

API Recommendation System for Software - Game Category
Luisa Hernández, Paulo Afonso Júnior, Heitor Costa

Departamento de Ciência da Computação - Universidade Federal de Lavras - MG - Brazil
lufe.hernandez@gmail.com, pauloa.junior@dcc.ufla.br, heitor@dcc.ufla.br

Abstract. Software development depends on Application Programming
Interfaces (APIs) to achieve their goals. However, choosing the right APIs
remains as a difficult task for software engineers. Considering that
recommendation systems are emerging to support software engineers in their
decision-making task and Games industry has a huge economic and cultural
success, we proposed a technique that considers Game category from
SourceForge and recommends APIs to software engineers with software in
initial (not using APIs) or advanced (using some APIs) stage of software
development. We used collaborative filtering technique along with frequent
Itemset mining technique for generating the corresponding large and top-N lists
of APIs recommended. We evaluated lists performance based on two
classification accuracy metrics (precision and recall) and one efficacy metric
(recall rate), obtaining promising outcomes. Thus, the results of evaluation
metrics showed that our technique could make useful API recommendations for
software engineers with Game software that used a small number of APIs or did
not use any API. Besides, our technique was able to put relevant APIs even in
high-ranking positions, even in small top-N lists of APIs recommended.

1. Introduction
Software development is inseparable from the use of Application Programing Interfaces
(APIs) [Duala-Ekoko; Robillard, 2012] due to the advantages of reusing them. For
instance, APIs provide cost effective way to build software with enhance in [Sun et al.,
2011]: i) productivity of programmers by providing variety of desired functions; and ii)
software quality, as libraries are usually well-tested and fairly robust because of their
massive and diverse user base. Nevertheless, the increasing size and number of APIs
implies the developers must frequently learn how to use the unfamiliar APIs [Duala-
Ekoko; Robillard, 2012]. Hence, to reuse effectively and correctly APIs during the
development is difficult for software developers [Acharya et al., 2007]. An alternative is
to find API experts [Teyton et al. 2013], but hiring those experts implies human and
financial high investment that could not be included in development planning. Several
studies have addressed the issue of APIs usage in order to guide and support developers
[Mileva et al., 2009; Duala-Ekoko; Robillard, 2012; Thung et al., 2013]. However, to
choose right APIs remains as a difficult task for developers and Recommendation
Systems (RSs) emerged for solving those tasks.
 A Recommendation System in Software Engineering (RSSE) is a software
application that provides information items considered as valuable for a software
engineering task in a given context. RSSEs are emerging to assist developers in various
activities [Robillard et al., 2010]. For example, decision-making about which software
components (or APIs) to reuse. Among advantages of using RSs and RSSEs, we cited
reduction in effort, increment of productivity in software engineering activities, and

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

64

supporting in users decision-making [Robillard et al., 2014]. Moreover, they allow
discovering new content faster and more efficiently [Núnez-valdéz et al., 2012].
 A study base for this work proposed a hybrid approach to recommend APIs,
combining association rule mining and nearest neighbor based on collaborative filtering
recommendation technique [Thung et al., 2013]. In spite of the promising results
presented in that study, we observed some limitations that motivated this current study.
On the other hand, there are several repositories of software systems of open source
(SourceForge, Google Code, Apache Software Foundation, and GitHub), which cluster
those systems by application categories, programming languages, language, and/or user
evaluation. We proposed a technique and we conducted empirical evaluations considering
SourceForge software from Game category.
 Therefore, the main motivation and differential of our recommender technique
regarding other several studies found lies in considering: i) Java software (even Maven)
developed in Eclipse-IDE; ii) Game category from SourceForge; iii) software in initial
stage of development (in designing or with code but without use of APIs); and iv)
software in advanced stage of development (with code and using few APIs). In addition,
we simulated software engineers’ scenarios for initial and advanced stage of software
development. Results using our technique demonstrated that it was possible to obtain
useful large and top-N lists of APIs recommended for software engineers whose systems
belonged to Game category and used a small number of APIs or did not use any APIs.
 The remainder of this paper is organized as follows. Section 2 summarizes
background concepts. Section 3 presents technique to recommend APIs. Section 4
presents evaluation strategy. Section 5 shows the results. Section 6 discusses results.
Section 7 presents some related work. Section 8 concludes and presents future work.

2. Background

2.1 Collaborative Filtering
Collaborative Filtering (CF) is the most widely used and effective recommendation
technique and it is based on the assumption that users who have agreed in the past tend
to agree in the future [Anand; Bharadwaj, 2011]. CF has been used in many real systems,
e.g. environmental sensing, financial services, and web applications [Thung et al., 2013].
 One of the most frequently cited algorithm and possibly the most widely
implemented is the Nearest Neighbor (NN) algorithm [McLaughlin; Herlocker, 2004].
Assuming that an entity is an item or a user, a basic method to perform CF technique finds
similarities among entities and selects the most similar entities as the NN of the target
entity of recommendation. The key for NN algorithms is the similarity calculation
[Dapeng et al., 2009]. Traditional similarity metrics (e.g., Cosine, Jaccard, and Pearson
Correlation) can be used for computing that similarity [Dapeng et al., 2009; Bodadilla et
al., 2011]. In this study, we used Jaccard, where similarity between two data sets of
entities is the result of division between the number of common features and the number
of properties [Niwattanakul et al., 2013]. Jaccard ranges between 0 and 1, where 0 means
dissimilarity and 1 means total similarity. After computing similarity, we can find the top-
N highly ranked entities and return them as the top-N of entities recommended. In our
context, an entity is one software and similarity is computed based on their APIs.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

65

2.2 Frequent Item Set Mining
Frequent item set mining (FIS) is a data mining technique, which efficiently finds
frequent item sets in a dataset. FIS defines the support as the number of occurrences of a
subset of items (sub-item set). A sub-item set is frequent if its support is greater than a
specified threshold called minimum support. Thus, the support is the number of times a
sub-item set happens in the item sets database [Maffort et al., 2013]. In this study, we
computed the support of an API by counting the times that it is used in Game software.

2.3 Evaluation Metrics
The quality of Recommendation Systems (RSs) can be defined either in terms of system-
centric method, which are evaluated algorithmically (e.g., with classification accuracy
metrics - precision and recall) or with user-centric experiments (e.g., users interact with
RS and receive recommendations) [Cremonesi et al., 2013]. In order to have immediate
results, in an independent and economical way, we decided to use system-centric method
for evaluating recommendation technique, i.e., avoiding dependence of real users’
interaction. Consequently, we used an efficacy metric [Barbosa, 2011] and two
classification accuracy metrics for measuring to what extent a recommendation system
was able correctly to classify items as interesting or not [Robillard et al., 2014].
 The purpose of a classification task in the context of item recommendation is to
identify the top-N most relevant items for users. Two best-known classification metrics
are Precision, probability that a recommended item corresponds to the user’s preferences,
and Recall, probability that a relevant item is recommended [Jannach et al., 2010]. These
metrics are suitable for evaluating top-N lists. When a recommender algorithm predicts
the top-N items that a user expected to find interesting by using recall, we can compute
the percentage of known relevant items from the test set that appear in the N predicted
items [Cremonesi et al., 2008]. On the other hand, recall rate@k is another useful metric
for evaluating effectiveness of recommendation systems. Recall rate@k is proportion of
top-k recommended lists, in the set of all recommendations (for all projects) that includes
at least one relevant item recommended [Thung et al., 2013]. This metric has a different
nature, it responds with what percentage of cases the answer was positive, i.e., measures
the efficacy [Barbosa, 2011]. Then, for computing recall rate@k, where k is the number
of the recommended items, we must assign value 1 if, at least, one of the k recommended
items (e.g. API) is a member of relevant items or value 0, otherwise [Thung et al., 2013].

3. API Recommendation for Software from Game Category
No reference architecture has emerged to-date for RSSEs [Robillard et al., 2014].
Nevertheless, there are three major processes in the RSs [Bigdeli; Bahmani, 2008]: i)
object data collections and representations - consist in getting the items for analyzing;
ii) similarity decisions - involve calculation of distance/similarity among data; and iii)
recommendation computations - introduce and filter recommendation of relevant items.
Thus, in a similar way, we established three main steps into a technique in order to support
software engineers through large and top-N lists of APIs recommended for
developing/maintaining software from Game category: i) Software Dataset; ii) Data
Collection; and iii) Recommendation Engine.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

66

3.1 Software Dataset
We used Sourcerer repository in this study, which is part of the source code repository
UCI [Bajracharya et al., 2009; Lopes et al., 2010]. It contains ~18,826 (~13,241 non-
empty) software from Apache, Java.net, Google Code, and SourceForge repositories. We
decided to use SourceForge dataset, which has 9,969 (~6,632 non-empty) software among
10 categories provided. Therefore, we determined other criteria to get relevant Game
software. In this context, we determined as relevant software that: i) were developed in
Java and Eclipse IDE platform; ii) used at least two APIs; iii) were independent (not
embedded software); iv) had been registered for at least four years; v) whose last date of
maintenance between 2010 and 2015; and vi) belonged exclusively from Game category.
After filtering, we found 70 software and we stored them in a main repository.

3.2 Data Collection
It consists in getting the items for analyzing them. In our study, items are APIs from target
software of recommendation and model software, both cases regarding software
categories. Within Java software, there are different ways to capture API information, for
example, by: i) corresponding binary files (.jar files); ii) importing statement in each .java
file where the corresponding class term should be disregarded; and iii) declared tags of
<dependency> via pom.xml files in Maven systems.

 We decided to capture APIs through importing statement in the .java files. That
statement allows reusing existing features, besides there are two ways to reference them
[The Java Tutorials, 2014]: i) entire package using the ‘*’ character referencing all of the
members (class or interface) contained in the package (e.g. import graphics.*); or ii)
package members (class or interface) using their simplified name (e.g. import
graphics.Circle). In addition, we determined to remove the statements corresponding to
the package members (classes or interfaces), whereas a Java API is a collection of
packages. Other main decision was to differentiate own system packages in the import
statements and the external APIs packages in the import statements.

3.3 Recommendation Engine
We created two stages for the recommendation engine because we must consider the cases
that were not possible to establish similarities. Therefore, the recommendation engine
considers Game software and consists on strategies and techniques used to obtain the
relevant APIs considering two stages of software development: i) Stage A: API
Recommendation for software engineers in initial stage of software development (not
using APIs); and ii) Stage B: API Recommendation for software engineers in advanced
stage of software development (using some APIs).
 For Stage A, recommendation techniques were not a good choice because there
were no APIs to link between Game model software and the Game target software of API
recommendation. In recommender systems that issue is known as cold-start problem
[Schein et al., 2002; Park et al., 2006; Son, 2014]. However, in order to recommend APIs
to developers with systems in initial stage of development, we decided to consider the
popularity of APIs in Game category. One way to determine that popularity was using
FIS technique for establishing the most common APIs in Game software and relating
results to the target software of API recommendation. Once that popularity of APIs is
computed, the final large list of APIs recommended can be generated along with the top-

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

67

N lists. In both lists, APIs are sorted by its popularity value. Regarding Stage B, we used
NN algorithm from CF in conjunction with FIS technique, i.e., considering model
software from Game category. Thereafter, the API similarity is computed between the
Game software and the target software of API recommendation. As a result, the nearest
systems are found and the list of possible APIs to recommend can be generated.
Afterward, FIS technique may be applied and union can be made between the lists from
CF and FIS techniques. The final lists of APIs recommended can be generated along with
the top-N list, which is sorted by every API popularity value.

4. Evaluation Strategy
We determined to evaluate our technique through system-centric evaluation, without real
user’s interaction, because conducting empirical tests involving real users is difficult,
expensive, and resource demanding. On the contrary, system-centric evaluation has the
advantage to be immediate, economical and easy to perform on several domains and with
multiple algorithms [Cremonesi et al., 2013]. We simulated software engineer scenarios
for Stage A and Stage B of software development. Then, based on each stage, we did
dataset partition of 5-fold cross validation [Cremonesi et al., 2008], i.e., we split dataset
into 80% Training (Game model software) and 20% Test data (software to simulate
users). Hereafter, we will call them as M-software and TS-software respectively.

4.1 Evaluation of Stage A of API Recommendation
We defined to remove the 100% from the TS-software in order to simulate software
engineers in initial stage of software development or maintenance. We saved the removed
APIs in .xml files and saved them as relevant APIs (APIs that we expect to recommend).
In addition, we varied attributes the threshold (minSupport) value for FIS technique from
0.1 to 0.9 and we found the best threshold value to use for generating corresponding large
and top-N lists of APIs recommended. Afterwards, for evaluating the quality of our API
recommendation technique, we applied recall, precision, and recall rate (evaluation
metrics) based on the .xml files of APIs. Then, two recommendation lists generated (one
list with large recommendations and the other list with the top-N recommendations). In
case of Top-N lists, we varied N from 1 to 20 in order to study how early correct
recommendations appear in the top-N recommendation. Metric values are generated in
.xls files for further manual analysis.

4.2 Evaluation of Stage B of API Recommendation
We used the 5-fold cross validation method. Therefore, for each software from test set,
50% of APIs were removed and saved in an .xml file as relevant APIs (APIs that we expect
to recommend). As that removal is made randomly, we established to do five replicates
of API recommendation for every software of the test set in every iteration. We used CF
technique along with FIS technique; we needed to find the “best” value for each attribute.
In case of minSupport, we varied minSupport value for FIS technique from 0.1 to 0.9 and
we found the best threshold value to use for generating corresponding lists of APIs
recommended by FIS technique. In case of CF technique, we varied the k number of
nearest neighbors (kNN) in top-10 lists of APIs recommended from all iterations and
replicates of 5-fold cross validation method in order to find the best kNN for generating
the lists of APIs recommended lists by CF technique. Subsequently, the union between
FIS and CF lists of APIs recommended is made, regarding that each list was already

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

68

sorted by support value. For that union, we assigned an equitable weight of 50% of
relevance for every strategy. Two lists of APIs recommended are generated, one with the
union of all API recommendations and the other with the top-N list of recommendation.

5. Results
In our empirical evaluation, we used a dataset of 70 software exclusive from Game
category. In Table 1, we showed software and their number of APIs. In order to evaluate
our recommendation technique for software engineers with software categorized in Game
category regardless of the stage of software development, we did the 5-fold cross
validation. Hence, in every iteration, we used 14 different software (20% of data) as test
set and 56 software (80% of data) as training set. In that partitioning, we avoided
overlapping, i.e., every software appears just once in test set. In this partitioning process,
we saved .wst files of every iteration. The strategy for simulating software engineers’
behavior changes depending on the stage of software development. Hence, we applied
the evaluation strategy for Stage A and Stage B separately. Then, we computed averaged
recall, precision, and recall rate values in order to analyze the quality of our
recommendation technique in every stage of API recommendations.

Table 1. Baseline Data for Game Category

5.1. API Recommendation for Game Software in Stage A
In this Stage, in each iteration of the 5-fold cross validation, for each software from test set,
all of APIs were removed and saved in one .xml file as relevant APIs (APIs that we expect
to recommend). The core is the FIS technique; thus, we needed to find the “best” threshold
(minSupport) value. So, we analyzed the effect of varying this value of FIS technique (from
0.1 to 0.9) in top-10 lists of APIs recommended (Table 2). The minSupport values in 0.1
and 0.2 presented same results with the highest recall. Hence, we chose minSupport = 0.1
as the “best” minSupport value for FIS technique since choosing other value did not mean
any significant improvement for precision or recall rate values.
 After finding minSupport value, we used it for evaluating our technique for
recommending APIs to software engineers whose software is from Game category and in

SOFTWARE NAME APIs # SOFTWARE NAME APIs # SOFTWARE NAME APIs
1 Sudoku 5 25 JEdits 13 49 Bomberman 22
2 go2 6 26 tweevoortwaalf 13 50 JTBRPG 22
3 lightsout 6 27 go-3 14 51 DarkWorld 23
4 jSweeper 6 28 PirateMoon 14 52 Ice Hockey Manager 24
5 Vana'diel Timer 6 29 dragonchess 15 53 Errare 24
6 tetris 6 30 JDStar 15 54 JMines 24
7 CarolSolitaire 7 31 ROOT 15 55 JurpeEclipse 25
8 mkchess 7 32 Zatacka Online 15 56 rcontrol 25
9 JHex 7 33 battlephone 16 57 Herzog3D 26
10 openjmud 7 34 TaroTux 16 58 puzzlebeans 26
11 Vorms 7 35 stonesthrow 16 59 SpaceWars 28
12 EnergyBolt 8 36 TwinSerpents 17 60 jake2 29
13 problematic 8 37 Xoridor-SF 18 61 kolmafia 30
14 NebulaCards 8 38 Tiffanys 18 62 rpg-mapgen 31
15 talisman 9 39 holdemcockpit 19 63 bertelConf 33
16 conwaygo 10 40 jcharmanager 19 64 mulifex 34
17 Blasteroids 10 41 robowars 19 65 universe 35
18 minesweeper 10 42 thud-1.4 19 66 Magellan 36
19 Chat 11 43 bobeira 20 67 au.com.kelpie.rcpplanner 50
20 momem 11 44 bzstats 20 68 de.battleforge 51
21 customsrpg 12 45 openkickoff 20 69 RouteRuler 58
22 freya-working 12 46 Olitext 20 70 ho_plugins 108
23 Jacoto 12 47 hogs 21
24 JOBS 12 48 PJShadowsFall 21

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

69

Stage A of development when receiving large lists of APIs recommended as well as when
receiving top-N list of APIs recommended. In the case of top-N, we evaluated the effect
by varying N in 1, 3, 5, 7, 10, 13, 15, 17, and 20.

Table 2. Effect of Varying minSupport Value in Top-10 Lists of APIs Recommended in
Stage A of Game category

 Regarding the evaluation when receiving large list of APIs recommended, we
obtained the averaged evaluation results (recall, precision, and recall rate) from iterations
of the 5-fold cross validation (Recall = 0.660; Precision = 0.337; Recall Rate = 1.000). In
addition, for analyzing every iteration, we exposed the evaluation results in Figure 2. On
the other hand, when receiving top-N lists of APIs recommended, we obtained the
averaged evaluation results (recall, precision, and recall rate) from all of iterations of the
5-fold cross validation (Table 3). In addition, we exposed the results of precision and
recall (Figure 3), and recall rate (Figure 4) for analyzing each iteration. After obtaining
the evaluation results, we identified APIs recommended in top-20 lists over all iterations.
In Table 4, we showed number of recommended APIs, their name and their frequency
value (number of times the API was recommended over the five iterations).

Figure 2. Results of Evaluation Metrics for every Iteration of 5-Fold Cross Validation for

Large Lists of APIs Recommended
Table 3. Results of Evaluation Metrics when Varying N of Top-N Lists

5.2. API Recommendation for Game Software in Stage B
In this Stage, we used the 5-fold cross validation method. Therefore, for each software
from test set, 50% of APIs were removed and saved in .xml file as relevant APIs (APIs
that we expect to recommend). As that removal was made randomly, we did five replicates
of API recommendation for every software of the test set in every iteration. We used CF

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

70

technique along with FIS technique. Both techniques have two main attributes: i) the
minimum support value; and ii) the number of NN. Thereby, we needed to find the “best”
value for each attribute. In case of minSupport, we used the same value of 0.1 found in
Stage A, since we used the same data sample, technique, and evaluation method. On the
other hand, we analyzed the effect of varying kNN, i.e., the number of NN in top-10 lists
of APIs recommended from all iterations and replicates of 5-fold cross validation method
(Table 5) and we found that varying kNN in 20 presented the best recall value.
Consequently, we chose minSupport = 0.1 for FIS technique and kNN = 20 for CF
technique in Game category.

Figure 3. Precision and Recall Metric for every Iteration of 5-Fold Cross Validation when

Varying N of Top-N Lists

Figure 4. Recall Rate Metric for every Iteration of 5-Fold Cross Validation when Varying N

of Top-N Lists
Table 4. APIs Recommended in Top-20 Lists

Table 5. Effect of Varying k, i.e., Number of NN in Top-10 lists of APIs Recommended

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

71

 After setting minSupport and kNN values, we used them for evaluating our
technique for recommending APIs to software engineers in Stage B when receiving large
and top-N lists of APIs recommended. In case of top-N, we evaluated the effect of varying
N. Regarding the evaluation when receiving large lists of APIs recommended, we
obtained the averaged evaluation results (recall, precision, and recall rate) from all of
iterations and replicates of the 5-fold cross validation (Recall = 0.643; Precision = 0.241;
Recall Rate = 0.994). In addition, for analyzing every iteration, we exposed evaluation
results in Figure 5. On the other hand, when receiving top-N lists of APIs recommended,
we obtained the averaged evaluation results (recall, precision, and recall rate) from all of
iterations of the 5-fold cross validation (Table 6). In addition, for analyzing every
iteration, we exposed average values of precision and recall (Figure 6), and recall rate
(Figure 7) for each iteration. It is important to consider that in every iteration, we did five
test replicates since the removal of the 50% of APIs was randomly.

Figure 5. Results of Evaluation Metrics for every Iteration of 5-Fold Cross Validation for

Large Lists of APIs Recommended
Table 6. Results of Evaluation Metrics when Varying N of Top-N Lists

Figure 6. Precision Metric for every Iteration of 5-Fold Cross Validation when Varying N

of Top-N Lists

 After finding evaluation results, we identified APIs recommended in top-20 over
all iterations. As we made five replicates of the recommendation test for every target
software, we decided to select top-20 lists from the replicate with best recall value. We
found that replicates 3, 4, 5, 2, and 2 presented the best recall values for iterations 1, 2, 3,

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

72

4, and 5 respectively. In Table 7, we showed APIs and frequency value, where frequency
is number of times the API was recommended in a top-20 list over the 70 TS-software.

Figure 7. Recall Rate Metric for every Iteration of 5-Fold Cross Validation when Varying N

of Top-N Lists
Table 7. APIs Recommended in Top-20 Lists

6. Discussion
Our study showed that our technique could make useful API recommendations, even in
small top-N lists of APIs recommended for software engineers whose software was
categorized and in initial or advanced stage of software development. We discussed the
results of every category, considering API recommendation for Stage A and Stage B.
Besides, we discussed overall results regarding our study findings and their implications.

6.1. API recommendation for Game software in Stage A
When analyzing recommendation results for large lists (Table 3), we expected maximum
recall and low precision values since many irrelevant items could be recommended. As
expected, we obtained precision value equal to 33.7% and a recall value of 66.0%.
Furthermore, when we requested for large lists of APIs, our recommendation technique
could correctly recommend at least one relevant API for 100% of requests.
 We also exposed evaluation results for every iteration of the 5-fold cross
validation regarding large lists of APIs recommended (Figure 2). We inspected the
number of APIs recommended in large lists from iterations 1 to 5 and 41, 35, 35, 33, and
26 APIs were recommended, respectively. Therefore, those values explain why recall
tended to get lower through iterations, as consequence of the inversely dependence among
these metrics, precision tended to get higher. For instance, in iteration 1, 5 to 8 APIs were
expected to be recommended; instead, 41 APIs were recommended where in averaged
87.9% of them appeared in the lists of APIs recommended. Because of the sizes of lists,

73

more irrelevant APIs were recommended and in averaged precision was 10.9%. In
iteration 5, 26 to 108 APIs were expected to be recommended; instead, 26 APIs were
recommended. Because of that, for target software would not be possible to receive all
the expected APIs in all tests, causing low recall value (43.8%) and consequently higher
precision (42.0%). Furthermore, when we requested for large lists of APIs regarding
iterations 1 and 3, our recommendation technique could correctly recommend at least one
relevant API for 98.6% of the requests. For the remaining iterations, our technique could
correctly recommend at least one relevant API for 100% of the requests.
 On the other hand, when analyzing our recommendation regarding small lists, i.e.,
varying N in top-N lists of APIs recommended (Table 4), our recommendation technique
was able to put relevant APIs even in high-ranking positions. For instance, when we
requested recommendation lists with 1 or 3 APIs, i.e., N=1 and N=3, our technique could
correctly recommend at least one relevant API for 98.6 and 100% of the requests
correspondingly. Moreover, when we requested recommendation lists with larger sizes,
i.e., from N=5 to N=20, our technique could correctly recommend at least one relevant
API for all the request tests (recall rate of 100%). In addition, we also observed that recall
values increased along with N (i.e., 7.3% to 57.3%) and oppositely precision values
decreased (i.e., 98.6% to 45.4%). In small N values, these recall behaviors are normal
since for target software cannot be expected to receive all relevant APIs, i.e., from
software #47 to software #70 (Table 1) we could not receive all relevant APIs even in
largest N of 20 since relevant APIs are greater than 20. In small N values, precision results
are normal since less irrelevant APIs are expected to be recommended.
 We also exposed evaluation results for every iteration of the 5-fold cross
validation regarding small lists of APIs recommended. Regarding precision metric
(Figure 3), these values decremented as N incremented in all iterations. For example, in
top-1 lists of APIs recommended, in all iterations we obtained precision values above
84.0%. On the other hand, in top-20 lists of APIs recommended, in all iterations, precision
values tended to get lower, especially when just a few relevant APIs are expected to be
received in the recommendation lists because more irrelevant APIs can appear causing
those low precision values. For example, recommendation lists for N=20 for software in
iteration 1 where number of APIs varied from 5 to 8.
 Regarding recall metric (Figure 3), we observed how these values increased as N
increased. That result is normal and expected, since among more APIs recommended,
major is the chance of recommending relevant APIs. For example, in top-20 lists of APIs
recommended, in all iterations the highest recall values were achieved. However, iteration
5 presented significant difference regarding the other iterations with recommendation lists
for N=20. Then, that difference is normal since software in iteration 5 used from 26 to
108 relevant APIs. Therefore, we cannot expect to receive all relevant APIs when just 20
ones were requested. Instead, in top-1 lists of APIs recommended, in all iterations recall
values were low (i.e., 5.2% to 23.9%), because we cannot expect to receive all relevant
APIs when just one of them had been requested.
 Regarding recall rate metric (Figure 4), in all iterations, when we requested for
small lists of APIs, e.g., N=1 and N=3, our technique could correctly recommend at least
one relevant API for more than 84.0% of the requests. For N=5, our technique could
correctly recommend at least one relevant API to more request tests, i.e., to more than
98.6% of the requests, even achieving 100% in some cases, like iterations 5 and 6.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

74

6.2. API recommendation for Game software in Stage B
When analyzing our recommendation technique for large lists (Table 5), we expected low
precision and maximum recall values since many irrelevant items could be recommended.
As expected, we obtained precision value of 24.1% and recall value of 64.3%.
Furthermore, when we requested for large lists of APIs, our technique could correctly
recommend at least one relevant API for 99.4% of the requests.
 We also exposed evaluation results for every iteration of the 5-fold cross
validation regarding large lists of APIs recommended (Figure 5). As we did five replicates
for every iteration, we looked for the best replicate in each iteration and we manually
inspected the number of APIs recommended in large lists. As exposed in the technique
for evaluating this stage of recommendation, we randomly removed half of the APIs from
every target software, saving them as the relevant APIs (APIs to be recommended). Thus,
in iteration 1, there were 2 to 4 relevant APIs and in replicate 3, from 27 to 33 APIs were
recommended. In iteration 2, there were 4 to 7 relevant APIs and in replicate 4, 24 to 32
APIs were recommended. In iteration 3, there were 7 to 9 relevant APIs and replicate in
replicate 5, 17 to 32 APIs were recommended. In iteration 4, there were 10 to 12 relevant
APIs and in replicate 2, 18 to 27 APIs were recommended. Finally, in iteration 5, there
were 13 to 54 relevant APIs and in replicate 2, 16 to 24 APIs were recommended.
 Regarding large lists of APIs recommended (Figure 5), the data above explain
why recall tended to get lower through iterations and as consequence of the inversely
dependence between precision and recall, precision tended to get higher. For instance, in
iteration 1, in averaged, 89.6% of the relevant appeared in lists of APIs recommended.
Because of the sizes of lists, more irrelevant APIs were also recommended causing the
averaged precision value of 14.8%. On the other hand, in iteration 5, in most cases, the
number of the APIs recommended was smaller than the number of relevant APIs. Thus,
for target software would not be possible to receive all the expected APIs, causing low
recall value (42.1%) and consequently higher precision (58.5%). Furthermore, when we
requested for large lists of APIs, regarding all iterations, our technique could correctly
recommend at least one relevant API for all the requests (100%).
 Instead, analyzing our recommendation regarding small lists, i.e., varying N in
top-N lists of APIs recommended (Table 6), our recommendation technique was able to
put relevant APIs in high-ranking positions. When we requested recommendation lists
with one API (N=1 or N=3), our technique could correctly recommend at least one
relevant API for 89.4% and 97.4% of the requests correspondingly. Moreover, when we
requested recommendation lists with size 7 to 20, our recommendation technique could
correctly recommend at least one relevant API for more than 99.0% of the requests. In
addition, we observed that recall values increased along with N and oppositely precision
values decreased. In small N values, these behaviors are expected since cannot be
expected to receive all relevant APIs. Thus, as N value incremented, precision tended to
be lower (89.4% to 26.7%) and recall to be higher (12.5% to 61.6%).
 We also exposed evaluation results for every iteration of the 5-fold cross
validation regarding small lists of APIs recommended. Regarding precision metric
(Figure 6), those values decremented as N incremented in all iterations. For example, in
top-1 of recommendation of iteration 3, our technique recommended some irrelevant
APIs in few recommendation request tests causing precision value of 92.9%. In addition,
for the remaining iterations, our technique recommended a relevant API with a precision

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

75

of 100. In case of top-20 lists of APIs recommended in all iterations, precision values
tended to get lower, especially when just a few relevant APIs are expected to be received
in the recommendation lists because more irrelevant APIs can appear causing those low
precision values, e.g., iteration 1 at N=20 with a precision of 29.3%.
 Regarding recall metric (Figure 6), we observed how those values increased as N
increased. It is normal and expected, since among more APIs recommended, major is the
chance of recommending relevant APIs. For example, in top-20 lists of APIs
recommended, highest recall values were achieved in all iterations. However, iteration 5
presented significant difference regarding other iterations with recommendation lists for
N=20. Then, that difference is normal since in software of iteration 5 there were 13 to 54
relevant APIs and we cannot expect to receive all relevant APIs when just 20 were
requested. Instead, in top-1 lists of APIs recommended, recall values were low in all
iterations (2.8% to 15.1%), because we cannot expect to receive all relevant APIs when
just one of them had been requested.
 Regarding recall rate metric (Figure 7), in iteration 3 even when we requested for
small lists of APIs, e.g., N=1, our recommendation technique could correctly recommend
at least one relevant API for 92.9%. On the other hand, for the remaining iterations, when
we requested small API recommendation lists, e.g., N=1 and N=3, our technique could
correctly recommend at least one relevant API for 100% of the requests. Besides, we
observed from N=5 to N=20 that our recommendation technique correctly recommended
at least one relevant API for all the request in all iterations.

7. Related Work
Many studies used and demonstrated how frequency (popularity) helps software
engineers in API issues. For example, using a technique based on the popular vote of the
majority where the more people use a particular version, the higher its usage, it is
recommended. In their study, authors tried to recommend or dissuade from switching
library versions based on global usage history [Mileva et al., 2009]. In other example,
frequency of API use (popularity) helped software engineers to focus their investigative
efforts on APIs that more developers have found useful in the past, rather than understand
large API descriptions to find what they need [Holmes; Walker, 2007]. Thus, we used the
frequent itemset mining technique where the frequency of APIs was the number of times
the API was used along the software categories or along the nearest (most similar)
software. On the other hand, to use effectively APIs remains a challenge for software
engineers because they may not become aware of these APIs as they are released and
developers may thus be led to “re-implement the wheel” [Thung et al., 2013]. Then,
studies have been made in order to support software engineers with APIs available
through tools like LIBTIC for finding API experts [Teyton et al., 2013]; Precise, an
automated approach to parameter recommendation for API usage, which is able to
recommend API parameters frequently used in practice; or hybrid approach for automated
API recommendations [Thung et al., 2013].

8. Final Remark
In this paper, we have proposed a novel technique for API recommendation that considers
Game category from SourceForge and combines Collaborative Filtering with Frequent
Item Set mining. We conducted an empirical experiment with a dataset of software from
Game SourceForge category. For evaluating our API recommendation technique, we used

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

76

a system-centric method and we used the 5-fold cross validation. Results demonstrated
that it was possible to obtain useful lists of APIs recommended, making good
recommendations even in small sizing of top-N lists. Results also showed that our
technique partially solved the cold-start by recommending useful APIs for software
engineers with Game software that used a small number of APIs or did not use any APIs
at all. In Stage A, regarding large lists, averaged metric values were 66.0% of recall,
33.7% of precision and 100% of recall rate. Regarding top-20 lists, averaged metric
values were 57.3% of recall, 45.4% of precision and 100% of recall rate. On the other
hand, in Stage B, regarding large lists, averaged metric values were 64.3% of recall,
24.1% of precision and 99.4% of recall rate. Regarding top-20 lists, averaged metric
values were 61.6% of recall, 26.7% of precision and 99.4% of recall rate.
 In addition, we contributed to software engineering by proposing an API
recommendation technique that partially overcame the cold-star problem, i.e.,
recommending useful APIs to software engineers with software that did not even use any
API. As benefits, we expected to support software engineers in decision-making process
about the right APIs to use in their software development and/or maintenance.
 As future work, we plan to use other well-known similarity metrics, e.g., Cosine
and Pearson. Thus, a comparison would be possible in order to measure correctness,
optimization, and quality of APIs recommended. We also suggest to perform a controlled
experiment with real users (API experts and inexpert) to check if their API reuse decision
is influenced by the results of our recommendations by considering their preferences and
feedback. Besides, we can consider the API reputations. At the same time, as real users
would be involved, a study to measure their productivity before and after using the
recommendation system could be made.

References
Aarseth, E. Playing Research: Methodological Approaches to Game Analysis. In: Digital Arts &

Culture Conference (p.7). Melbourne. 2003.
Acharya, M.; Xie, T.; Pei, J.; Xu, J. Mining API Patterns as Partial Orders from Source Code :

From Usage Scenarios to Specifications. 2007.
Anand, D.; Bharadwaj, K. K. Utilizing Various Sparsity Measures for Enhancing Accuracy of

Collaborative Recommender Systems Based on Local and Global Similarities. In: Expert
Systems with Applications, 38(5), 5101-5109. 2011.

Bajracharya, S.; Ossher, J.; Lopes, C. Sourcerer: An Internet-Scale Software Repository. In: ICSE
Workshop on Search-Driven Development-Users, Infrastructure, Tools and Evaluation. pp. 1-
4. 2009.

Barbosa, Y. de A. M. Um Sistema de Recomendação de Código-Fonte para Suporte a Novatos.
Universidade Federal de Pernambuco. Retrieved from
http://repositorio.ufpe.br:8080/xmlui/handle/123456789/2737. 2011.

Bigdeli, E.; Bahmani, Z. Comparing Accuracy of Cosine-Based Similarity and Correlation-Based
Similarity Algorithms in Tourism Recommender Systems. In: International Conference on
Management of Innovation and Technology. pp. 469-474. 2008.

Bobadilla, J.; Hernando, A.; Ortega, F.; Bernal, J. A Framework for Collaborative Filtering
Recommender Systems. In: Expert Systems with Applications,38(12), pp.14609-14623. 2011.

Cremonesi, P.; Garzotto, F.; Turrin, R. User-Centric vs. System-Centric Evaluation of
Recommender Systems. In: Lecture Notes in Computer Science. pp. 334-351. 2013.

Cremonesi, P.; Turrin, R.; Lentini, E.; Matteucci, M. An Evaluation Methodology for
Collaborative Recommender Systems. In: International Conference on Automated Solutions
for Cross Media Content and Multi-Channel Distribution. pp. 224-231. 2008.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

77

Dapeng, H.; Qianhui, L.; Jingmin, Z. An Improved Similarity Algorithm for Personalized
Recommendation. In: International Forum on Computer Science-Technology and
Applications. pp. 54-57. 2009.

Duala-Ekoko, E.; Robillard, M. P. Asking and Answering Questions about Unfamiliar APIs: An
Exploratory Study. In: International Conference on Software Engineering. pp. 266-276. 2012.

Holmes, R., & Walker, R. J. Informing Eclipse API production and consumption. Proceedings of
Workshop on Eclipse Technology eXchange – Eclipse. pp. 70–74. 2007.

Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G. Recommender Systems: An Introduction.
2010.

Lopes, C.; Bajracharya, S.; Ossher, J.; Baldi, P. UCI Source Code Data Sets. Retrieved January
19, 2015, from http://www.ics.uci.edu/~lopes/datasets. 2010.

Maffort, C.; Valente, M. T.; Bigonha, M.; Hora, A.; Anquetil, N.; Menezes, J. Mining
Architectural Patterns Using Association Rules. In: International Conference on Software
Engineering and Knowledge Engineering. pp. 375-380. 2013.

McLaughlin, M. R. M.; Herlocker, J. L. J. A Collaborative Filtering Algorithm and Evaluation
Metric that Accurately Model the User Experience. In: ACM SIGIR Conference on Research
and Development in Information Retrieval. pp. 329-336. 2004.

Mileva, Y. M.; Dallmeier, V.; Burger, M.; Zeller, A. Mining Trends of Library Usage. In: Joint
International and Annual ERCIM Workshops on Principles of Software Evolution and
Software Evolution. pp. 57-62. 2009.

Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S. Using of Jaccard Coefficient for
Keywords Similarity. In: International MultiConference of Engineers and Computer
Scientists. 2013.

Núnez-valdéz, E. R.; Aguilar, L. J.; Lovelle, J. M. C.; Martínez, O. S.; García-bustelo, B. C. P.;
García-Diaz, V.; Montenegro-Marin, C. E.; Espada, J. P. Plataforma de Recomendación de
Contenidos para Libros Electrónicos Inteligentes Basada en el Comportamiento de los
Usuarios. In: Ventana Informática. 14, pp. 25-40. 2012.

Park, S.; Pennock, D.; Madani, O.; Good, N.; DeCoste, D. Naïve Filterbots for Robust Cold-Start
Recommendations. In: Conference on Knowledge Discovery and Data Mining. 2006.

Robillard, M.; Walker, R.; Zimmermann, T. Recommendation Systems for Software Engineering.
In: IEEE Software, 27(4), pp. 80-86. 2010.

Robillard, M.; Walker, R.; Zimmermann, T. Recommendation Systems in Software Engineering.
In: IEEE Software. 2014.

Schein, A. I.; Popescul, A.; Ungar, L. H.; Pennock, D. M. Methods and Metrics for Cold-Start
Recommendations. In: Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2002.

Son, L. H. Dealing with the New User Cold-Start Problem in Recommender Systems: A
Comparative Review. In: Information Systems. 2014.

Sun, C.; Khoo, S.; Zhang, S. J. Graph-Based Detection of Library API Imitations. In: International
Conference on Software Maintenance. pp. 183-192. 2011.

Teyton, C.; Falleri, J.-R.; Morandat, F.; Blanc, X. Find your Library Experts. In: Working
Conference on Reverse Engineering. pp. 202-211. 2013.

The Java Tutorials. The JavaTM Tutorials. Retrieved June 20, 2014, from
https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html. 2014.

Thung, F.; Lo, D.; Lawall, J. Automated Library Recommendation. In: Working Conference on
Reverse Engineering. pp. 182-191. 2013.

Thung, F.; Wang, S.; Lo, D.; Lawall, J. Automatic Recommendation of API Methods from
Feature Requests. In: International Conference on Automated Software Engineering. pp. 290-
300. 2013.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

78

