

Experimental Evaluation of FMCheck: A Replication
Study

Iuri S. Souza1, Rafael M. de Mello2, Eduardo S. de Almeida1, Cláudia M. L.
Werner2, Guilherme H. Travassos2

1Departamento de Ciência da Computação, UFBA- Universidade Federal da Bahia

2Programa de Engenharia de Sistemas e Computação (PESC), COPPE/UFRJ
Universidade Federal do Rio de Janeiro Caixa Postal 68.511 – 21.9451-970 –

Rio de Janeiro – RJ – Brasil
{iurisin,esa}@dcc.ufba.br, {rmaiani, werner, ght}@cos.ufrj.br

Abstract. Software Product Lines are usually specified using feature models. A
hierarchically arranged set of features with different relationships among
them represents a feature model. However, there is a lack of techniques to
support the detection of semantic defects in feature models. In this context, it
was recently developed FMCheck, a checklist-based inspection technique to
support the detection of defects in feature models. The results of a first study
conducted by FMCheck's developers indicated its feasibility (more effective)
when compared to ad-hoc techniques. This paper reports the replication
accomplished by an independent research group following a different
experimental design but using the same artifacts. The obtained results
strengthened the previous findings, indicating that FMCheck is more effective
than ad-hoc inspections. However, additional replications should be
performed with different experimental designs to understand better the
influence of the artifacts inspected over such findings.

1. Introduction
Software Product Line (SPL) is a key approach to support software reuse. An SPL
represents a group of software-intensive systems sharing a common, managed set of
features, meeting the specific needs of a particular market or mission. Such systems are
developed from a common set of core assets in a prescribed way [Northrop 2002]. A
feature can also be defined as a prominent user-visible aspect, quality, or characteristic
of a software system or systems [Kang et al. 1990]. Based on features, increments in
program functionality are established, and different software products can be derived
from an SPL [Batory et al. 2006]. SPLs usually use feature models in their
specifications, represented as a hierarchically arranged set of features with different
relationships among them. Feature models capture product line information regarding
common and variant features at various levels of abstraction [Benavides et al. 2010],
specifying the relationship of each feature with the domain, the dependency
relationships among features and corresponding feature interactions constraints.

 Although the expected benefits on the use of feature modeling for specifying
SPLs, it also introduces a new range of anomalies that could significantly impact the
quality of the final software products [de Mello et al., 2014]. Even though there are
some approaches for covering the detection of syntax anomalies in feature models

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

121

[Benavides et al. 2010], a recent literature review indicated the lack of techniques to
support the semantic verification of feature models [de Mello et al. 2014], including the
absence of inspection techniques. To fill this gap, de Mello et al. proposed FMCheck, an
inspection technique for detecting semantic defects in feature models [de Mello et al.
2014]. Such technique was designed to support inspections individually conducted,
helping its users on observing whether a given feature model is correctly modeled and
best suited to represent a specifically described domain.

 Two activities had evaluated FMCheck feasibility. First, a proof of concept was
performed with the participation of two members of the Experimental Software
Engineering Group at Federal University of Rio de Janeiro (COPPE/UFRJ, Brazil)
applying the technique in a specific mobile devices domain [de Mello et al. 2014]. The
feedback reported by these participants indicated the completeness of FMCheck and its
applicability for supporting the intended activity while the participants reported few
false positives. Also, both participants reported a high incidence of same defects. Next,
a first experimental study (in vitro) was designed involving 14 students (four
undergraduate students and ten graduate students) from a Software Reuse course at
COPPE/UFRJ. In such study, each participant was invited to perform ad-hoc
inspections over two distinct domains (first trial) and then perform inspections applying
FMCheck over two other distinct domains (second trial). As a result, it was observed
that FMCheck was significantly more effective, identifying 51.3% more defects than
ad-hoc inspections [de Mello et al. 2014]. However, regarding FMCheck efficiency
(number of defects/ time), no significant difference was observed. Although the
experimental rigor applied for conducting the experimental activities, it is important to
highlight the following main threats to validity:

• T1: The same research group that developed the technique also conducted the
experiment;

• T2: It used a small and local sample;
• T3: It used only four feature models from four different domains;
• T4: Effectiveness was calculated based on a previously limited set of known

defects in the inspected artifacts;
 One can see that threats to validity T1, T2 and T3 are commonly observed in

Software Engineering (SE) controlled studies in which subjects are individuals.
Typically, a research group develops a new technology, and it is also the first one to
empirical evaluating the technology (T1). In such evaluations, predominantly restricted
groups of individuals are available to compose experimental samples (T2), usually
students or research colleagues. As a consequence, the set of different objects used in
the evaluation is also reduced (T3). An alternative to overcome the sampling limitation
is replicating the experiment and then aggregating the results obtained in both trials.
However, due to the nature of software inspections, it is recommended to preserve the
same set of objects used and change its distribution to support comparison between
results and to provide a more accuracy oracle of known defects, mitigating T4.

 Thus, this paper presents a replication of the mentioned quasi-experiment,
conducted by another research group at Federal University of Bahia (UFBA), Salvador,
Brazil. Through such replication, threats T1 and T4 could be mitigated. Although
researchers from the Experimental Software Engineering (ESE) Group (COPPE/UFRJ)
contributed in the results analysis, characterization data was strategically omitted from

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

122

them until the conclusion of the data analysis. T2 was partially preserved for each single
trial (small samples), but now the results obtained from both small (and different)
samples can be aggregated, allowing strengthening the evidence. Also, the experimental
design (tasks assignment) was arbitrarily changed in this replication. Thus, the
presented replication can be classified as a changed protocol/ experimenters replication
following the classification proposed by Gómez et al. [Gómez et al. 2014] to
replications in SE experiments, as exemplified in [de Mello et al. 2015]. The remainder
of this paper is organized as follows: Section 2 presents the related work. Section 3
provides an overview of FMCheck’s checklist. Section 4 details the context, the design,
and results of the experimental study carried out in this work. Finally, Section 5
describes the conclusions and future directions.

2. Related work
The quality of software reuse artifacts has been a notorious issue and received relative
contributions to address this. Next subsections discuss approaches for supporting
verification of such artifacts based on three perspectives: automated feature model
checking, feature model inspection and inspection of textual feature specifications.

2.1 Automated Feature Model Checking
Some approaches for detecting anomalies in feature models use heuristics based on
syntactic and automated model checking. Benavides et al. performed a literature review
on papers published about studies proposing automated analysis of feature models from
1990 to 2009 [Benavides et al. 2010]. Based on the analysis of 53 primary studies, the
authors reported 30 operations of analysis within four different groups of proposals to
automate those operations. Towards automating feature models analysis, Benavides et
al. specified a proposal based on a theory of diagnosis to represent the problem of error
detection and explanation in general terms. The Feature Model Analyzer tool (FAMA)
implemented it by using an abstract solution through Constraint Satisfaction Problems
(CSP) solver [Benavides et al. 2007]. The authors also reported an evaluation of the
proposed approach during a Software Product Line development project to build a set of
Enterprise Resource Planning (ERP) products. Based on the assessment reported the
authors claimed that the approach has supported the evolution of the ERP feature model,
guaranteed the production of an error-free feature model and reduced the time invested
for developing feature models. However, the paper did not present any metrics or
dataset supporting such findings.

 In recent work, Zhang et al. presented an approach for identifying and validating
feature models, supporting the detection of defects based on different relationships
among features and their propagation [Zhang et al. 2013]. The approach defines the
rules to identify dead features and false variable features (optional features), sets two
algorithms to support automation of the feature model errors detection in a feature
model validation tool (FMV-Tool) and provides explanations about the feature model
errors for the users. Zhang et al. also reported a comparative evaluation study between
FMV-Tool and FAMA [Benavides et al. 2007] tools using feature model examples
randomly generated. Based on this evaluation, the authors claimed that FMV-Tool is
more efficient than FAMA tool in most cases in which the number of different
relationships is not significant. Again, the paper did not present any metrics or dataset to
support the reported findings and conclusions. Therefore, one can see the approaches

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

123

presented in this subsection are concerned with avoiding the incorrect modeling of
features and supporting the development of SPLs, which can be useful to syntactic
verification in large scale. However, they are unable to support the verification of
whether a given feature model is best suited to represent a particular domain (semantic
verification), which is typically supported by inspection techniques.

2.2 Feature Model Inspection
Recently, de Mello et al. [de Mello et al. 2014] reported the second trial (updated) from
a comprehensive quasi-systematic literature review performed to identify verification
technologies concerned with SPL in the technical publications [de Mello et al. 2012].
The literature review analyzed 134 papers, full reading pre-selection, aiming to answer
the research question: “What are the existing techniques for inspecting software
artifacts developed for reuse?” The review selected six papers presenting four distinct
inspection techniques for software reuse artifacts. However, only FMCheck [de Mello et
al. 2012], a checklist-base inspection technique, was identified to support the detection
of defects in feature models. The FMCheck technique is composed of the following
three main activities:

• Feature Model Characterization: in this activity, the domain analyst or the
domain designer should fill a model characterization questionnaire. This
questionnaire collects the information (such as Domain Engineering Stage and
Feature Model Notation) needed to configure the inspection checklist (presented
in Section III), to avoid unnecessary verification items for a particular context.

• Checklist Configuration: in this step, the inspection moderator selects the
checklist verification items to be used in the inspection, aided by a traceability
table relating each answer collected by the model characterization questionnaire.

• Feature Model Inspection: the customized checklist is then individually applied
by one or more reviewers, each one producing his/her discrepancy report
describing each defect, its defect category, and location.

An additional work was found out of the systematic review results. Cunha et al. [Cunha
et al. 2012] proposed SPLIT (Software Product Line Inspection Techniques), a set of
checklist-based techniques for comparing feature models with the product map and for
verifying the consistence between such artifacts and the software requirements
specification. Different from FMCheck, the SPLIT checklists cannot be tailored based
on inspected SPL characteristics. To evaluate SPLIT feasibility the authors compared
the amount of defects found by inspectors using SPLIT with another approach over a
single domain with only 13 features. The evaluation pointed out that inspections
supported by SPLIT found greater number of defects than the other approach.

2.3 Inspection of Textual Feature Specifications
In addition to the feature models, textual feature specifications could also be supported
by inspection techniques. Souza et al. [Souza et al. 2013] performed an empirical study
to understand how inspection should be suited on textual feature specifications in the
product line context. They investigated the effects of applying a checklist based
inspection approach in textual features. The checklist was composed of questions such
as “Is the textual feature specification enough to model the domain graphical feature
model?“ and “Is there any conflict of priority (e.g., mandatory feature requesting

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

124

optional feature) or dependency (e.g., mutually exclusive features) among features that
have a relationship?”. The dataset was gathered from an industrial SPL project for
reengineering medical and health information systems. The study sample was analyzed
using statistical and economical techniques, which showed that incompleteness and
ambiguity reported higher non-conformity occurrences and optional features presented a
higher non-conformity density than mandatory features.

3. FMCheck’s Checklist Overview
The main contribution of this work is to present a replication of the first experimental
evaluation of FMCheck, an inspection technique to support the identification of defects
in feature models. De Mello et al. [de Mello et al. 2014] depicted the FMCheck
verification items from a summary of 48 discrepancy cases identified from examples
analyzed using FODA [Kang et al. 1990] and other feature modeling notations. Such
discrepancy cases are fundamentally related to consistency, clearness, correctness,
relevance and completeness of a feature model in comparison to its corresponding
domain textual description. The defects identified by FMCheck are classified into five
types, according to the following categorization [Shull et al. 2000], [Rocha et al. 2001]:

• Omission: Some information from the domain was not properly included in the
feature model.

• Incorrect fact: Some information or behavior from the feature model contradicts
its domain specification.

• Ambiguity: Some Information from the feature model is not clear, allowing
multiple interpretations for the specified domain.

• Inconsistency: Some feature model element is not consistent with another
element from the same feature model.

• Extraneous information: Some Information in the feature model is outside the
domain scope.
 The FMCheck checklist is composed of 34 verification items (questions)

distributed into three verification groups: individual verification of each feature,
verification of relationships between features, and verification of composition rules.
Following subsections briefly present the verification groups that compose the checklist,
thoroughly described at [de Mello et al. 2014]. Besides, examples of defects reported by
subjects on inspecting the hospitality domain in the context of the study presented in
Section 4 are also presented.

3.1 Individual Verification of each Feature
This group aims to ensure that each feature has been described correctly, clearly and
objectively. The verification items of this group (exemplified in Table 1) also support
checking if each feature belongs to the modeled domain. Figure 1 shows an excerpt
from the feature model describing the hospitality domain using the Odyssey-FEX
notation [Blois et at. 2006]. One can see the feature “Booking Confirmation” was
modeled as a conceptual feature. However, the textual description of the domain
indicates that “Booking Confirmation” is a functional feature. Thus, this occurrence is a
defect (Incorrect Fact) which detection could be supported through the verification item
1 (Table 1). Besides, since there is no mention of “Connection with Card Operator”
and “Connection with Bank Operator” features in the domain description, they are

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

125

Extraneous Information introduced by the modelers. These defects could be detected
through the verification item 11 (Table 1).

Table 1. Excerpt of verification items for individual verification of each feature.
Id. Description
1 Are all the features clearly and correctly described?

2 Is the described optionality of each feature (optional/mandatory classification) by the domain
specification?

3 Is it possible to identify the feature category by its description on the domain?
11 Is there some feature in the model that, although correct, is out of the domain scope?
12 Are there different features in the model that represent the same domain concept?
13 Is there any domain concept that has been omitted from the model?

3.2 Verification of Relationships between Features
The verification items of this group aim to verify how the representation of the relations
between features renders the model understandable, deployable, and compliant with the
domain. Table 2 shows an excerpt of the verification items of this group. Through the
excerpt of the hospitality feature model presented in Figure 1, one can see an
implementation relationship between the features “SSL” and “Card Purchase
Authorization.” However, since it was not identified any relationship between such
features in the domain textual specification, the verification item 17 (Table 2) could be
used to determine such inconsistency.

Table 2. Excerpt of verification items for the relationship between features.
Id. Description

14 Are the variabilities of the domain adequately represented as groups of alternatives (variation
point and its variants)?

15 Are the cardinalities of the variation points correct?
16 Are the variation points clearly described, reflecting the meaning of their variants?

17 Are there two or more features having a relationship in the model without defining this
relationship in the domain?

18 Is there some relationship described in the domain that has not been informed in the model?
19 Is the established hierarchy between each feature compliant with the domain?
25 Is there any feature in the model contradicting other features?
26 Does the root feature help to understand the meaning of the domain?

27 From a general perspective, is it possible to understand the domain from the features represented
in the model?

28 Does the model describe the domain in an appropriate level of detail to be understood from the
intended perspective?

29 Does the model have the sufficient features to guide the domain implementation?

3.3 Verification of Composition Rules
The five verification items presented in Table 3 guide the inspector in checking the
clearness, completeness, correctness, relevance, and consistency of the feature model
composition rules as established in FODA notation [Kang et al. 1990]. For instance,
after analyzing the hospitality domain description, composition restrictions regarding the
relationship between the features “Hospitality” (root feature) and “Booking
Confirmation” not represented in the feature model were identified. The detection of
these omissions is supported by the verification item 33.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

126

Table 3. Excerpt of verification items for composition rules.

Id. Description

30 Are all the composition rules clearly and objectively described, being in compliance with the
domain description?

31 Is there any composition rule that contradicts another one in the same model?
32 Is there any composition rule that is not applied to this domain, although it is correct?
33 Are all domain composition rules adequately represented in the model?
34 Does the model present sufficient composition rules to guide its implementation?

Figure 1. Excerpt of the Hospitality Feature Model represented through
Odyssey-FEX notation, highlighting the location of the defects reported.

4. The Study Replication
We conducted an operational replication of the quasi-experiment designed to evaluate
the feasibility of FMCheck [de Mello et al. 2012]. Table IV shows the main differences
between both trials based on the dimensions and elements proposed by Gómez et al. to
classify replications in SE experiments [Gómez et al. 2014]. In this sense, the trial
presented in this paper can be considered a changed-protocol/experimenters replication
of the first trial, as shown in Table 4. Following subsections describe the second trial
plan, highlighting the differences from the first trial plan, its execution and results
obtained.

Table 4. Comparison between the Characterization of the Dimensions/
Elements from both trials.

Dimension Element 1st Trial vs. 2nd Trial

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

127

Operationalization Cause =
Effect =

Population Subjects properties =
Objects properties =

Protocol Design ≠
Experimental objects =
Guides =
Instruments =
Data Analysis Techniques =

Experimenters Designer, Trainer, Monitor,
Measurer, Analyst

≠

4.1. Goal
Based on the GQM template [Caldeira et al. 1994], the purpose of this study was
defined as follows:

• To analyze: the conducting of feature model inspections by using ad-hoc
techniques and FMCheck

• In order to: characterize
• With respect to their capability of providing efficiency and effectiveness to the

inspection activities
• From the perspective of: Software Engineering researchers.
• In the context of: evaluating inspection activities performed by other Software

Engineering researchers over feature models from different domains

4.2. Question and Metrics
• Question: How much time was dedicated to the inspections?
• Metrics: Time dedicated to the inspection, and efficiency of each inspection

calculated through the formula (1), where identified defect represents the amount
defects identified and total time represents the inspection time (in minutes) for
each inspection observation.

• Question: Which inspection technique (FMCheck or ad-hoc) allows the
inspectors to detect more defects?

• Metrics: Number of defects detected, the effectiveness of the inspection
calculated through the formula (2), where identified defect represents the amount
defects identified, and total defects represent the total amount of known defects
for each feature model inspected.

Efficiency = (identified defects / total time) X 100 (1)

Effectiveness = (identified defects / total defects) X 100 (2)

4.3. Hypotheses
• H01: There is no difference between the efficiency of feature model inspections

conducted with FMCheck and with ad-hoc inspections.
• HA1: The efficiency of feature model inspections conducted with FMCheck is

greater than the efficiency of ad-hoc ones.
• H02: There is no difference between the effectiveness of feature model

inspections carried out with FMCheck and ad-hoc inspections.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

128

• HA2: The effectiveness of feature model inspections carried out with FMCheck
is greater than that of ad-hoc ones.

4.4. Variables
• Independent variables: application domains textually described and represented

through feature models using the Odyssey-FEX notation [Blois et al. 2006],
subject experience in software engineering projects, subject experience in
inspections, previous subject knowledge of the domains used in the study.

• Dependent variables: Amount of defects, the amount of false positives, time
spent in performing the inspection, efficiency, and effectiveness.

4.5. Analysis Mechanism
The replication of the quasi-experiment adopted the following mechanisms for
analyzing the collected data:

• Comparison between results of ad-hoc and FMCheck inspections to test the
hypotheses.

• Calculation of the time spent on the inspections to check efficiency.
• Calculation of variance of the defects and standard deviation in a view to

comparing effectiveness/ effectiveness between ad-hoc and FMCheck
inspections.

• Elimination of outliers and verification of data normality (Shapiro-Wilk) and
homoscedasticity (Levene).

• Application of a nonparametric test (Wilcoxon) or a parametric test (Student’s t),
according to each case.

4.6. Participants
Table 5 summarizes the main characteristics of the subjects from both trials. In the first
trial, the sample was composed of 14 students from COPPE/UFRJ. However, in the
presented replication, ten graduate students (representing as much as possible software
developers) from a Software Reuse course at the Computer Science Department in
UFBA were recruited. One can see subjects from the second trial tend to be more
experienced in the industry. It is also the only sample having subjects with some
previous experience in performing software inspections. However, as in the first trial,
all subjects reported only academic experience with feature modeling, a topic
introduced in the software reuse classes.

Table 5. Distribution of Participants by Characteristics.

Description 1st Trial 2nd Trial
Academic degree
Undergraduate Students 4 0
Graduate Students 10 10
Participant experience with Software Projects
Two or more projects in industry 4 8
Only a single project in industry 6 1
Only academic software projects 4 1
Participant experience with specific SE Activities
Software Inspections 0 5
Feature Modeling 0 0

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

129

4.7. Experimental Design
Participants should be asked to inspect the same feature models regarding four
application domains (i.e., mobile devices, hospitality, context-aware mobile
applications, and library) through two distinct trials. Before the first trial, to prepare the
participants for the execution of ad-hoc inspections, the participants should be trained in
software inspection and domain description through feature models. Then, each
participant should perform ad-hoc inspections in artifacts from two domains. Next, the
participants should be trained in the use of FMCheck before the second trial. After that,
each participant should inspect the two other artifacts (domains which had not been
inspected by them in the first trial) applying FMCheck.

 Before the first trial, the researchers carried out a comparative analysis of the
four models to establish the complexity of each feature model applying the following
criteria: number of features, the maximum depth of features, and the amount of
variability. Based on these three criteria, we categorize the feature models in two
different complexity levels: normal complexity and more complex models. Thus, two
domains were considered with normal complexity level (mobile devices and library,
S01 and S02, respectively) and the other two models considered more complex
(context-aware mobile applications and hospitality, C01 and C02, respectively) [de
Mello et al., 2014]. Then, researchers evenly distributed all four domains to be
inspected in both trials by each subject [de Mello et al., 2014]. However, after analyzing
the results from the first trial, we observed that the complexity of the domains did not
influence the performance of effectiveness/ efficiency in both trials. On the other hand,
we noted that only the inspections performed over complex domains had their
effectiveness significantly benefited through using FMCheck. Thus, in this trial, we
arbitrary set C01 and C02 to be inspected only in the first trial (ad-hoc), while S01 and
S02 were configured to be inspected only in the second trial (FMCheck). The package
containing the artifacts used in this experiment can be requested to the authors’ e-mail.

4.8. Execution
The study was executed in February 2014 in the Computer Science Department in
UFBA, starting with the completion of the consent form and the characterization form
by 10 participants. Then, participants were trained in feature modeling and the Odyssey-
FEX notation. Furthermore, an introductory training (one hour) in software inspection
was done, including the guidelines for the execution of the first trial. Different from the
first trial, the experimental tasks were randomly assigned to each subject. Each
participant received an email containing an inspection package, and all 10 participants
answered until the given deadline, reporting the defects detected in each artifact
inspected. In the second trial, the participants were trained (one hour) in FMCheck, by
explaining each verification item and discussing examples of defects that could be
detected with these items. After the training session, each participant received the
second trial package (composed by instructions, FMCheck instruments and the feature
models to inspect). Again, all participants reported on time the defects detected in each
artifact inspected.

4.9. Results
Two researchers reviewed all 40 discrepancy-reports, each one from a distinct research
group (UFBA, COPPE/UFRJ). In this context, it is important to emphasize that the

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

130

reviewer from the group that developed FMCheck (COPPE/UFRJ) performed a blind
review from all reported defects. It means that the researcher did not know from which
subject/trial came the defects. In the end, 283 discrepancies reported by the subjects
were classified as defects, and 63 other were classified as false positives. Table 6 and
Table 7 summarize the results collected in the first and second trials, respectively. To
calculate the efficiency, the total of defects corresponds to the amount of distinct defects
detected in a feature model in both trials.

Table 6. Results of the first trial: ad-hoc inspections.
Participant Domain Time (min) #Defects Efficiency Effectiveness

P1 C01 100 4 4.00 9.09
C02 180 3 1.67 10.34

P2 C01 140 6 4.29 22.73
C02 120 5 4.17 17.24

P3 C01 90 9 10.00 20.45
C02 60 6 10.00 24.14

P4 C01 20 7 35.00 15.91
C02 35 2 5.71 6.90

P5 C01 40 8 20.00 18.18
C02 55 9 16.36 37.93

P6 C01 35 9 25.71 20.45
C02 30 11 36.67 34.48

P7 C01 73 3 4.11 6.82
C02 65 3 4.62 10.34

P8 C01 80 3 3.75 6.82
C02 75 5 6.67 17.24

P9 C01 43 9 21.00 20.45
C02 50 10 20.00 34.48

P10 C01 40 4 10.00 9.09
C02 23 3 13.04 10.34

Table 7. Results of the second trial: FMCheck inspections.
Participant Domain Time (min) #Defects Efficiency Effectiveness

P1 S01 60 1 1.67 7.69
S02 120 5 4.17 11.36

P2 S01 60 3 5.00 23.08
S02 120 7 5.83 15.91

P3 S01 60 8 13.33 84.62
S02 95 13 13.68 43.18

P4 S01 30 3 13.33 53.85
S02 20 6 30.00 13.64

P5 S01 50 7 14.00 76.92
S02 75 7 9.33 15.91

P6 S01 46 8 17.39 84.62
S02 35 12 34.29 29.55

P7 S01 55 3 5.46 46.15
S02 40 4 10.00 9.09

P8 S01 50 4 8.00 53.85
S02 30 5 16.67 11.36

P9 S01 40 9 22.50 69.23
S02 49 15 30.61 34.09

P10 S01 43 4 9.30 30.77
S02 27 9 33.33 20.45

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

131

The experimental design applied in this trial did not allow us to perform
comparisons between both trials based on absolute metrics (such as the number of
defects, the number of discrepancies and time) since different artifacts (domains) were
inspected in each trial. Thus, the analyses presented in the following subsections are
focusing on analyzing the inspections’ efficiency and effectiveness.

4.9.1. Efficiency analysis
Table 8 presents the descriptive statistics of the efficiency obtained by the participants.
One can see that close values of means and standard deviations have been achieved in
both trials, while no outlier was identified. Since normal (log-normal, Shapiro-Wilk
test) and homoscedastic distributions were observed (Levene test), we applied Student-t
test (alpha = 95%) to test H01. As a result, no significant difference regarding efficiency
between the inspection trials was observed (p-value= 0.26443). As a consequence,
hypothesis H01 could not be refuted.

Table 8. Descriptive Statistics from Distribution of Efficiency in Both Trials.
Trial N Mean StDev Median Min. Max.
Ad-hoc 20 12.84 10.51 10.00 1.67 36.67
FMCheck 20 14.89 10.15 13.33 1.67 34.29

Aiming at understanding in which extent each artifact influenced in the
distribution of efficiency obtained in each trial, we compared the distribution of
efficiency calculated to each artifact inspected in a trial (C01 x C02; S01 x S01). Since
all distributions were normal (log-normal, Shapiro-Wilk test) and homoscedastic
(Levene test), we applied Student-t test (1-tailed, matched groups) to perform both
comparisons. As a result, we could observe that efficiency on inspecting both C01 and
C02 was not significantly different (p-value = 0.2899) but efficiency on inspecting S01
and S02 was significantly different (p-value = 0.0361). Thus, we can infer that the
artifacts inspected influenced the efficiency observed in FMCheck inspections.

4.9.2. Effectiveness analysis
Table 9 synthesizes the descriptive statistics from the distributions of effectiveness seen
in both trials. In both distributions, no outlier was identified. One can see the mean of
effectiveness obtained in ad-hoc inspections were less than the half of FMCheck one,
although only ad-hoc distribution presented close values to the median and mean. Since
normal distributions were observed (Shapiro-Wilk test) but not homoscedastic (Levene
test), it was decided to apply the Mann-Whitney non-parametric test (alpha = 95%) to
test H02. As a result, it was observed that effectiveness of FMCheck inspection was
significantly higher than ad-hoc inspections (p-value = 0.0086), rejecting H02 and
accepting HA2. Figure 2 shows the boxplots from both distributions of effectiveness,
connecting their medians. The presented analysis of the replication results strengthens
the findings of the first trial, confirming the observed behavior of significant difference
in effectiveness between both trials, favorable to FMCheck [de Mello et al. 2014].

Table 9. Descriptive Statistics From Distribution of Effectiveness in Both Trials.
Trial N Mean StDev Median Min. Max.
Ad-hoc 20 17.67 9.54 17.24 6.82 37.93
FMCheck 20 36.77 25.97 30.16 7.69 84.62

 Aiming at understanding in which extent each artifact influenced in the

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

132

effectiveness obtained in each trial, we compared the distribution of effectiveness
obtained to the inspections of each artifact in a trial (C01 x C02; S01 x S01). Since all
distributions were normal (log-normal Shapiro-Wilk test) but equal variances were not
observed between C01 and C02 (Levene test), we decided to apply non-parametric
Mann-Whitney test to perform both comparisons. We noted that effectiveness of
inspecting ad hoc C01 and C02 was not different (p-value = 0.1539), while we could
evidence that effectiveness obtained on inspecting S01 was significantly higher than
effectiveness obtained inspecting S02 (p-value = 0.0090). Thus, we can infer that the
artifacts inspected influenced the effectiveness observed in FMCheck inspections.

Figure 2. Distributions of Effectiveness in both trials. The line between
boxplots represents the median connect line.

4.10. Threats to validity
Similar to the first trial, a small set of artifacts was used in the experimental tasks,
which could bias the results to specific domains. However, we expect that reusing the
same artifacts in samples with similar characteristics will allow us to better
understanding in which extent such domains could influence the results. Again,
convenience was applied to establish the experiment sample. However, the differences
of background observed between samples can be seen as an opportunity to strength
evidence on how FMCheck could help a specific audience having similar
characteristics. Finally, we highlight the learning bias on applying FMCheck only in the
second trial and the asynchronous execution of the experiment, since subjects performed
their tasks out from a controlled environment. However, during the data analysis, we did
not observe the incidence of plagiarism.

5. Discussion
The replication presented in this paper strength evidence obtained in the first trial
regarding the potential contributions of FMCheck on improving the effectiveness of
feature models inspections when compared with ad-hoc inspections. At the same time,
as typically observed in other inspection techniques, the inspections’ efficiency is not
improved. Taking into account the different background of the samples (although both
are composed of subjects having only theoretical knowledge on feature modeling),
aggregating results from both trials may be an opportunity to strength evidence on how
FMCheck can be helpful to support reviewers with low experience.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

133

 Since inspections were performed over mutually exclusive models in the rounds,
comparisons performed between absolute values (number of defects, time, the number of
discrepancies) could not be performed. However, we could better understand in which
extent each domain could influence the efficiency/ effectiveness obtained in each trial.
Although the general results were similar in both trials, we could observe that subjects
obtained better results when using FMCheck to inspect the mobile devices (S01)
domain than the library (S02) one. Thus, such findings suggest the need for conducting
additional replications through applying different arrangements of the same artifacts to
better characterizing the actual contributions and limitations of FMCheck.

 Different from the first trial, a comprehensive list of known defects of each
artifact was available and another research group (distinct from the developers of
FMCheck) planned and conducted the experiment, also participating in the results
analysis. Another positive aspect observed in the presented replication is regarding all
subjects performed all tasks in both trials, allowing the comparison of distributions
having the same number of data points. Finally, we highlight that experimental tasks
were randomly assigned, characterizing a full experiment instead of a quasi-experiment
(first trial).

6. Conclusions and Future Work
Software product lines have proven its benefits in industrial environments. Thus, to take
advantage of these benefits, quality assurance techniques, such as software inspection,
should be performed to support the verification of feature models, since such artifact is
considered essential for managing knowledge of the specific domains and for reusing
assets in different products.

 In this work, we presented the replication of a quasi-experiment for evaluating
efficiency and effectiveness of FMCheck. We observed in the presented replication that
FMCheck technique was more effective to inspect feature models than ad-hoc
inspections, strengthening the results of the first trial. However, the changings on the
original experimental design allowed us to observe that FMCheck effectiveness
significantly had varied by artifact inspected. On the other hand, it was not observed a
significant difference in efficiency between FMCheck and ad-hoc inspections again.

 Furthermore, this work is a further step towards evaluating and providing
evidence of the feasibility of using FMCheck inspection technique for supporting the
inspection of feature models. As future work, the results from both trials will be
aggregated and analyzed, and we intend to perform new replications considering
different experimental designs and populations. Such further trials will be driven to
observe better in depth issues that can be addressed to support the improvement of
FMCheck efficiency.

Acknowledgement
We would like to thank the students of the 2013.2 Software Reuse course, at UFBA.
This work was partially funded by FAPESB (grant BOL0412/2013) and CNPq.

References
Batory, D., Benavides, D. and Ruiz-Cortés, A. (2006) “Automated analysis of feature

models: challenges ahead,” Communication ACM, vol. 49, pp. 45-47.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

134

Benavides, D., Segura, S., Trinidad, P. and Ruiz-Cortés, A. (2007) “Fama: Tooling a
framework for the automated analysis of feature models,” First International
Workshop on Variability Modeling of Software-Intensive Systems, pp. 129-134.

Benavides, D., Segura, S. and Ruiz-Cortés, A. (2010) “Automated analysis of feature
models 20 years later: A literature review,” Info System, vol. 35, no. 6, pp. 615-636.

Blois, A. P. T. B., de Oliveira, R. F., Maia, N., Werner, C. and Becker, K. (2006)
“Variability modeling in a component-based domain engineering process,” 9th
International Conference on Reuse of Off-the-Shelf Components, pp. 395-398.

Caldeira, G., Rombach, H. and Basili, V. (1994) “Goal Question Metric Paradigm,”
John Wiley Sons, vol. 1.

Cunha, R., Conte, T., Almeida, E. and Maldonado, J. (2012) “A Set of Inspection
Techniques on Software Product Line Models,“ 24th International Software
Engineering & Knowledge Engineering, pp. 657-662.

de Mello, R., Teixeira, E., Schots, M., Werner, C. and Travassos, G. (2012) “Checklist-
based inspection technique for feature models review,” in Sixth Brazilian
Symposium on Software Components Architectures and Reuse, pp. 140–149.

de Mello, R. M., Teixeira, E. N., Schots, M., Werner, C. M. L. and Travassos, G. H.
(2014) “Verification of software product line artifacts: A checklist to support feature
model inspections,” Jornal of Universal Comp. Science, vol. 20, no. 5, pp. 720–745.

de Mello, R. M., Stolee, K. T. and Travassos, G. H. (2015) “Investigating Samples
Representativeness for an Online Experiment in Java Code Search” in Nineth
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1-10.

Gómez, O., Juristo, N. and Vegas, S. (2014) "Understanding replication of experiments
in software engineering: A classification," Info and Sw Technology 56.8: 1033-1048.

Kang, K., Cohen, S., Hess, J., Nowak, W. and Peterson, S. (1990) “Feature-Oriented
Domain Analysis Feasibility Study,” Technical Report CMU/SEI-90-TR-21.

Northrop, L. M. (2002) “SEI's software product line tenets,” IEEE software, vol 19, no.
4, pp. 32-40.

Rocha, A. R. C., Maldonado, J. C., Weber, K. C. and Travassos, G. H. (2001)
“Qualidade de Software - Teoria e Prática,” (in Portuguese) Prentice Hall.

Shull, F., Rus, I. and Basili, V. (2000) “How perspective-based reading can improve
requirements inspections,” Computer, vol. 33, no. 7, pp. 73–79.

Souza, I. S., Gomes, G. S. S., Silveira, P. A. M., Machado, I. C., Almeida, E. S. and
Meira, S. R. L. (2013) “Evidence of software inspection on feature specification for
software product lines,” The Journal of Systems and Software 86: 1172– 1190.

Von Der Massen, T. and Lichter, H. (2004) “Deficiencies in feature models,” Workshop
on Software Variability Management for Product Derivation Towards Tool Support.

Zhang, G., Ye, H. and Lin, Y. (2013) “An approach for validating feature models in
software product lines,” Journal of Software Engineering, vol. 7, pp. 1-29

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

135

