique could correctly recommend at least one relevant 
API for all the request tests (recall rate of 100%). In addition, we also observed that recall 
values increased along with N (i.e., 7.3% to 57.3%) and oppositely precision values 
decreased (i.e., 98.6% to 45.4%). In small N values, these recall behaviors are normal 
since for target software cannot be expected to receive all relevant APIs, i.e., from 
software #47 to software #70 (Table 1) we could not receive all relevant APIs even in 
largest N of 20 since relevant APIs are greater than 20. In small N values, precision results 
are normal since less irrelevant APIs are expected to be recommended. 
 We also exposed evaluation results for every iteration of the 5-fold cross 
validation regarding small lists of APIs recommended. Regarding precision metric 
(Figure 3), these values decremented as N incremented in all iterations. For example, in 
top-1 lists of APIs recommended, in all iterations we obtained precision values above 
84.0%. On the other hand, in top-20 lists of APIs recommended, in all iterations, precision 
values tended to get lower, especially when just a few relevant APIs are expected to be 
received in the recommendation lists because more irrelevant APIs can appear causing 
those low precision values. For example, recommendation lists for N=20 for software in 
iteration 1 where number of APIs varied from 5 to 8. 
 Regarding recall metric (Figure 3), we observed how these values increased as N 
increased. That result is normal and expected, since among more APIs recommended, 
major is the chance of recommending relevant APIs. For example, in top-20 lists of APIs 
recommended, in all iterations the highest recall values were achieved. However, iteration 
5 presented significant difference regarding the other iterations with recommendation lists 
for N=20. Then, that difference is normal since software in iteration 5 used from 26 to 
108 relevant APIs. Therefore, we cannot expect to receive all relevant APIs when just 20 
ones were requested. Instead, in top-1 lists of APIs recommended, in all iterations recall 
values were low (i.e., 5.2% to 23.9%), because we cannot expect to receive all relevant 
APIs when just one of them had been requested. 
 Regarding recall rate metric (Figure 4), in all iterations, when we requested for 
small lists of APIs, e.g., N=1 and N=3, our technique could correctly recommend at least 
one relevant API for more than 84.0% of the requests. For N=5, our technique could 
correctly recommend at least one relevant API to more request tests, i.e., to more than 
98.6% of the requests, even achieving 100% in some cases, like iterations 5 and 6. 
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6.2. API recommendation for Game software in Stage B 
When analyzing our recommendation technique for large lists (Table 5), we expected low 
precision and maximum recall values since many irrelevant items could be recommended. 
As expected, we obtained precision value of 24.1% and recall value of 64.3%. 
Furthermore, when we requested for large lists of APIs, our technique could correctly 
recommend at least one relevant API for 99.4% of the requests. 
 We also exposed evaluation results for every iteration of the 5-fold cross 
validation regarding large lists of APIs recommended (Figure 5). As we did five replicates 
for every iteration, we looked for the best replicate in each iteration and we manually 
inspected the number of APIs recommended in large lists. As exposed in the technique 
for evaluating this stage of recommendation, we randomly removed half of the APIs from 
every target software, saving them as the relevant APIs (APIs to be recommended). Thus, 
in iteration 1, there were 2 to 4 relevant APIs and in replicate 3, from 27 to 33 APIs were 
recommended. In iteration 2, there were 4 to 7 relevant APIs and in replicate 4, 24 to 32 
APIs were recommended. In iteration 3, there were 7 to 9 relevant APIs and replicate in 
replicate 5, 17 to 32 APIs were recommended. In iteration 4, there were 10 to 12 relevant 
APIs and in replicate 2, 18 to 27 APIs were recommended. Finally, in iteration 5, there 
were 13 to 54 relevant APIs and in replicate 2, 16 to 24 APIs were recommended. 
 Regarding large lists of APIs recommended (Figure 5), the data above explain 
why recall tended to get lower through iterations and as consequence of the inversely 
dependence between precision and recall, precision tended to get higher. For instance, in 
iteration 1, in averaged, 89.6% of the relevant appeared in lists of APIs recommended. 
Because of the sizes of lists, more irrelevant APIs were also recommended causing the 
averaged precision value of 14.8%. On the other hand, in iteration 5, in most cases, the 
number of the APIs recommended was smaller than the number of relevant APIs. Thus, 
for target software would not be possible to receive all the expected APIs, causing low 
recall value (42.1%) and consequently higher precision (58.5%). Furthermore, when we 
requested for large lists of APIs, regarding all iterations, our technique could correctly 
recommend at least one relevant API for all the requests (100%). 
 Instead, analyzing our recommendation regarding small lists, i.e., varying N in 
top-N lists of APIs recommended (Table 6), our recommendation technique was able to 
put relevant APIs in high-ranking positions. When we requested recommendation lists 
with one API (N=1 or N=3), our technique could correctly recommend at least one 
relevant API for 89.4% and 97.4% of the requests correspondingly. Moreover, when we 
requested recommendation lists with size 7 to 20, our recommendation technique could 
correctly recommend at least one relevant API for more than 99.0% of the requests. In 
addition, we observed that recall values increased along with N and oppositely precision 
values decreased. In small N values, these behaviors are expected since cannot be 
expected to receive all relevant APIs. Thus, as N value incremented, precision tended to 
be lower (89.4% to 26.7%) and recall to be higher (12.5% to 61.6%). 
 We also exposed evaluation results for every iteration of the 5-fold cross 
validation regarding small lists of APIs recommended. Regarding precision metric 
(Figure 6), those values decremented as N incremented in all iterations. For example, in 
top-1 of recommendation of iteration 3, our technique recommended some irrelevant 
APIs in few recommendation request tests causing precision value of 92.9%. In addition, 
for the remaining iterations, our technique recommended a relevant API with a precision 
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of 100. In case of top-20 lists of APIs recommended in all iterations, precision values 
tended to get lower, especially when just a few relevant APIs are expected to be received 
in the recommendation lists because more irrelevant APIs can appear causing those low 
precision values, e.g., iteration 1 at N=20 with a precision of 29.3%. 
 Regarding recall metric (Figure 6), we observed how those values increased as N 
increased. It is normal and expected, since among more APIs recommended, major is the 
chance of recommending relevant APIs. For example, in top-20 lists of APIs 
recommended, highest recall values were achieved in all iterations. However, iteration 5 
presented significant difference regarding other iterations with recommendation lists for 
N=20. Then, that difference is normal since in software of iteration 5 there were 13 to 54 
relevant APIs and we cannot expect to receive all relevant APIs when just 20 were 
requested. Instead, in top-1 lists of APIs recommended, recall values were low in all 
iterations (2.8% to 15.1%), because we cannot expect to receive all relevant APIs when 
just one of them had been requested. 
 Regarding recall rate metric (Figure 7), in iteration 3 even when we requested for 
small lists of APIs, e.g., N=1, our recommendation technique could correctly recommend 
at least one relevant API for 92.9%. On the other hand, for the remaining iterations, when 
we requested small API recommendation lists, e.g., N=1 and N=3, our technique could 
correctly recommend at least one relevant API for 100% of the requests. Besides, we 
observed from N=5 to N=20 that our recommendation technique correctly recommended 
at least one relevant API for all the request in all iterations. 

7. Related Work 
Many studies used and demonstrated how frequency (popularity) helps software 
engineers in API issues. For example, using a technique based on the popular vote of the 
majority where the more people use a particular version, the higher its usage, it is 
recommended. In their study, authors tried to recommend or dissuade from switching 
library versions based on global usage history [Mileva et al., 2009]. In other example, 
frequency of API use (popularity) helped software engineers to focus their investigative 
efforts on APIs that more developers have found useful in the past, rather than understand 
large API descriptions to find what they need [Holmes; Walker, 2007]. Thus, we used the 
frequent itemset mining technique where the frequency of APIs was the number of times 
the API was used along the software categories or along the nearest (most similar) 
software. On the other hand, to use effectively APIs remains a challenge for software 
engineers because they may not become aware of these APIs as they are released and 
developers may thus be led to “re-implement the wheel” [Thung et al., 2013]. Then, 
studies have been made in order to support software engineers with APIs available 
through tools like LIBTIC for finding API experts [Teyton et al., 2013]; Precise, an 
automated approach to parameter recommendation for API usage, which is able to 
recommend API parameters frequently used in practice; or hybrid approach for automated 
API recommendations [Thung et al., 2013]. 

8. Final Remark 
In this paper, we have proposed a novel technique for API recommendation that considers 
Game category from SourceForge and combines Collaborative Filtering with Frequent 
Item Set mining. We conducted an empirical experiment with a dataset of software from 
Game SourceForge category. For evaluating our API recommendation technique, we used 
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a system-centric method and we used the 5-fold cross validation. Results demonstrated 
that it was possible to obtain useful lists of APIs recommended, making good 
recommendations even in small sizing of top-N lists. Results also showed that our 
technique partially solved the cold-start by recommending useful APIs for software 
engineers with Game software that used a small number of APIs or did not use any APIs 
at all. In Stage A, regarding large lists, averaged metric values were 66.0% of recall, 
33.7% of precision and 100% of recall rate. Regarding top-20 lists, averaged metric 
values were 57.3% of recall, 45.4% of precision and 100% of recall rate. On the other 
hand, in Stage B, regarding large lists, averaged metric values were 64.3% of recall, 
24.1% of precision and 99.4% of recall rate. Regarding top-20 lists, averaged metric 
values were 61.6% of recall, 26.7% of precision and 99.4% of recall rate. 
 In addition, we contributed to software engineering by proposing an API 
recommendation technique that partially overcame the cold-star problem, i.e., 
recommending useful APIs to software engineers with software that did not even use any 
API. As benefits, we expected to support software engineers in decision-making process 
about the right APIs to use in their software development and/or maintenance.  
 As future work, we plan to use other well-known similarity metrics, e.g., Cosine 
and Pearson. Thus, a comparison would be possible in order to measure correctness, 
optimization, and quality of APIs recommended. We also suggest to perform a controlled 
experiment with real users (API experts and inexpert) to check if their API reuse decision 
is influenced by the results of our recommendations by considering their preferences and 
feedback. Besides, we can consider the API reputations. At the same time, as real users 
would be involved, a study to measure their productivity before and after using the 
recommendation system could be made. 
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