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Abstract. Although it is necessary, activities regarding quality assurance and 
maintenance of software are considered the longest and most complex in 
software development lifecycle. Taking advantage of this growing trend and of 
the benefits obtained from open-source initiative, researches on open-source 
software quality and maintainability have gained renewed interest. The use of 
robust statistical techniques, such as PLS-SEM to investigate and empirically 
validate software quality models has also been an efficient alternative to 
obtain information on open-source software quality. The aim of this study was 
evaluate and build a conceptual model to characterize the internal quality in 
Java open-source software in different domains, validated with the PLS-SEM 
technique. The study results indicate that there are domains with similarities 
among them and four factors can influence the internal quality of object-
oriented software to present better maintainability (Complexity Reduce, 
Normalized Cohesion, Non-normalized Cohesion, and Increase of the 
Modularity Level). Besides, we identified some measures are more effective to 
evaluate internal quality in object-oriented open-source, such as, Fan-out 
(FOUT), Lack of Cohesion of Methods 2 (LCOM2), Response for Class (RFC), 
Tight Class Cohesion (TCC), and Loose Class Cohesion (LCC). Thus, this 
study aims at supporting software engineers and project managers to develop 
measurement strategies to ensure internal quality of source code and reduce 
maintenance costs. 

1. Introduction 

Despite object-oriented (OO) is a consolidated technology in software engineering, 
efficient ways to evaluate the internal quality in OO software is still discussed in the 
literature [Bailey et al., 2007]. Quality is defined as the degree to which characteristics 
of a product or a service satisfy the explicit and implicit needs of stakeholders, adding 
value to that product or service [ISO/IEC 25010, 2011]. Internal quality is the totality of 
the software characteristics in an internal point of view. In ISO/IEC 25010, the internal 
quality is part of the model for software product quality [ISO/IEC 25010, 2011]. It is 
related to the quality of the source code and it is evaluated through software measures 
[ISO/IEC 25010, 2011; Ping, 2010]. 
 Software measures is a scale used to categorize qualitative data from a software 
and its internal and external specifications [ISO/IEC 25010, 2011]. They can be 
collected throughout the development process by identifying important aspects of a 
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project, for example, how much effort, cost, complexity, and, when specific, it has 
inherent characteristics of the adopted software engineering technology, such as, 
inheritance (OO) [Tian, Chen, & Zhang, 2008]. In addition, measures can be applied to 
evaluate specific quality characteristics. Quality characteristics and subcharacteristics 
can be measured by external and internal measures. 
 External measures are used to evaluate software quality by observing the 
behavior of the system, for example, maintainability. Internal measures can be applied 
software artifact such as a specification document or source code during the design and 
coding phase, respectively. It is appropriate in software development that intermediate 
products are evaluated in measurements, which quantify intrinsic properties including 
those that can be derived from a simulated behavior. The basic purpose of these 
measures is to ensure that the external quality and the quality in use are met; it is 
provided to evaluators, testers, and developers the benefits of being able to evaluate the 
quality of software artifacts and consider quality issues well before the software become 
executable [ISO/IEC 25010, 2011]. Therefore, internal measures quantify internal 
attributes by analyzing static properties of software artifacts. 
 Among the years, studies in software engineering have focused on understanding 
how measures can characterize software quality [Anda, 2007]. Among the sub-topics 
covered are fault-prone factors [Al Dallal, 2012; Briand, Wüst, Daly, & Porter, 2000], 
productivity or maintenance effort [Chidamber, Darcy, & Kemerer, 1998; Ferreira, 
Bigonha, Bigonha, Mendes, & Almeida, 2012], software reuse, and software refactoring 
[Souza & Maia, 2013]. In these assessments, various measurement models of OO 
software quality have been proposed [Orenyi, Basri, & Low Tan Jung, 2012], which 
results are obtained using techniques for inferential analysis and multivariate data 
analysis. Although the studies goals are many, we still know very little about what 
measures are more relevant and used to evaluate software quality and which techniques 
are most appropriate to get better results to characterize software quality or a particular 
aspect, for example, maintainability. Besides, in relation to the state of art of software 
quality, little is known about the relationship between the measures most used, the 
complexity of this relationship and how these measures combined may indicate aspects 
of internal quality of software. 
 The dissertation’s aim was to develop a conceptual model using PLS-SEM, a 
partial least squares (PLS) approach to structural equation modeling (SEM) that offers 
an alternative to covariance-based model. SEM is designed for working with multiple 
related equations simultaneously, in other words, path modeling the relationship of 
multiple variables. In this study, the model is based on the correlation between software 
measures most used to characterize the internal quality of software. The model was 
created from the evaluation of 500 Java software considering different domains. 
 The paper is organized as follows. Methodology is presented in Section 2. 
Results are detailed in Section 3. This section is organized in four sub-sections: 
Systematic Literature Review (SLR); Sample Characterization; Factor Analysis, and 
PLS-SEM. Conclusions, contributions, and suggestions for future works are discussed 
in Section 4. 

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

422



  

2. Methodology 

In this section, the four phases of the dissertation are presented, which, in essence, 
represent the methods and studies executed to achieve the research objectives: 

x Phase 1 - Systematic Literature Review (SLR). We studied papers that evaluate the 
internal quality of OO software using statistical techniques/models. The goal was get 
information about the state of art of internal quality of software and/or to understand 
internal quality models that represent concepts about the subject. We formulated the 
following research questions: 
Q1: What are the main measures (traditional and object-oriented) investigated/used 
to evaluate the software internal quality? 

Q2: What are the main statistical techniques/models used by researchers at the 
software engineering area to evaluate the internal quality of software? 

 To perform the search, we used the search string, built based on the keywords and 
synonyms defined in the study protocol: 

 
(software OR application OR applications OR system OR systems OR 
program OR programs OR "software system" OR "software systems") 

AND 
(metric OR metrics OR "software metrics" OR "code metrics" OR 
"object-oriented metrics" OR measure OR measures OR measurement 

OR measuring) 
AND 

(quality OR "internal quality" OR "code quality" OR "software 
quality") 

AND 
("object oriented" OR "object-oriented" OR "oo") 

AND 
("statistics" OR "statistical analysis" OR "statistical 

analyses" OR "statistical technique" OR "statistical techniques" 
OR "statistical approach" OR "statistical approaches" OR 

"statistical tools" OR "statistical method" OR "statistical 
methods" OR "statistical model" OR "statistical models" OR 

"quantitative analysis") 
 

 The criteria for studies inclusion/exclusion were defined. The inclusion criteria 
were: i) to be full papers published; ii) to belong to the computer science area; iii) to 
be published between 2004 and 2014; iv) to be published in Journals or Proceedings 
(Conference Paper); v) to be in English; and vi) present a study that evaluates the 
internal quality of software using OO/traditional software measures and statistical 
techniques/models. The exclusion criteria were: i) to be restricted text; ii) to be 
incomplete text; iii) to be in press paper (unpublished effectively); iv) to be non-
papers (e.g., Table of contents, Index, and Standards); and vi) to do not meet the 
inclusion criteria. Three researchers (RA, RB, and RC) have been involved in the 
selection, wherein RA executed the search string in the sources and clean the 
database excluding the non-papers; and, all three researches discussed about the 
studies selected as primary studies; 
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x Phase 2 - Sample Characterization. The goal was to characterize the sample 
(including characteristics of software domains) that was used in the exploratory and 
confirmatory stages of the research. We used descriptive analysis and cluster to 
evaluate characteristics of the domains studied in the sample. Also, we developed a 
computational tool (O3SMEASURES) to extract the value of measures in the 
sample. The development of this tool, an Eclipse plug-in, is justified by the absence 
of an automated tool to measure OO Java software, which has in its measures 
catalog, for example, LCOM2, LCOM4, and LCC. In Phase 1, we found that this 
measures are considered relevant to evaluate the internal quality of software and we 
were not found a tool to measure these properties together; 

x Phase 3 - Factor Analysis. After extracting the value of measures, we executed an 
exploratory factor analysis (EFA) to explore the relationships among them. The EFA 
application followed the structure [Field, 2013; Hair, Black, Babin, Anderson, & 
Tatham, 2009; Johnson & Wichern, 2007; Treiblmaier & Filzmoser, 2010]: a) 
Calculation of correlations among variables: from the input data, we obtained the 
correlation matrix. To calculate this matrix, two factor analysis approaches can be 
used: i) to group the different variables in some specific factors, or ii) to form groups 
of cases based on their similarity to a set of characteristics. In this study, we used the 
first approach; b) Initial extraction of factors: there are different methods of 
extraction factors of the correlation matrix, which aims to find a set of factors that 
form a linear combination of the original variables or correlation matrix. Thus, the 
variables x1, x2, ..., xn are highly correlated, they will be combined to create a factor; 
similarly, it can be made with other variables of the correlation matrix. The first 
discovery is called the first major factor. Then, the variance explained by the first 
factor is subtracted from the original correlation matrix, resulting in residual matrix 
creating the subsequent factors; c) Rotation matrix: the initial factor matrix, which 
indicates the relationship among variables studied, rarely results in factors that can be 
interpreted. The rotation changes the matrix of factors in a rotated matrix; this matrix 
is maximized, significant, simpler, and easier to interpret. The basic idea of the 
rotation is to identify factors that have a high correlation with variables and variables 
that having a low correlation; and d) Factor interpretation: as a result of the matrix 
rotation stage, we have the number of extracted factors and which the original 
variables are part of each factor extracted; 

x Phase 4 - PLS-SEM. We used PLS-SEM to estimate complex cause-effect 
relationship models with the factors extracted. SEM is a family of statistical models 
that attempt to explain the relationships among multiple variables or constructs, 
expressed in a series of equations, describing them by analyzing the indicators to be 
measured [Hair et al., 2009; Hair, Ringle, & Sarstedt, 2011; Johnson & Wichern, 
2007]. PLS is a technique used to estimate significantly the coefficients of a 
structural equation model with the method of least squares [Hair et al., 2009; Johnson 
& Wichern, 2007; Tobias, 1995]. Although these relationships among variables were 
explored, the manner in which the factors are related need to be tested and 
statistically validated. It means that it is tested if the relationship of the factors 
extracted in Phase 3 is theoretically significant. 
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3. Results 

The results of the four phases are presented and discussed in this section. 

3.1. Systematic Literature Review  

We identified 8,231 papers, of which we read 79 papers - full text (Table 1). We used an 
inter-range agreement (kappa) to evaluate the reliability of the researches evaluation. 
The Kappa's value for the analysis was 0.612 (substantial agreement). 

Table 1 - Primary Selection 
Sources Total Non-papers Duplicated Excluded Included 
IEEE 6,631 501 18 6,082 30 

Compendex 33 1 1 25 6 
Springer 292 4 0 282 3 

ScienceDirect 293 6 0 285 3 
Scopus 982 6 0 914 37 
Total 8,231 518 19 7,633 79 

 Regarding “Q1 - What are the main measures (traditional and object-oriented) 
investigated/used to evaluate the software internal quality?”, we identified 265 
measures in the first analyze. Using the criteria of to be cited in 10 or more papers, 15 
measures were identified as main ones associated with five different properties. These 
measures are presented in Table 2 along with the properties, which they were related 
and the number of citations in the studies in which they were found. 

Table 2 - Measures Most Used to Evaluate Internal Quality of Software 
# Measures Number of Citations Properties 
1 Lack of cohesion of methods (LCOM) 40 Cohesion 
2 Depth of Inheritance tree (DIT) 37 Inheritance 
3 Response for class (RFC) 33 Coupling 
4 Coupling between objects (CBO) 32 Coupling 
5 Number of children (NOC) 30 Inheritance 
6 Weight methods per class (WMC) 28 Complexity 
7 Lines of Code (LOC) 20 Size 
8 Number of Methods (NOM) 18 Size 
9 Cyclomatic complexity (CC) 13 Complexity 

10 Number of attributes (NOA) 11 Size 
11 Tight class cohesion (TCC) 10 Cohesion 
12 Lack of cohesion of methods 4 (LCOM4) 10 Cohesion 
13 Fan-out (FOUT) 10 Coupling 
14 Loose class cohesion (LCC) 10 Cohesion 
15 Lack of cohesion of methods 2 (LCOM2) 10 Cohesion 

 Despite the large number of measures identified, many are considered variations 
of well-established measures, for example, CBO_IUB and CBO_U are variations of 
CBO [Al Dallal, 2013]. Other measures were mentioned in only one study, because it is 
characterized a specific quality aspect, such as, IUC, used to quantify the interface type 
external class cohesion in Java [Meirelles et al., 2010]. 
 Regarding “Q2: What are the main statistical techniques/models used by 
researchers at the software engineering area to evaluate the internal quality of 
software?”, the selected papers have different methodologies and objectives. At the end 
of SLR execution, 40 different techniques were listed (Table 3). Many studies use more 
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than a statistical technique to characterize the internal quality of software. The choice of 
a technique may be dependent on the research objectives. 
 The most widely used technique was Descriptive Analysis, which was cited in 42 
papers; this technique aims to describe and summarize information of a population as 
average values, maximum, minimum, variance, and standard deviation. After, 
Correlations Test was cited in 39 papers. The most common type of test was Spearman 
test, which was cited in 16 papers; after, Pearson test was cited in 14 papers and 
Kendall test was cited in two papers. Five studies did not specify the type of correlation 
test applied in their samples. 

Table 3 - Statistical Techniques Most Used to Evaluate Internal Quality of Software 
# Statistical techniques Number of Citations 
1 Descriptive analysis 42 
2 Correlations test 39 
3 Logistic regression 36 
4 Artificial neural networks 13 
5 Principal component analysis 7 
6 Probability 3 
7 Collinearity analysis 3 
8 Nonparametric tests 3 
9 Statistical Inference 3 

10 Meta-analysis 2 

 In resume, SLR results suggest that there are no obvious choices for which 
measures and what techniques the researchers should use. Statistical methods are chosen 
according to the research objectives, therefore, to show, predict or optimize it is used 
different methods. The 79 primary studies obtained different results regarding the best 
measures and the statistical result. Concerning the measures, CK suite (WMC, CBO, 
RFC, LCOM, DIT, and NOC) was the most used and cited as the results obtained in the 
quantitative analysis of Q1. Several studies link these measures as good predictors of 
OO code quality, although pioneers and therefore justifies its widespread use in the past 
decade studies. 
 In relation to statistical techniques/models, most of studies used descriptive 
analysis to characterize software. For example, CBO and LCOM, with high and low 
average values, respectively, may indicate software with high coupling and low 
cohesion [Al Dallal, 2013]. However, descriptive analysis provides simple summaries 
about the sample and nothing can be concluded about the relationship between the 
variables under study. Among the models proposed in the literature, there are initiatives 
that contribute to identify dimensions and measures that predict quality characteristics 
[Abuasad & Alsmadi, 2012; Aggarwal, Singh, Kaur, & Malhotra, 2006; Ajila & Wu, 
2007; Al Dallal, 2013; Anda, 2007; Badri, Drouin, & Toure, 2012; Badri & Toure, 
2012; Emanuel, Wardoyo, Istiyanto, & Mustofa, 2011; Kayarvizhy & Kanmani, 2011]. 
Therefore, it is not possible to know whether in the context of many variables, the 
measures chosen by the authors are relevant to determine software quality. Besides, 
there was no study whose the main objective was to evaluate the correlations between 
measures and dimensions/constructs are significant (using PLS-SEM, for example). 
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3.2. Sample Characterization: Software Domains and Collecting Measures Values 

The dataset used is a set of open-source software developed in Java, selected from 
Github and Sourceforge, two of the most popular web repositories. The period in which 
the data were collected between 10/01/13 and 12/31/14. The criteria include software in 
the dataset were: a) be written in Java; b) be compilable; c) had the latest version 
developed between 2013-2014. 
 We categorized 1,031 as follows: Audio & Video - 105 systems, Business & 
Enterprise - 124 systems, Communications - 112 systems, Development - 132 systems, 
Home & Education - 80 systems, Games - 112 systems, Graphics - 89 systems, Science 
& Engineering - 93 systems, Security & Utilities - 83 systems, and System 
Administration - 101 systems. For each of the 10 categories or software domains 
proposed by Sourceforge was randomly selected software to be measured, following the 
population proportionality factor 
 

 
 
where ni is the size of the sample on the stratum i; Ni is the size of the population 
stratum i; N is the total size of the study population and n is the total size of the sample 
collected for each domain. Thus, the sample used in the study comprised 500 software 
in the following range: Audio & Video - 51 systems, Business & Enterprise - 61 
systems, Communications - 54 systems, Development - 64 systems, Home & Education 
- 39 systems, Games - 54 systems, Graphics - 43 systems, Science & Engineering - 45 
systems, Security & Utilities - 40 systems, and System Administration - 49 systems. 
This sample has around 229,170 classes and more than 20,838,192 lines of code. In 
Github, software was organized based on the description, found in each repository, since 
they do not categorize by domains, but by programming languages and other filters. 
 In order to collect the value of the measures in the sample, we developed a tool 
named O3SMEASURES (Object-Oriented Open-Source Software Measures) as a plug-
in for the Eclipse IDE to measure code OO Java software. We used the follow tools to 
develop it: Eclipse IDE 4.4 (Luna), Java Development Tools (JDT), Plug-in 
Development Environment (PDE), and Abstract Syntax Tree (AST). In JDT, there are 
tools to manipulate Java code. In PDE, there are tools to develop and test plug-ins in the 
Eclipse IDE. In Figure 1 and Figure 2, O3SMEASURES implements 16 measures and 
can be accessed via a pop-up menu displayed after selecting a Java software with the 
right mouse button. 

3.3. Factor Analysis 

In the first factor solution, each variable has significant loads (defined as a value greater 
than 0.30). However, CBO measure and DIT measure cross on two factors. In addition, 
commonality of values below 0.50 indicate that the variable does not fit in the structure 
defined by other variables, for example, NOC measure, which the highest value was 
0.170 [Hair et al., 2009; Maroco, 2010]. In these cases, the factor model is re-specified 
with adjustment options, for example, eliminating the variables that intersect or does not 
fit and modifying the extraction method [Hair et al., 2009; Johnson & Wichern, 2007]. 
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 After these adjustments, a valid solution was found. The validation information 
of EFA (Exploratory Factor Analysis) are shown in Table 4. With KMO = 0.710, the 
analysis with average rating can be used [Johnson & Wichern, 2007]. Regarding the 
sphericity test, significance less than 0.001 indicates that the correlation matrix is not 
identity, being suitable for the EFA application. 

 
Figure 1 - Access Menu to O3SMEASURES 

 
Figure 2 - View O3SMEASURES Spreadsheet after Measuring the Java software 

“Toy-Project” 

 Regarding the number of factors extracted (Table 5), a structure of four factors 
that explains 82% of the data variance. The factor’s extraction method used was 
Principal Component Analysis (PCA) with Varimax rotation method. We described 
below the four factors found in EFA, as modeled in Figure 3. 
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Table 4 - Result of KMO and Bartlett’s Sphericity Test 
Test Index Values 

Sampling adequacy metric KMO (Kaiser-Meyer-Olkin) 0.710 

Bartlett’s sphericity test 
Approximation χ2 

df (degree of freedom) 
p (significance) 

5,993.497 
105 
0.0 

Table 5 - Extracted Factors after Factor Model Specification 
Measures Factor 1 Factor 2 Factor 3 Factor 4 Commonalities 

LOC 0.937 0.034 0.017 -0.023 0.880 
NOM 0.788 0.147 -0.167 0.304 0.762 
NOA 0.818 -0.001 0.143 -0.093 0.698 
CC 0.913 0.004 0.062 -0.071 0.842 

WMC 0.750 -0.081 0.053 0.218 0.620 
FOUT 0.119 -0.033 0.087 0.899 0.831 
RFC 0.744 0.153 -0.214 0.189 0.658 

LCOM 0.007 0.983 -0.016 0.070 0.972 
LCOM2 0.060 0.157 0.132 0.849 0.766 
LCOM4 0.095 0.981 0.014 0.054 0.975 

TCC -0.003 0.006 0.950 0.113 0.916 
LCC 0.002 -0.006 0.949 0.105 0.911 

x Factor 1 - Complexity Reduce (LOC, NOM, NOA, CC, WMC, and RFC 
measures). Common forms of coupling can occur: i) instance variables; ii) local 
variables of methods or their parameters; iii) calling services in other class; iv) a 
direct derived class or other indirectly; and v) an interface implemented by a class. 
RFC measure is the number of different methods and constructors invoked by a class. 
These methods include class methods, inherited methods, and those who can be 
called on other objects. If the RFC for a class is large, it means that there is a high 
complexity. For example, a method calls in the class can result in a large number of 
different calls of a method and other classes. The cyclomatic complexity corresponds 
to the relative complexity of one method over another. However, one method with 
lower cyclomatic complexity is generally less complex. As the size, complexity, and 
coupling measures grow in the same direction, this means that if the number of 
methods, attributes, and classes (in terms of LOC) is large, the number of invoked 
methods tends to be large, increasing the code’s complexity. This factor represents 
the need to maintain the complexity reduced. Lower values for all measures are 
preferable; 

 
Figure 3 - Increase of the Modularity Level Based on Reduced Complexity and Cohesion 

of Software 
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x Factor 2 - Non-normalized Cohesion (LCOM and LCOM4 measures): LCOM 
and LCOM4 reflect the number of pairs of methods in classes that do not use 
common attributes. These measures aim to detect problematic classes. A high value 
of LCOM/LCOM4 indicates low cohesion. A low value of LCOM/LCOM4 indicates 
high cohesion. However, such measures are not normalized, i.e., they have no upper 
limits. Furthermore, LCOM4 is a LCOM variation that represents further invocations 
of methods that use the same attribute. This factor represents the need to increase 
cohesion in classes, to maintain a balanced use of common attributes and methods of 
the same class; 

x Factor 3 - Normalized Cohesion (TCC and LCC measures). TCC and LCC are 
normalized cohesion measures (have upper and lower limits [0, 1]). These measures 
intended to indicate the difference between “good cohesion” and “bad cohesion”, 
where value = 1 indicates high cohesion and values = 0 indicates low cohesion. The 
calculation of these measures is limited because it does not include constructors and 
destructors. Besides, it is less influenced by the size. Moreover, LCC considers 
connected indirectly methods as peers. Considering more complex connections 
between classes that LCOM and LCOM4, this factor represents the necessity of 
reducing the method’s invocations in the same class. Even if attributes are not 
directly used, the invocation of the same method with this attribute may increase the 
complexity of the class and suggest more responsibilities that class should not have; 

x Factor 4 - Increase of the Modularity Level (FOUT and LCOM2 measures). To 
obtain software with mature and sustainable architecture, developers should consider 
two quality attributes: coupling and cohesion. Low coupling and high cohesion are 
important attributes for modularized systems. A class should not assume 
responsibilities that are not yours, ignoring this principle the system will be difficult 
to maintain and reuse of your classes and their packages. Classes with high value for 
FOUT tend to have many methods. Classes with high value for LCOM2 tend to have 
more responsibilities should. The correlation with LCOM2 indicates that both grow 
in the same direction; therefore, the higher the FOUT, the higher the LCOM2. Thus, 
high coupling can result in low cohesion. This factor represents the reduction of 
method’s percentage that do not access a specific attribute and the dependencies 
among classes. Thus, the system increases the modularity level. 

3.4. PLS-SEM 

To test the hypotheses arising from the factor model (conceptual model), we used the 
structural equation model (SEM). The PLS application also requires a sample size equal 
to or greater than: i) 10 times the number of items contained in the constructs; or ii) 10 
times the number of structural paths directed to a particular model construct [Chin, 
1998; Gefen & Straub, 2005]. As the population of the sample was greater (n = 500), 
using the PLS method was considered adequate. 
 Before testing the conceptual model, we analyzed internal consistency, indicator 
of reliability, and convergent validity. As shown in Table 6, the minimum CR was 
0.8779, indicating that the model has internal consistency (value must be greater than 
0.70) [Straub, 1989]. 
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 The second step was to evaluate the reliability indicator, based on the criteria 
that the burdens of indicators should be above 0.70. In the proposed model, all 
indicators had loads with values above 0.70 (Table 7). Regarding the convergent 
validity, the test requires that the average variance extracted (AVE) is greater than 0.5. 
AVE value of the Increase of the Modularity Level (IML) construct is 0.7824. Thus, the 
construct square root is 0.885. This result is higher than the correlation values shown in 
the IML column (0.6435; 0.1400; 0.5058) and it is greater than the IML line value 
(omitted because it is zero, i.e., there is no path between the IML and other constructs). 
Thus, all constructs show evidence of acceptable discrimination. 

Table 6 - PLS Indexes and Generated Cross-loadings 
Constructs Measures COMR IML NCC NC 

Complexity Reduction (COMR) 
CR = 0.9245; AVE = 0.6729 

LOC 0.8722 0.132 0.081 0.0167 
NOM 0.702 0.0653 0.0318 0.1325 
NOA 0.9197 0.2941 0.183 -0.0789 
CC 0.8185 0.0748 0.0514 0.0485 

WMC 0.7563 0.2556 0.0123 0.0766 
RFC 0.8342 0.1506 0.1419 -0.1032 

Increase of the Modularity Level 
(IML) 

CR = 0.8779; AVE = 0.7824 

FOUT 0.2473 0.8753 0.0569 0.1647 

LCOM2 0.1859 0.8937 0.186 0.1983 

Non-normalized Cohesion (NNC) 
CR = 0.9903; AVE = 0.9807 

LCOM 0.0782 0.1418 0.9877 -0.0337 
LCOM4 0.159 0.1362 0.9929 -0.0091 

Normalized Cohesion (NC) 
CR = 0.9711; AVE = 0.9439 

TCC -0.0172 0.2042 -0.015 0.9728 
LCC -0.0159 0.1955 -0.0239 0.9703 

Table 7 - Correlations and AVE Square Roots (in bold) 
Constructs COMR IML NNC NC 

Complexity Reduction (COMR) 0.820 0.6435 0.1252 -0.0171 
Increase of the Modularity Level (IML) - 0.885 - - 

Non-normalized Cohesion (NNC) - 0.1400 0.990 -0.0199 
Normalized Cohesion (NC) - 0.5058 - 0.972 

 Based on the measurement model validation, the significance of all paths of the 
structural model was tested using the bootstrapping procedure, with 5,000 sub-samples. 
For a test with significance level of 1%, the structural path coefficient will be significant 
if the p-value is greater than 1.96 [Hair, Hult, Ringle, & Sarstedt, 2014; Kwong & 
Wong, 2013]. As result of the bootstrapping, we can observe that the relationship of 
Non-normalized Cohesion (NNC) → Complexity Reduction (COMR) is not significant 
(p = 0.267). In Figure 4, the paths coefficients (standardized values) and p-values (in 
parentheses) for the proposed hypotheses are shown. The criteria used to evaluate the 
structural model’s predictive capacity, detailed in [Hair et al., 2014] and [Kwong & 
Wong, 2013], requires a score above 0.2. As can be seen, all dependent constructs are 
above the required index. 
 The model explained 11.6% of the IML. As can be seen in Figure 4, only two of 
five paths were confirmed. Regarding the effectiveness of independent constructs to 
explain the IML, we noted that COMR tends to be most relevant (β = 0.233), followed 
by the NC (β = 0.212). 
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Figure 4 - Conceptual Model with Path Coefficients (Relationship among Constructs) 

4. Conclusion 

Quality assurance has been considered a critical factor for software development 
companies. Activities related to this guarantee have been treated as a priority in the 
development process because quality is no longer seen as a competitive advantage 
factor. It became a necessity, if a company wants to present a high quality software at 
low cost and within the deadlines set for its users. We have developed a structural 
equation model (SEM) can theoretically reflect the structural relationships between the 
12 most commonly used measures to assess the internal quality of software, whose 
relevance and recognition of quality by researchers in the field have been studied and 
validated by a systematic literature review (SLR).  

 Validation model results confirm the importance of certain factors to explain the 
increase or decrease of the Increase of the Modularity Level (IML): Complexity 
Reduction (COMR) and Normalized Cohesion (NC). However, it was not possible to 
determine if the Non-normalized Cohesion (NCC) is significant for IML and for 
COMR, as well whether the NC is significant to explain COMR. In other words, the 
model results did not confirm that NNC and NC could explain the variances of IML and 
COMR, respectively.  
 However, the result is aligned with previous findings in the literature on the 
ability of such internal quality measures as LCOM and LCOM4 in the evaluation and 
prediction of software modularity and complexity. Some studies indicated that LCOM 
and LCOM4 are relatively weak in predicting external quality characteristics [Al Dallal 
& Briand, 2010; Al Dallal, 2010; Briand, Daly, & Wuest, 1998]. LCOM does not detect 
differences among different types of methods (special methods and access, such as, 
getters and setters). LCOM4 makes no distinction between two related components that 
have the same number of nodes (methods) and edges (the relationship between methods 
that share at least one attribute). Consequently, it tends to have weak discriminative 
power.  
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 Even though these measures are frequently used in empirical studies of internal 
quality of software, other measures, with the same properties (e.g., coupling and 
cohesion) or derivations and similar adaptations can have better results. For example, 
LCOM has derivations (LCOM2, LCOM3, LCOM4, LCOM5, and ILCOM), and two of 
them that were used in the proposed model are among the most common measures used 
by researchers to evaluate software internal quality.  
 For software engineers and project managers, the model results can support the 
development of measurement strategies to ensure internal quality of source code and 
reduce maintenance costs. Also, project managers can use and incorporate these quality 
indicators as factors to be considered in the quality management process of the 
organization’s projects. 
 In future work, we suggest the use of other software measures to get new results 
that may need features not explored in the study. Also, it is important to investigate, in 
similar way, the relationship between the measures and other characteristics, different of 
maintainability, defined in ISO-25010. Finally, we suggest to develop qualitative studies 
to validate the evidence found in the research, for example, inspections in the source 
code of the systems selected to validate the effectiveness of the proposed model. 
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