

Testing Non-Functional Requirements: Lacking of
Technologies or Researching Opportunities?

Victor V. Ribeiro1, Guilherme H. Travassos1

1COPPE – Federal University of Rio de Janeiro (UFRJ)
Caixa Postal 68.511 – 21.941-972 – Rio de Janeiro – RJ – Brazil

{vidigal, ght}@cos.ufrj.br

Abstract. Context: Software testing aims to reveal failures due to the lack of
conformity (defects) among functional and non-functional requirements and
the implemented system. Thus, defects can be identified and fixed, improving
software quality. However, despite several works emphasizing the importance
of non-functional requirements (NFRs), there is an insufficient amount of
software testing approaches dealing with them. The lack of NFR evaluation
may be the cause of low-quality software that does not meet users need,
influencing software project success. Goal: To organize a body of knowledge
regarding NFRs and software testing approaches available in the technical
literature and reveal the gaps between testable NFRs and software testing
approaches. Method: To perform structured literature reviews to identify
NFRs and software testing approaches dealing with testable NFRs. To
combine both results, reveal research opportunities and organize a body of
knowledge regarding NFRs and software testing approaches. Results: From
224 identified NFRs, 87 were described, and 47 software testing approaches
observed. Only eight approaches are empirically evaluated. No testing
approaches were identified for 11 testable NFRs. Furthermore, regarding the
testing process, we did not observe any testing approach covering the test
planning phase. Conclusion: Despite their importance, many testable NFRs
seem not be tested due to the lack of appropriate software testing approaches
yet. Also, the existing testing approaches do not cover all testing processes
activities and, in general, lack empirical evidence about their feasibility and
performance, making their use in software projects risky.

1. Introduction
Software engineers use to classify software requirements into Functional and Non-
functional. The first type usually represents problem domain properties expected in
software and the second one represents solution domain concerns or restrictions. Despite
some researchers discuss such classification weakness [Eckhardt, Vogelsang and
Fernández 2016] [Glinz 2007], it is mostly used among practitioners, influencing how to
handle requirements in practice [Ameller et al. 2012] [Borg et al. 2003] [Chung and
Prado Leite 2009].
 Non-functional requirements (NFRs) play a fundamental role on software
systems success [Ameller et al. 2012] [Hammani 2014] [van Heesch 2011]. Moreover,
contemporary software systems have NFRs as essential properties to be assured, e.g.
energy efficiency, and portability are crucial features of mobile applications [Joorabchi,

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

226

Mesbah and Kruchten 2013] [Rashid, Ardito and Torchiano 2015]. However, there are
no widely accepted approaches for handling this sort of requirement [Borg et al. 2012]
[Svensson, Gorschek and Regnell 2009].
 Due to the importance exerted by NFRs, software engineers need to ensure, with
high confidence, that software is properly behaving in conformance with its NFRs.
Software testing is a mechanism to observe such conformance [ISO-29119-1 2013].
However, it is not clear yet which software tests cover the NFRs and what is the
intensity (testing phase, level, and technique) of such coverage.
 This paper performs an investigation concerned with NFRs and their
corresponding software testing approaches. Its motivation is to identify gaps among
software testing approaches and NFRs and, therefore, organize a body of knowledge
regarding the testing of NFRs and revealing research opportunities. The following
investigation steps illustrate the research protocol.
 At first, a structured literature review has been performed aiming at identifying
what are the most frequent NFRs observed in the technical publications. The lack of
consensus observed on NFRs definitions led to the execution of a coding procedure on
the extracted data. Thus, the identified NFRs could be better understood, and they were
organized on an initial body of knowledge.
 Thereafter, it was necessary to know which the software testing approaches
covers such identified NFRs. Thus, a second structured literature review was performed
allowing identify software testing approaches, and which approach covers each NFR.
 Finally, both NFRs and software testing approaches were combined revealing
the relevant (most frequent) testable NFRs that are covered and not covered by software
testing approaches.
 Despite the importance of testing NFRs, the results indicate that the identified
software testing approaches do not cover every more frequent and testable NFRs, and
there are software testing approaches proposed to test NFRs not frequently observed.
Furthermore, most of the software testing approaches are not empirical evaluated and do
not fully cover the software testing phases (planning, design, implementation, execution,
analysis), making their use risky.
 The remainder of this paper is organized in five more sections. Section 2 shows
the most frequent NFRs. Section 3 describes the identified software testing techniques
and their corresponding NFRs. Section 4 combines both sets of information and map
tested and non-tested NFRs. Section 5 presents threats to validity, and Conclusions are
presented in Section 6.

2. Most Frequent Non-Functional Requirements
The first step to achieving the main objective of this research is to identify what are the
most common NFRs. Therefore, a structured literature review (LR1) was performed
aiming at finding other literature reviews presenting NFRs. LR1 was carried out in
March 2015, naturally retrieving papers from 1996 to 2015, and driven by the following
research question:

RQ1: What are the most frequent NFRs investigated in the technical literature?

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

227

 To support the findings, a two parts search string was organized and executed in
Scopus search engine. The first section of the search string aims to limit the results to
find any literature review and the second part, restrict the reviews on NFRs.

("systematic review" OR "systematic literature review" OR "systematic mapping" OR "systematic investigation"
OR "systematic analysis" OR "mapping study" OR "structured literature review" OR "evidence-based literature
review" OR "survey" OR "review of studies" OR "structured review" OR "systematic review" OR "literature
review" OR "systematic literature review" OR "literature analysis" OR "meta-analysis" OR "analysis of research"
OR "empirical body of knowledge" OR "overview of existing research" OR "body of published knowledge") AND
("non-functional requirements" OR "non-functional software requirement" OR "non-behavioral requirement" OR
"non-functional property" OR "quality attribute" OR "quality requirement" OR "software characteristic")

 After the search string execution, the title and abstract of each paper were read
by a researcher and classified on Included or Excluded based on two inclusion criteria:
1) Presents a literature review, a survey or similar study; AND 2) Identify non-
functional requirements. Then, a second researcher analyzed the excluded papers set and
reclassified them on Included or keep out. Table 1 shows the amount of papers of LR1.
It is important to note one paper was manually included because it was not correctly
indexed in the search engine.

Table 1. Amount of LR1 Papers
Papers Found Excluded Included Manual Included Total Included

266 252 14 1 15

 The authors analyzed the 15 included papers, and extracted the following
information:

� Reference information: it aims to identify the paper by title, author, and
publisher.

� Abstract: it is intended to contextualize the research when to query the form.

� Study Type: it identifies the type of study, e.g. systematic literature review,
survey, and so on.

� System Domain/Type: it identifies the system type or domain in which the
research has been done.

� Non-Functional Requirements: it identifies the NFRs presented in the paper
and their description when presented.

2.1. LR1 Results
After information extraction, it was possible to observe a significant amount of NFRs.
Besides, during data extraction, we also noted the lack of agreement regarding NFRs
names and descriptions. In some cases, different NFRs stands for the same description,
for instance, fault tolerance [Yang et al. 2014] and robustness [Bajpai and Gorthi 2012]
are equally described, i.e. they represent the same software property. In other cases,
there are NFRs with the same name, but different descriptions, e.g. performance can be
related to resource consumption [Ameller et al. 2015] and time behavior [Montagud,
Abrahão and Insfran 2012].
 This scenario makes the organization of a body of knowledge regarding NFR
hard since it does not allow to know the straightforward meaning of an NFR. Thus, it
was necessary to analyze the descriptions of each NFR to understand correctly the

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

228

software property concerned with it. Then, the NFRs identified were split into two
groups, the ones with and the ones without descriptions, as it can be seen in Table 2.

Table 1. NFRs with and without Description

All Identified NFRs 224
NFRs with Description 87

NFRs without Description 137

2.1.1. Understanding and Organizing NFRs
The next step comprises the understanding of each NFR for organizing them into a body
of knowledge. For the sake of comprehensibility, the group of NFRs without description
was not considered at this point.
 To organize all described NFR into a body of knowledge, we performed open
coding, as described in Grounded Theory [Strauss and Corbin 1998]. Figure 1 shows an
example of resulting code on performance definition where the first box is the final
performance definition extracted from subject papers. For instance, the text highlighted
in blue associate performance on resource consumption and the text highlighted in green
to time behavior.

Figure 1. Open coding example

 The coding process allowed identifying a hierarchical structure at which NFRs
were organized. That structure is shown in Figure 2 in which the class NFR represents
high-level abstract system properties such as Usability, Security, and Performance.
These properties are perceived through a set of Sub_NFR, which is also an NFR but,

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

229

they represent more accurate system properties such as Navigability (Usability),
Confidentiality (Security), or Resource Consumption (Performance). Moreover, some
NFRs may allow Operationalization which are features that must be present on the
system for it meets the NFR. For instance, the usage of an image compression algorithm
is one operationalization of Resource Consumption.

Figure 2. Body of knowledge structure

 Besides the proposed structure, it was possible to identify additional NFRs’
properties that help to understand better and define relationships among them. These
properties are:

� Description: NFR definition. Usually, an NFR description explains some system’s
capability, e.g. performance: It is the system capacity to provide appropriate use of
resources (memory, CPU) needed to perform full functionality under stated
conditions.

� Synonyms: names having the same meaning, e.g. reliability is presented as a
synonym of dependability.

� Composed by: other NFRs that are part of the main NFR, e.g. scalability and
timeliness compose performance.

� Target Object: system element by with the NFR can be observed, e.g. performance:
system performance (how the system is using memory during execution), function
performance (what is the response time of specific function observing the messages
among system functions), interaction with user performance (response time
observing user request and time until response).

� Observed Through: how the NFR can be observed or how the software exposes it,
e.g. performance can be observed through resources monitoring or time observation
in execution time.

� Specification Examples: suggest how to specify an NFR, e.g. usability can be
observed through user feedback.

� Operationalization: system characteristics, properties or features influencing an
NFR, e.g. a reliability operationalization defines procedures to recovery the system
for each type of failure.

� Risks: it is related to non-compliance with an NFR, e.g. risks of no compliance with
availability requirement: loss of business opportunities or slow productivity.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

230

� Who is affected by: the roles directly affected by the NFR, e.g. Internal
Stakeholders, Owner, Manager, Software Engineer, Programmer, Final User.

� Mentioned by: list of papers identifying the NFR, but not describing it.

� Defined by: list of papers identifying and describing the NFR.
 During the body of knowledge organization, it was observed that some NFRs
should not be assessed through software testing because testing is a dynamic process
meaning it performs verification on software properties that can be observed on
execution time. So, properties that cannot be observed during system execution are not
testable. Identify if an NFR is testable is essential for this research. It makes no sense to
point towards a lack of testing approaches covering these NFRs knowing that they are
not testable.
 Thus, determining whether an NFR is testable is twofold. First, NFR must allow
operationalization. Some NFRs represent abstract properties that cannot be directly
operationalized, so cannot be observed through system execution, and then cannot be
tested. For instance, Security does not allow operationalization but, it can be perceived
through sub-NFRs Confidentiality, Auditability, and Vulnerability which in turn allow
operationalization. Thus, Security cannot be directly tested although verification of
system security can be performed by testing their sub-NFRs.
 Second, NFR must represent a behavior. Some NFRs represent static software
properties that cannot be observed during software execution and then cannot be tested,
e.g. maintainability. Thus, we used the concept of behavior and representational NFR
[Borg et al. 2012] by classifying them with the following properties:

� Behavioral: it defines if an NFR represents a software behavior, e.g. “system
services must response every request at most one second”. Behaviors properties can
be observed in execution time, therefore can be tested.

� Representational: it represents syntactical or technical software properties, e.g.
“Software must use MySQL database”. Representational properties are static
properties, and so they cannot be tested. However, it can be checked.

 Therefore, an NFR can be classified as testable if it allows operationalization
and represents a behavior property.

 Next, to ease the exploration, we used a wiki format1 to represent the open
coding procedure results and facilitating the body of knowledge user navigation through
hyperlinks. Figure 3 presents part of the NFR body of knowledge. It is possible to
observe that it is hierarchically structured. For instance, usability is composed by
understandability, accessibility, satisfaction, learnability, organization, and
attractiveness. Furthermore, bolded NFRs allow operationalization and they are
classified as behavior property meaning they are assessable through testing. The number
inside the brackets is the amount of papers referencing the NFR and gives an NFR
popularity indication.

1 http://lens.cos.ufrj.br/nfrwiki

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

231

 Clicking in each NFR is possible to access full information about selected NFR,
as described in this section.

Figure 3. Catalog example

3. Software Testing Approaches for NFRs
The second structured literature review (LR2) aims to identify proposed software testing
approaches concerned with NFRs and their testing covering. In this context, the testing
covering is regarding software testing phases, levels, techniques, and kind of evaluation
of the proposed approaches. Unlike LR1, LR2 does not look at other literature reviews
because previous ad-hoc searches do not retrieve this sort of study concerning testing
approaches for NFRs. LR2 was performed in March 2016, naturally retrieving papers
from 1991 to 2005, and driven by the following research question:

RQ1: What are the software testing approaches used to test NFRs?
 As in LR1, to support the finding of works, a two parts search string was
organized and submitted to the Scopus search engine. The first section of the search
string aims to limit the results to software testing approaches and the second one
restricts the search to non-functional requirements.
("software test design" OR "software test suite" OR "software test" OR "software testing" OR "system test design"
OR "system test suite" OR "system test" OR "system testing" OR "middleware test" OR "middleware testing" OR
"property based software test" OR "property based software testing" OR "fault detection" OR "failure detection"
OR "GUI test" OR "Graphical User Interfaces test" OR "test set" OR "non-functional testing" OR "model based
testing" OR "test case" OR "testing infrastructure" OR "testing approach" OR "testing environment") AND ("non-
functional requirements" OR "non-functional software requirement" OR "non-behavioral requirement" OR "non-
functional property" OR "quality attribute" OR "quality requirement" OR "software characteristic")

 The filtering process followed a similar procedure as in LR1. The inclusion
criterion was: “The work presents software testing procedure, technique, or any other
type of proposal concerned with the testing of non-functional requirements”. Table 3
shows the amount of papers regarding LR2. Three papers were manually included
because they were not directly available through the Scopus search engine.

Table 2. Amount of LR2 Papers
Papers Found Excluded Included Manual Included Total Included

331 287 44 3 47

 The 47 papers were analyzed using an extraction form with the following fields:

� Reference Information: it aims to identify the paper by title, author, and publisher.

� Abstract: it aims to give an overall idea of the paper subject.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

232

� System Domain/Type: it indicates whether the approach is proposed to specific
software domain or type e.g. embedded systems, telecommunication systems.

� Test Phase: testing covering regarding the testing process phases: Planning, Design,
Implementation, Execution, and Analysis.

� Test Level: testing granularity, with the options Unit, Integration, System,
Acceptance, Not Informed, and Not Applied.

� Test Technique: with the options Structural, Functional, Fault Based, Not Informed
and Not Applied.

� Evaluation: it represents how the software testing approach has been evaluated e.g.
proof of concept, experiment, case study, simulation, not applied, and not informed.
Evaluation values emerged from the subject papers.

� Non-Functional Requirements Considered: it represents the list of NFRs
considered by the software testing approach with their description.

3.1. LR2 Results
Table 3 shows an overview of the test approaches identified including the publication
year, system type, evaluation type, and covered NFRs. The complete list of
characteristics extracted from each approach can be found on Wiki.

 Table 3. Software Testing Approaches

Year System Type Evaluation Non-functional Requirements

1 1999 Real-time distributed Proof of Concept Timeliness;

2 2001 Web application Proof of Concept General Approach;

3 2004 Service Oriented Proof of Concept Performance: Throughput;
Reliability;

4 2005 Distributed component Proof of Concept Performance: Latency, Throughput, Scalability;

5 2007 Component-based Experiment Performance: Time, Efficiency;

6 2007 Component-based Proof of Concept General Approach;

7 2007 General Case Study
Performance: Resource Consumption, Time;
Reliability: Recoverability;
Interoperability;

8 2008 General Proof of Concept
Performance: Timeliness, Process capacity, Resource
consumption;
Reliability;

9 2008 Web Services Proof of Concept Reliability: Fault Tolerance;

10 2008 Web Services Proof of Concept General Approach;

11 2008 General Proof of Concept General Approach;

12 2009 General Not applied

Performance: Execution Time;
Quality of Service;
Security: Vulnerability;
Usability: Navigability;
Safety;

13 2009 Component-based Experiment Performance: Time, Efficiency;

14 2009 Embedded real time Proof of Concept Performance: Timeliness: Response Time;

15 2009 Distributed component Experiment Performance: Response Time, Processing Time;

16 2009 Embedded Case Study General Approach;

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

233

17 2009 Component-based Proof of Concept Reliability;

18 2009 Web application Proof of Concept Performance: Scalability, Timeliness;
Usability: Navigability;

19 2009 Distributed component Case Study Performance: Response Time;

20 2010 General Proof of Concept General Approach;

21 2010 General Proof of Concept General Approach;

22 2010 Web application Proof of Concept Security: Vulnerability;

23 2010 General Experiment General Approach;

24 2010 Object Oriented Not informed General Approach;

25 2010 Distributed Not applied

Performance: Timeliness, Scalability;
Security: Vulnerability;
Correctness: Avoid deadlock, Checking conformance;
Reliability;

26 2011 General Experiment Performance: Scalability;

27 2011 Embedded Proof of Concept Performance: Response Time;

28 2011 Reactive Proof of Concept Reliability: Fault Tolerance;

29 2011 Embedded Proof of Concept Reliability: Fault Tolerance;

30 2012 Not Specified Case Study Reliability: Fault Tolerance;

31 2012 Rich Internet Application Proof of Concept Usability: Accessibility;

32 2013 General Proof of Concept
Performance: Response Time;
Availability;
Usability:Organization, Accessibility: Interactive;

33 2013 Service Oriented Experiment
Security: Confidentiality, Integrity, Authenticity;
Repudiation (non-repudiation);
Reliability: Fault Tolerance, Availability;

34 2013 Embedded real time Experiment Performance: Resource Consumption;

35 2013 Elastic Computing Simulation Elasticity: Plasticity, Resonance;

36 2013 General Proof of Concept Performance: Response Time, Throughput;

37 2013 Using ASTERIX protocol Experiment General Approach;

38 2013 Interactive Proof of Concept Usability: Effectiveness, Efficiency;

39 2013 Using HTTP protocol Case Study Performance: Response Time;

40 2013 DB2 Database Proof of Concept Performance: Response Time, Execution time;

41 2014 General Proof of Concept Security;

42 2014 Real time Case Study General Approach;

43 2014 Embedded Proof of Concept
Performance: Resource Consumption, Timeliness;
Reliability: Fault Tolerance;
Security: Vulnerability;

44 2014 General Proof of Concept
Performance: workload, timeliness, think time, Rampup
time, Startup delay;
Reliability;

45 2015 Embedded Not informed Performance: Energy consumption;

46 2015 Web application Proof of Concept
Performance: Response Time, Throughput, Simulated
workload;
Security: vulnerabilities;

47 2015 General Case Study General Approach;

 Data extracted was analyzed to better understand the identified software testing
approaches. First, Figure 4 summarizes the system types. It is possible to observe that
most approaches are generic i.e. they are not intended to a particular system type. It is

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

234

important to note that some values could be joined e.g. systems using HTTP protocol
presumably is a web application. However, we prefer to keep the original descriptions to
avoid lack of precision in future approaches evaluation.

Figure 4. System type

 The findings related to the type of evaluation are shown in Figure 5. It is possible
to observe that most approaches are evaluated through proof of concepts, a strategy
having a very low degree of confidence. It can result in uncertainty of benefits and risks
related to practical use of such software testing approaches.

Figure 5. NFR Testing approach evaluation

 In sequence, the analysis related to the testing phases is shown in Figure 6. It is
possible to observe that most software testing approaches cover design and
implementation, some of them cover execution and very few cover analysis. However,
the test plan phase is the most alarming because none of the observed approaches is
dealing with it.

Figure 6. Testing phase

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

235

 Regarding testing level, most of the identified approaches proposed to solve
some aspect of system testing, as shown in Figure 7. It sounds like a warning because
there is no information in the dataset about researches aiming at identifying what is the
adequate level to test each NFR.

Figure 7. Testing level

 Finally, Figure 8 indicates that functional testing is the most regular one. It is
coherent with the results concerned with testing level since system testing level usually
demands functional techniques.

Figure 8. Testing technique

4. Combining LR1/LR2 Results
With LR1 and LR2 completed, the combination of their results can be done. The result
is knowledge about what are the most frequent NFRs without corresponding software
testing techniques. Figure 9 summarizes this matching where 11 of 87 testable NFRs
miss a software testing approach. The first number inside the brackets is the amount of
papers referencing the NFR, and the second one is the amount of software testing
approaches dealing with the NFR.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

236

Figure 9. Testable NFR without testing approach

 After that, the combination was done in the opposite direction to identify the
software testing approaches dealing with less frequent NFRs. Figure 10 summarizes this
result in which seven approaches are proposed to less frequent NFRs.
 It is important to note that correctness and elasticity are not directly covered by
any identified testing approach, but they are displayed to keep the structure presented in
the paper proposing the software testing approach. The reasons for these proposed
approaches need a more detailed analysis, but we can realize two explanations on them.
First, the lack of clear research agenda to justify the investigation of such approaches,
rather the self-motivation of researchers. It means that effort was expended in the
creation of testing approaches covering less frequent (low interest) NFRs. The second
one is that these approaches have been proposed for a particular context in which these
NFRs were important and needed to be verified. However, it is not possible to claim any
of them without more comprehensive information from the researchers.

Figure 10. Less-frequent NFRs covered by software testing approach

4.1. NFRs with Software Testing Approaches
Although software testing approaches are dealing with most of NFRs, there is not
enough evidence that these approaches sufficiently cover such NFRs testing. First, most
of the approaches are not empirically evaluated. Second, software testing is not a simple
process, depicted in different dimensions (phase, level, and technique). With this
scenario in mind, data was analyzed to identify what are the testing phases covered for
each NFR and the kind of empirical evaluation used.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

237

 An example regarding the analysis of Response Time and Fault Tolerance NFRs
is shown in Table 4. Nine software testing approaches to deal with Response Time, none
of them covering Planning, five covering Design, eight covering Implementation, four
covering Execution, and three covering Analysis. Four of the approaches covering
Design were evaluated through Proof of Concepts and just one through an Experiment.
The one interested in further information can access the NFR body of knowledge at
http://lens.cos.ufrj.br/nfrwiki.

Table 4. NFR testing approach coverage

 Testing Phase Evaluation

Re
sp

on
se

Ti

m
e:

9

Planning:0 Not applied
Design:5 Proof of Concept:4; Experiment:1

Implementation:8 Proof of Concept:5; Experiment:1; Case Study: 2
Execution:4 Proof of Concept:2; Experiment:1; Case Study:1
Analysis:3 Proof of Concept:1; Experiment:1; Case Study:1

Fa
ul

t
To

le
ra

nc
e:

6

Planning:0 Not applied
Design:2 Proof of Concept: 2

Implementation:4 Proof of Concept:3; Experiment:1
Execution:1 Proof of Concept:1
Analysis:0 Not applied

5. Threats to Validity
The main threats to validity are related to subjective evaluations carried out on this
research. For instance, the open coding is an interpretative process, and it could have led
us to a wrong non-functional requirements categorization. Moreover, the NFR body of
knowledge was built based on NFR descriptions provided by LR1. Thus, further
investigation on each particular NFR can result in the restructuring of the body of
knowledge which in turn can lead to changes in this initial findings.
 Furthermore, papers included in LR2 are not clear about test dimensions.
Therefore, defining which a particular approach covers testing phases, levels, and
techniques was an interpretative task.

 Finally, another threat to validity is related to the use of a single search engine.
We understand the importance to use more than one search engine to improve the
coverage. However, our experience on undertaking other secondary studies indicates
that Scopus can give a reasonable coverage saving much effort on removing duplicates
and reading false positives. Further, LR protocol may be used to guide future executions
using other search engines.

6. Conclusions
The importance of NFRs to assure software systems success increases their need for
testing. This work is a preliminary initiative to understand which software testing
approaches deal with NFRs, and, in consequence, to identify the gaps between frequent
NFRs and software testing approaches.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

238

 The analysis of two structured literature reviews showed a set of NFRs not
covered by software testing approaches. Additionally, regarding software testing phases
(planning, design, implementation, execution, and analysis) and strategies (level and
technique), among the identified software testing approaches no one covers the full
testing process for any NFR. It is most critical when considering the planning phase that
is entirely uncovered.
 Furthermore, most of the identified software testing approaches are not
empirically evaluated resulting in the lack of evidence on their benefits and risks in
practical use. All of these issues can represent exciting research challenges.

7. Acknowledgments
This work is part of “CAcTUS - Context-Awareness Testing for Ubiquitous Systems”
project partially financed by CNPq – Universal 14/2013 (484380/2013-3). Prof.
Travassos is a CNPq Researcher (305929/2014-3).

References
Ameller, D., Galster, M., Avgeriou, P. and Franch, X. (2015) “A survey on quality

attributes in service-based systems, Software Quality Journal”, Kluwer Academic
Publishers.

Ameller, D., Ayala, C., Cabot, J. and Franch, X. (2012) “How do software architects
consider non-functional requirements: an exploratory study”, 20th IEEE International
Requirements Engineering Conference, 41–50.

Bajpai, V. and Gorthi, R. (2012) “On non-functional requirements: a survey”,
Conference on Electrical, Electronics and Computer Science: Innovation for
Humanity, SCEECS.

Borg, A., Yong, A., Carlshamre, P. and Sandahl, K. (2003) “The bad conscience of
requirements engineering: an investigation in real-world treatment of non-functional
requirements”, 3rd Conference on Software Engineering Research and Practice in
Sweden (SERPS).

Chung, L. and do Prado Leite, J. C. S. (2009) “On non-Functional Requirements in
Software Engineering”, In conceptual modeling: foundations and applications, 363-
379. DOI=10.1007/978-3-642-02463-4_19.

Eckhardt, J., Vogelsang, A. and Fernández, D. M. (2016) “Are ‘non-functional’
requirements really non-functional?”, 38th International Conference on Software
Engineering (Austin, Texas).

Glinz, M. (2007) “On non-functional requirements”, 15th IEEE International
Requirements Engineering Conference, 21-26.

Hammani, F. Z. (2014) “Survey of non-functional requirements modeling and
verification of software product lines”, IEEE Eighth International Conference on
Research Challenges in Information Science (RCIS).

ISO/IEC/IEEE 29119-1. (2013) “Software and systems engineering - software testing”.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

239

Joorabchi, M. E., Mesbah, A. and Kruchten, P. (2013) “Real challenges in mobile app
development”, ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 15-24. DOI=http://dx.doi.org/10.1109/ESEM.2013.9.

Mairiza, D., Zowghi, D. and Nurmuliani, N. (2010) “An investigation into the notion of
non-functional requirements”, Conference of 25th Annual ACM Symposium on
Applied Computing. (March 2010). 311-317.

Montagud, S., Abrahão, S. and Insfran, E. (2012) “A systematic review of quality
attributes and measures for software product lines”, Software Quality Journal, Vol.
20 (3-4), pp. 425-486.

Poort, E.R., Martens, N., Van De Weerd, I. and Van Vliet, H. (2012) “How architects
see non-functional requirements: Beware of modifiability”, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 37-55.

Rashid, M., Ardito, L. and Torchiano, M. (2015) “Energy consumption analysis of
algorithms implementations”, ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1-4. DOI=
http://dx.doi.org/10.1109/ESEM.2015.7321198.

Strauss, A. and Corbin, J. (1998) “Basics of qualitative research: techniques and
procedures for developing grounded theory”, SAGE Publications, 2nd Ed. London.

Svensson, R. B., Gorschek, T. and Regnell. B. (2009) “Quality requirements in practice:
An interview study in requirements engineering for embedded systems”, Foundation
for Software Quality, volume 5512 of Lecture Notes in Computer Science. Springer.

van Heesch, U., Avgeriou, P. (2011) “Mature architecting - a survey about the reasoning
process of professional architects”, Software Architecture (WICSA), pp. 260–269.

Yang, Z., Li, Z. C., Jin, Z. and Chen, Y. (2014) “A systematic literature review of
requirements modeling and analysis for self-adaptive systems”, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Springer Verlag, Vol. 8396 LNCS, 55-71.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Artigos Técnicos / Research Papers

240

