

A Quantitative Study for the Characterization of Internal
Quality of Open-Source Object-Oriented Software

Mariana de Azevedo Santos, Paulo Henrique de Souza Bermejo, Heitor Costa

Department of Computer Science - Universidade Federal de Lavras (UFLA)
Caixa Postal 3037 - 37200-000 - Lavras - MG - Brazil

mariana@bsi.ufla.br, {bermejo, heitor}@dcc.ufla.br

Abstract. Although it is necessary, activities regarding quality assurance and
maintenance of software are considered the longest and most complex in
software development lifecycle. Taking advantage of this growing trend and of
the benefits obtained from open-source initiative, researches on open-source
software quality and maintainability have gained renewed interest. The use of
robust statistical techniques, such as PLS-SEM to investigate and empirically
validate software quality models has also been an efficient alternative to
obtain information on open-source software quality. The aim of this study was
evaluate and build a conceptual model to characterize the internal quality in
Java open-source software in different domains, validated with the PLS-SEM
technique. The study results indicate that there are domains with similarities
among them and four factors can influence the internal quality of object-
oriented software to present better maintainability (Complexity Reduce,
Normalized Cohesion, Non-normalized Cohesion, and Increase of the
Modularity Level). Besides, we identified some measures are more effective to
evaluate internal quality in object-oriented open-source, such as, Fan-out
(FOUT), Lack of Cohesion of Methods 2 (LCOM2), Response for Class (RFC),
Tight Class Cohesion (TCC), and Loose Class Cohesion (LCC). Thus, this
study aims at supporting software engineers and project managers to develop
measurement strategies to ensure internal quality of source code and reduce
maintenance costs.

1. Introduction

Despite object-oriented (OO) is a consolidated technology in software engineering,
efficient ways to evaluate the internal quality in OO software is still discussed in the
literature [Bailey et al., 2007]. Quality is defined as the degree to which characteristics
of a product or a service satisfy the explicit and implicit needs of stakeholders, adding
value to that product or service [ISO/IEC 25010, 2011]. Internal quality is the totality of
the software characteristics in an internal point of view. In ISO/IEC 25010, the internal
quality is part of the model for software product quality [ISO/IEC 25010, 2011]. It is
related to the quality of the source code and it is evaluated through software measures
[ISO/IEC 25010, 2011; Ping, 2010].
 Software measures is a scale used to categorize qualitative data from a software
and its internal and external specifications [ISO/IEC 25010, 2011]. They can be
collected throughout the development process by identifying important aspects of a

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

421

project, for example, how much effort, cost, complexity, and, when specific, it has
inherent characteristics of the adopted software engineering technology, such as,
inheritance (OO) [Tian, Chen, & Zhang, 2008]. In addition, measures can be applied to
evaluate specific quality characteristics. Quality characteristics and subcharacteristics
can be measured by external and internal measures.
 External measures are used to evaluate software quality by observing the
behavior of the system, for example, maintainability. Internal measures can be applied
software artifact such as a specification document or source code during the design and
coding phase, respectively. It is appropriate in software development that intermediate
products are evaluated in measurements, which quantify intrinsic properties including
those that can be derived from a simulated behavior. The basic purpose of these
measures is to ensure that the external quality and the quality in use are met; it is
provided to evaluators, testers, and developers the benefits of being able to evaluate the
quality of software artifacts and consider quality issues well before the software become
executable [ISO/IEC 25010, 2011]. Therefore, internal measures quantify internal
attributes by analyzing static properties of software artifacts.
 Among the years, studies in software engineering have focused on understanding
how measures can characterize software quality [Anda, 2007]. Among the sub-topics
covered are fault-prone factors [Al Dallal, 2012; Briand, Wüst, Daly, & Porter, 2000],
productivity or maintenance effort [Chidamber, Darcy, & Kemerer, 1998; Ferreira,
Bigonha, Bigonha, Mendes, & Almeida, 2012], software reuse, and software refactoring
[Souza & Maia, 2013]. In these assessments, various measurement models of OO
software quality have been proposed [Orenyi, Basri, & Low Tan Jung, 2012], which
results are obtained using techniques for inferential analysis and multivariate data
analysis. Although the studies goals are many, we still know very little about what
measures are more relevant and used to evaluate software quality and which techniques
are most appropriate to get better results to characterize software quality or a particular
aspect, for example, maintainability. Besides, in relation to the state of art of software
quality, little is known about the relationship between the measures most used, the
complexity of this relationship and how these measures combined may indicate aspects
of internal quality of software.
 The dissertation’s aim was to develop a conceptual model using PLS-SEM, a
partial least squares (PLS) approach to structural equation modeling (SEM) that offers
an alternative to covariance-based model. SEM is designed for working with multiple
related equations simultaneously, in other words, path modeling the relationship of
multiple variables. In this study, the model is based on the correlation between software
measures most used to characterize the internal quality of software. The model was
created from the evaluation of 500 Java software considering different domains.
 The paper is organized as follows. Methodology is presented in Section 2.
Results are detailed in Section 3. This section is organized in four sub-sections:
Systematic Literature Review (SLR); Sample Characterization; Factor Analysis, and
PLS-SEM. Conclusions, contributions, and suggestions for future works are discussed
in Section 4.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

422

2. Methodology

In this section, the four phases of the dissertation are presented, which, in essence,
represent the methods and studies executed to achieve the research objectives:

x Phase 1 - Systematic Literature Review (SLR). We studied papers that evaluate the
internal quality of OO software using statistical techniques/models. The goal was get
information about the state of art of internal quality of software and/or to understand
internal quality models that represent concepts about the subject. We formulated the
following research questions:
Q1: What are the main measures (traditional and object-oriented) investigated/used
to evaluate the software internal quality?

Q2: What are the main statistical techniques/models used by researchers at the
software engineering area to evaluate the internal quality of software?

 To perform the search, we used the search string, built based on the keywords and
synonyms defined in the study protocol:

(software OR application OR applications OR system OR systems OR
program OR programs OR "software system" OR "software systems")

AND
(metric OR metrics OR "software metrics" OR "code metrics" OR
"object-oriented metrics" OR measure OR measures OR measurement

OR measuring)
AND

(quality OR "internal quality" OR "code quality" OR "software
quality")

AND
("object oriented" OR "object-oriented" OR "oo")

AND
("statistics" OR "statistical analysis" OR "statistical

analyses" OR "statistical technique" OR "statistical techniques"
OR "statistical approach" OR "statistical approaches" OR

"statistical tools" OR "statistical method" OR "statistical
methods" OR "statistical model" OR "statistical models" OR

"quantitative analysis")

 The criteria for studies inclusion/exclusion were defined. The inclusion criteria
were: i) to be full papers published; ii) to belong to the computer science area; iii) to
be published between 2004 and 2014; iv) to be published in Journals or Proceedings
(Conference Paper); v) to be in English; and vi) present a study that evaluates the
internal quality of software using OO/traditional software measures and statistical
techniques/models. The exclusion criteria were: i) to be restricted text; ii) to be
incomplete text; iii) to be in press paper (unpublished effectively); iv) to be non-
papers (e.g., Table of contents, Index, and Standards); and vi) to do not meet the
inclusion criteria. Three researchers (RA, RB, and RC) have been involved in the
selection, wherein RA executed the search string in the sources and clean the
database excluding the non-papers; and, all three researches discussed about the
studies selected as primary studies;

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

423

x Phase 2 - Sample Characterization. The goal was to characterize the sample
(including characteristics of software domains) that was used in the exploratory and
confirmatory stages of the research. We used descriptive analysis and cluster to
evaluate characteristics of the domains studied in the sample. Also, we developed a
computational tool (O3SMEASURES) to extract the value of measures in the
sample. The development of this tool, an Eclipse plug-in, is justified by the absence
of an automated tool to measure OO Java software, which has in its measures
catalog, for example, LCOM2, LCOM4, and LCC. In Phase 1, we found that this
measures are considered relevant to evaluate the internal quality of software and we
were not found a tool to measure these properties together;

x Phase 3 - Factor Analysis. After extracting the value of measures, we executed an
exploratory factor analysis (EFA) to explore the relationships among them. The EFA
application followed the structure [Field, 2013; Hair, Black, Babin, Anderson, &
Tatham, 2009; Johnson & Wichern, 2007; Treiblmaier & Filzmoser, 2010]: a)
Calculation of correlations among variables: from the input data, we obtained the
correlation matrix. To calculate this matrix, two factor analysis approaches can be
used: i) to group the different variables in some specific factors, or ii) to form groups
of cases based on their similarity to a set of characteristics. In this study, we used the
first approach; b) Initial extraction of factors: there are different methods of
extraction factors of the correlation matrix, which aims to find a set of factors that
form a linear combination of the original variables or correlation matrix. Thus, the
variables x1, x2, ..., xn are highly correlated, they will be combined to create a factor;
similarly, it can be made with other variables of the correlation matrix. The first
discovery is called the first major factor. Then, the variance explained by the first
factor is subtracted from the original correlation matrix, resulting in residual matrix
creating the subsequent factors; c) Rotation matrix: the initial factor matrix, which
indicates the relationship among variables studied, rarely results in factors that can be
interpreted. The rotation changes the matrix of factors in a rotated matrix; this matrix
is maximized, significant, simpler, and easier to interpret. The basic idea of the
rotation is to identify factors that have a high correlation with variables and variables
that having a low correlation; and d) Factor interpretation: as a result of the matrix
rotation stage, we have the number of extracted factors and which the original
variables are part of each factor extracted;

x Phase 4 - PLS-SEM. We used PLS-SEM to estimate complex cause-effect
relationship models with the factors extracted. SEM is a family of statistical models
that attempt to explain the relationships among multiple variables or constructs,
expressed in a series of equations, describing them by analyzing the indicators to be
measured [Hair et al., 2009; Hair, Ringle, & Sarstedt, 2011; Johnson & Wichern,
2007]. PLS is a technique used to estimate significantly the coefficients of a
structural equation model with the method of least squares [Hair et al., 2009; Johnson
& Wichern, 2007; Tobias, 1995]. Although these relationships among variables were
explored, the manner in which the factors are related need to be tested and
statistically validated. It means that it is tested if the relationship of the factors
extracted in Phase 3 is theoretically significant.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

424

3. Results

The results of the four phases are presented and discussed in this section.

3.1. Systematic Literature Review

We identified 8,231 papers, of which we read 79 papers - full text (Table 1). We used an
inter-range agreement (kappa) to evaluate the reliability of the researches evaluation.
The Kappa's value for the analysis was 0.612 (substantial agreement).

Table 1 - Primary Selection
Sources Total Non-papers Duplicated Excluded Included
IEEE 6,631 501 18 6,082 30

Compendex 33 1 1 25 6
Springer 292 4 0 282 3

ScienceDirect 293 6 0 285 3
Scopus 982 6 0 914 37
Total 8,231 518 19 7,633 79

 Regarding “Q1 - What are the main measures (traditional and object-oriented)
investigated/used to evaluate the software internal quality?”, we identified 265
measures in the first analyze. Using the criteria of to be cited in 10 or more papers, 15
measures were identified as main ones associated with five different properties. These
measures are presented in Table 2 along with the properties, which they were related
and the number of citations in the studies in which they were found.

Table 2 - Measures Most Used to Evaluate Internal Quality of Software
Measures Number of Citations Properties
1 Lack of cohesion of methods (LCOM) 40 Cohesion
2 Depth of Inheritance tree (DIT) 37 Inheritance
3 Response for class (RFC) 33 Coupling
4 Coupling between objects (CBO) 32 Coupling
5 Number of children (NOC) 30 Inheritance
6 Weight methods per class (WMC) 28 Complexity
7 Lines of Code (LOC) 20 Size
8 Number of Methods (NOM) 18 Size
9 Cyclomatic complexity (CC) 13 Complexity

10 Number of attributes (NOA) 11 Size
11 Tight class cohesion (TCC) 10 Cohesion
12 Lack of cohesion of methods 4 (LCOM4) 10 Cohesion
13 Fan-out (FOUT) 10 Coupling
14 Loose class cohesion (LCC) 10 Cohesion
15 Lack of cohesion of methods 2 (LCOM2) 10 Cohesion

 Despite the large number of measures identified, many are considered variations
of well-established measures, for example, CBO_IUB and CBO_U are variations of
CBO [Al Dallal, 2013]. Other measures were mentioned in only one study, because it is
characterized a specific quality aspect, such as, IUC, used to quantify the interface type
external class cohesion in Java [Meirelles et al., 2010].
 Regarding “Q2: What are the main statistical techniques/models used by
researchers at the software engineering area to evaluate the internal quality of
software?”, the selected papers have different methodologies and objectives. At the end
of SLR execution, 40 different techniques were listed (Table 3). Many studies use more

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

425

than a statistical technique to characterize the internal quality of software. The choice of
a technique may be dependent on the research objectives.
 The most widely used technique was Descriptive Analysis, which was cited in 42
papers; this technique aims to describe and summarize information of a population as
average values, maximum, minimum, variance, and standard deviation. After,
Correlations Test was cited in 39 papers. The most common type of test was Spearman
test, which was cited in 16 papers; after, Pearson test was cited in 14 papers and
Kendall test was cited in two papers. Five studies did not specify the type of correlation
test applied in their samples.

Table 3 - Statistical Techniques Most Used to Evaluate Internal Quality of Software
Statistical techniques Number of Citations
1 Descriptive analysis 42
2 Correlations test 39
3 Logistic regression 36
4 Artificial neural networks 13
5 Principal component analysis 7
6 Probability 3
7 Collinearity analysis 3
8 Nonparametric tests 3
9 Statistical Inference 3

10 Meta-analysis 2

 In resume, SLR results suggest that there are no obvious choices for which
measures and what techniques the researchers should use. Statistical methods are chosen
according to the research objectives, therefore, to show, predict or optimize it is used
different methods. The 79 primary studies obtained different results regarding the best
measures and the statistical result. Concerning the measures, CK suite (WMC, CBO,
RFC, LCOM, DIT, and NOC) was the most used and cited as the results obtained in the
quantitative analysis of Q1. Several studies link these measures as good predictors of
OO code quality, although pioneers and therefore justifies its widespread use in the past
decade studies.
 In relation to statistical techniques/models, most of studies used descriptive
analysis to characterize software. For example, CBO and LCOM, with high and low
average values, respectively, may indicate software with high coupling and low
cohesion [Al Dallal, 2013]. However, descriptive analysis provides simple summaries
about the sample and nothing can be concluded about the relationship between the
variables under study. Among the models proposed in the literature, there are initiatives
that contribute to identify dimensions and measures that predict quality characteristics
[Abuasad & Alsmadi, 2012; Aggarwal, Singh, Kaur, & Malhotra, 2006; Ajila & Wu,
2007; Al Dallal, 2013; Anda, 2007; Badri, Drouin, & Toure, 2012; Badri & Toure,
2012; Emanuel, Wardoyo, Istiyanto, & Mustofa, 2011; Kayarvizhy & Kanmani, 2011].
Therefore, it is not possible to know whether in the context of many variables, the
measures chosen by the authors are relevant to determine software quality. Besides,
there was no study whose the main objective was to evaluate the correlations between
measures and dimensions/constructs are significant (using PLS-SEM, for example).

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

426

3.2. Sample Characterization: Software Domains and Collecting Measures Values

The dataset used is a set of open-source software developed in Java, selected from
Github and Sourceforge, two of the most popular web repositories. The period in which
the data were collected between 10/01/13 and 12/31/14. The criteria include software in
the dataset were: a) be written in Java; b) be compilable; c) had the latest version
developed between 2013-2014.
 We categorized 1,031 as follows: Audio & Video - 105 systems, Business &
Enterprise - 124 systems, Communications - 112 systems, Development - 132 systems,
Home & Education - 80 systems, Games - 112 systems, Graphics - 89 systems, Science
& Engineering - 93 systems, Security & Utilities - 83 systems, and System
Administration - 101 systems. For each of the 10 categories or software domains
proposed by Sourceforge was randomly selected software to be measured, following the
population proportionality factor

where ni is the size of the sample on the stratum i; Ni is the size of the population
stratum i; N is the total size of the study population and n is the total size of the sample
collected for each domain. Thus, the sample used in the study comprised 500 software
in the following range: Audio & Video - 51 systems, Business & Enterprise - 61
systems, Communications - 54 systems, Development - 64 systems, Home & Education
- 39 systems, Games - 54 systems, Graphics - 43 systems, Science & Engineering - 45
systems, Security & Utilities - 40 systems, and System Administration - 49 systems.
This sample has around 229,170 classes and more than 20,838,192 lines of code. In
Github, software was organized based on the description, found in each repository, since
they do not categorize by domains, but by programming languages and other filters.
 In order to collect the value of the measures in the sample, we developed a tool
named O3SMEASURES (Object-Oriented Open-Source Software Measures) as a plug-
in for the Eclipse IDE to measure code OO Java software. We used the follow tools to
develop it: Eclipse IDE 4.4 (Luna), Java Development Tools (JDT), Plug-in
Development Environment (PDE), and Abstract Syntax Tree (AST). In JDT, there are
tools to manipulate Java code. In PDE, there are tools to develop and test plug-ins in the
Eclipse IDE. In Figure 1 and Figure 2, O3SMEASURES implements 16 measures and
can be accessed via a pop-up menu displayed after selecting a Java software with the
right mouse button.

3.3. Factor Analysis

In the first factor solution, each variable has significant loads (defined as a value greater
than 0.30). However, CBO measure and DIT measure cross on two factors. In addition,
commonality of values below 0.50 indicate that the variable does not fit in the structure
defined by other variables, for example, NOC measure, which the highest value was
0.170 [Hair et al., 2009; Maroco, 2010]. In these cases, the factor model is re-specified
with adjustment options, for example, eliminating the variables that intersect or does not
fit and modifying the extraction method [Hair et al., 2009; Johnson & Wichern, 2007].

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

427

 After these adjustments, a valid solution was found. The validation information
of EFA (Exploratory Factor Analysis) are shown in Table 4. With KMO = 0.710, the
analysis with average rating can be used [Johnson & Wichern, 2007]. Regarding the
sphericity test, significance less than 0.001 indicates that the correlation matrix is not
identity, being suitable for the EFA application.

Figure 1 - Access Menu to O3SMEASURES

Figure 2 - View O3SMEASURES Spreadsheet after Measuring the Java software

“Toy-Project”

 Regarding the number of factors extracted (Table 5), a structure of four factors
that explains 82% of the data variance. The factor’s extraction method used was
Principal Component Analysis (PCA) with Varimax rotation method. We described
below the four factors found in EFA, as modeled in Figure 3.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

428

Table 4 - Result of KMO and Bartlett’s Sphericity Test
Test Index Values

Sampling adequacy metric KMO (Kaiser-Meyer-Olkin) 0.710

Bartlett’s sphericity test
Approximation χ2

df (degree of freedom)
p (significance)

5,993.497
105
0.0

Table 5 - Extracted Factors after Factor Model Specification
Measures Factor 1 Factor 2 Factor 3 Factor 4 Commonalities

LOC 0.937 0.034 0.017 -0.023 0.880
NOM 0.788 0.147 -0.167 0.304 0.762
NOA 0.818 -0.001 0.143 -0.093 0.698
CC 0.913 0.004 0.062 -0.071 0.842

WMC 0.750 -0.081 0.053 0.218 0.620
FOUT 0.119 -0.033 0.087 0.899 0.831
RFC 0.744 0.153 -0.214 0.189 0.658

LCOM 0.007 0.983 -0.016 0.070 0.972
LCOM2 0.060 0.157 0.132 0.849 0.766
LCOM4 0.095 0.981 0.014 0.054 0.975

TCC -0.003 0.006 0.950 0.113 0.916
LCC 0.002 -0.006 0.949 0.105 0.911

x Factor 1 - Complexity Reduce (LOC, NOM, NOA, CC, WMC, and RFC
measures). Common forms of coupling can occur: i) instance variables; ii) local
variables of methods or their parameters; iii) calling services in other class; iv) a
direct derived class or other indirectly; and v) an interface implemented by a class.
RFC measure is the number of different methods and constructors invoked by a class.
These methods include class methods, inherited methods, and those who can be
called on other objects. If the RFC for a class is large, it means that there is a high
complexity. For example, a method calls in the class can result in a large number of
different calls of a method and other classes. The cyclomatic complexity corresponds
to the relative complexity of one method over another. However, one method with
lower cyclomatic complexity is generally less complex. As the size, complexity, and
coupling measures grow in the same direction, this means that if the number of
methods, attributes, and classes (in terms of LOC) is large, the number of invoked
methods tends to be large, increasing the code’s complexity. This factor represents
the need to maintain the complexity reduced. Lower values for all measures are
preferable;

Figure 3 - Increase of the Modularity Level Based on Reduced Complexity and Cohesion

of Software

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

429

x Factor 2 - Non-normalized Cohesion (LCOM and LCOM4 measures): LCOM
and LCOM4 reflect the number of pairs of methods in classes that do not use
common attributes. These measures aim to detect problematic classes. A high value
of LCOM/LCOM4 indicates low cohesion. A low value of LCOM/LCOM4 indicates
high cohesion. However, such measures are not normalized, i.e., they have no upper
limits. Furthermore, LCOM4 is a LCOM variation that represents further invocations
of methods that use the same attribute. This factor represents the need to increase
cohesion in classes, to maintain a balanced use of common attributes and methods of
the same class;

x Factor 3 - Normalized Cohesion (TCC and LCC measures). TCC and LCC are
normalized cohesion measures (have upper and lower limits [0, 1]). These measures
intended to indicate the difference between “good cohesion” and “bad cohesion”,
where value = 1 indicates high cohesion and values = 0 indicates low cohesion. The
calculation of these measures is limited because it does not include constructors and
destructors. Besides, it is less influenced by the size. Moreover, LCC considers
connected indirectly methods as peers. Considering more complex connections
between classes that LCOM and LCOM4, this factor represents the necessity of
reducing the method’s invocations in the same class. Even if attributes are not
directly used, the invocation of the same method with this attribute may increase the
complexity of the class and suggest more responsibilities that class should not have;

x Factor 4 - Increase of the Modularity Level (FOUT and LCOM2 measures). To
obtain software with mature and sustainable architecture, developers should consider
two quality attributes: coupling and cohesion. Low coupling and high cohesion are
important attributes for modularized systems. A class should not assume
responsibilities that are not yours, ignoring this principle the system will be difficult
to maintain and reuse of your classes and their packages. Classes with high value for
FOUT tend to have many methods. Classes with high value for LCOM2 tend to have
more responsibilities should. The correlation with LCOM2 indicates that both grow
in the same direction; therefore, the higher the FOUT, the higher the LCOM2. Thus,
high coupling can result in low cohesion. This factor represents the reduction of
method’s percentage that do not access a specific attribute and the dependencies
among classes. Thus, the system increases the modularity level.

3.4. PLS-SEM

To test the hypotheses arising from the factor model (conceptual model), we used the
structural equation model (SEM). The PLS application also requires a sample size equal
to or greater than: i) 10 times the number of items contained in the constructs; or ii) 10
times the number of structural paths directed to a particular model construct [Chin,
1998; Gefen & Straub, 2005]. As the population of the sample was greater (n = 500),
using the PLS method was considered adequate.
 Before testing the conceptual model, we analyzed internal consistency, indicator
of reliability, and convergent validity. As shown in Table 6, the minimum CR was
0.8779, indicating that the model has internal consistency (value must be greater than
0.70) [Straub, 1989].

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

430

 The second step was to evaluate the reliability indicator, based on the criteria
that the burdens of indicators should be above 0.70. In the proposed model, all
indicators had loads with values above 0.70 (Table 7). Regarding the convergent
validity, the test requires that the average variance extracted (AVE) is greater than 0.5.
AVE value of the Increase of the Modularity Level (IML) construct is 0.7824. Thus, the
construct square root is 0.885. This result is higher than the correlation values shown in
the IML column (0.6435; 0.1400; 0.5058) and it is greater than the IML line value
(omitted because it is zero, i.e., there is no path between the IML and other constructs).
Thus, all constructs show evidence of acceptable discrimination.

Table 6 - PLS Indexes and Generated Cross-loadings
Constructs Measures COMR IML NCC NC

Complexity Reduction (COMR)
CR = 0.9245; AVE = 0.6729

LOC 0.8722 0.132 0.081 0.0167
NOM 0.702 0.0653 0.0318 0.1325
NOA 0.9197 0.2941 0.183 -0.0789
CC 0.8185 0.0748 0.0514 0.0485

WMC 0.7563 0.2556 0.0123 0.0766
RFC 0.8342 0.1506 0.1419 -0.1032

Increase of the Modularity Level
(IML)

CR = 0.8779; AVE = 0.7824

FOUT 0.2473 0.8753 0.0569 0.1647

LCOM2 0.1859 0.8937 0.186 0.1983

Non-normalized Cohesion (NNC)
CR = 0.9903; AVE = 0.9807

LCOM 0.0782 0.1418 0.9877 -0.0337
LCOM4 0.159 0.1362 0.9929 -0.0091

Normalized Cohesion (NC)
CR = 0.9711; AVE = 0.9439

TCC -0.0172 0.2042 -0.015 0.9728
LCC -0.0159 0.1955 -0.0239 0.9703

Table 7 - Correlations and AVE Square Roots (in bold)
Constructs COMR IML NNC NC

Complexity Reduction (COMR) 0.820 0.6435 0.1252 -0.0171
Increase of the Modularity Level (IML) - 0.885 - -

Non-normalized Cohesion (NNC) - 0.1400 0.990 -0.0199
Normalized Cohesion (NC) - 0.5058 - 0.972

 Based on the measurement model validation, the significance of all paths of the
structural model was tested using the bootstrapping procedure, with 5,000 sub-samples.
For a test with significance level of 1%, the structural path coefficient will be significant
if the p-value is greater than 1.96 [Hair, Hult, Ringle, & Sarstedt, 2014; Kwong &
Wong, 2013]. As result of the bootstrapping, we can observe that the relationship of
Non-normalized Cohesion (NNC) → Complexity Reduction (COMR) is not significant
(p = 0.267). In Figure 4, the paths coefficients (standardized values) and p-values (in
parentheses) for the proposed hypotheses are shown. The criteria used to evaluate the
structural model’s predictive capacity, detailed in [Hair et al., 2014] and [Kwong &
Wong, 2013], requires a score above 0.2. As can be seen, all dependent constructs are
above the required index.
 The model explained 11.6% of the IML. As can be seen in Figure 4, only two of
five paths were confirmed. Regarding the effectiveness of independent constructs to
explain the IML, we noted that COMR tends to be most relevant (β = 0.233), followed
by the NC (β = 0.212).

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

431

Figure 4 - Conceptual Model with Path Coefficients (Relationship among Constructs)

4. Conclusion

Quality assurance has been considered a critical factor for software development
companies. Activities related to this guarantee have been treated as a priority in the
development process because quality is no longer seen as a competitive advantage
factor. It became a necessity, if a company wants to present a high quality software at
low cost and within the deadlines set for its users. We have developed a structural
equation model (SEM) can theoretically reflect the structural relationships between the
12 most commonly used measures to assess the internal quality of software, whose
relevance and recognition of quality by researchers in the field have been studied and
validated by a systematic literature review (SLR).

 Validation model results confirm the importance of certain factors to explain the
increase or decrease of the Increase of the Modularity Level (IML): Complexity
Reduction (COMR) and Normalized Cohesion (NC). However, it was not possible to
determine if the Non-normalized Cohesion (NCC) is significant for IML and for
COMR, as well whether the NC is significant to explain COMR. In other words, the
model results did not confirm that NNC and NC could explain the variances of IML and
COMR, respectively.
 However, the result is aligned with previous findings in the literature on the
ability of such internal quality measures as LCOM and LCOM4 in the evaluation and
prediction of software modularity and complexity. Some studies indicated that LCOM
and LCOM4 are relatively weak in predicting external quality characteristics [Al Dallal
& Briand, 2010; Al Dallal, 2010; Briand, Daly, & Wuest, 1998]. LCOM does not detect
differences among different types of methods (special methods and access, such as,
getters and setters). LCOM4 makes no distinction between two related components that
have the same number of nodes (methods) and edges (the relationship between methods
that share at least one attribute). Consequently, it tends to have weak discriminative
power.

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

432

 Even though these measures are frequently used in empirical studies of internal
quality of software, other measures, with the same properties (e.g., coupling and
cohesion) or derivations and similar adaptations can have better results. For example,
LCOM has derivations (LCOM2, LCOM3, LCOM4, LCOM5, and ILCOM), and two of
them that were used in the proposed model are among the most common measures used
by researchers to evaluate software internal quality.
 For software engineers and project managers, the model results can support the
development of measurement strategies to ensure internal quality of source code and
reduce maintenance costs. Also, project managers can use and incorporate these quality
indicators as factors to be considered in the quality management process of the
organization’s projects.
 In future work, we suggest the use of other software measures to get new results
that may need features not explored in the study. Also, it is important to investigate, in
similar way, the relationship between the measures and other characteristics, different of
maintainability, defined in ISO-25010. Finally, we suggest to develop qualitative studies
to validate the evidence found in the research, for example, inspections in the source
code of the systems selected to validate the effectiveness of the proposed model.

References

Abuasad, A., & Alsmadi, I. M. (2012). Evaluating the Correlation Between Software
Defect and Design Coupling Metrics. In Proceedings of International Conference
on Computer, Information and Telecommunication Systems (CITS) (pp. 1-5).
Amman: IEEE. doi: 10.1109/CITS.2012.6220374

Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2006). Empirical Study of
Object-Oriented Metrics. The Journal of Object Technology, 5(8), 149-173. doi:
http://dx.doi.org/10.5381/jot.2006.5.8.a5

Ajila, S. A., & Wu, D. (2007). Empirical study of the effects of open source adoption on
software development economics. Journal of Systems and Software, 80(9), 1517-
1529. doi: 10.1016/j.jss.2007.01.011

Al Dallal, J. (2010). Mathematical Validation of Object-Oriented Class Cohesion
Metrics. International Journal of Computers, 4(2), 45-52.

Al Dallal, J. (2012). The Impact of Accounting for Special Methods in the Measurement
of Object-Oriented Class Cohesion on Refactoring and Fault Prediction Activities.
Journal of Systems and Software, 85(5), 1042-1057.

Al Dallal, J. (2013). Object-Oriented Class Maintainability Prediction Using Internal
Quality Attributes. Information and Software Technology, 55(11), 2028-2048.

Al Dallal, J., & Briand, L. C. (2010). An Object-Oriented High-Level Design-Based
Class Cohesion Metric. Information and Software Technology, 52(12), 1346-1361.

Anda, B. (2007). Assessing Software System Maintainability using Structural Measures
and Expert Assessments. In IEEE International Conference on Software
Maintenance (pp. 204-213). doi: 10.1109/ICSM.2007.4362633

Badri, M., Drouin, N., & Toure, F. (2012). On Understanding Software Quality

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

433

Evolution from a Defect Perspective: A Case Study on an Open Source Software
System. In International Conference on Computer Systems and Industrial
Informatics (pp. 1-6).

Badri, M., & Toure, F. (2012). An Empirical Analysis of Lack of Cohesion Metrics for
Predicting Testability of Classes. Journal of Software Engineering and
Applications, 7(5), 513-526. doi: 10.4236/jsea.2012.57060

Bailey, J., Budgen, D., Turner, M., Kitchenham, B., Brereton, P., & Linkman, S. (2007).
Evidence Relating to Object-Oriented Software Design: A Survey. In First
International Symposium on Empirical Software Engineering and Measurement
(ESEM) (pp. 482-484). Madrid: IEEE. doi: 10.1109/ESEM.2007.58

Briand, L. C., Daly, J., & Wuest, J. (1998). A Unified Framework for Cohesion
Measurement in Object-oriented Systems. Empirical Software Engineering - An
International Journal, 3(1), 65-117.

Briand, L. C., Wüst, J., Daly, J. W., & Porter, V. D. (2000). Exploring the Relationship
Between Design Measures and Software Quality in Object-Oriented Systems.
Journal of Systems and Software, 51(3), 245-273.

Chidamber, S. R., Darcy, D. P., & Kemerer, C. F. (1998). Managerial Use of Metrics for
Object-Oriented Software: An Exploratory Analysis. IEEE Transactions on
Software Engineering, 24(8), 629-639. doi: 10.1109/32.707698

Chin, W. . (1998). The Partial Least Squares Approach for Structural Equation
Modeling. In G. A. Marcoulides (Ed.), Modern Methods For Business Research
(pp. 295-336). Lawrence Erlbaum Associates.

Emanuel, A. W. R., Wardoyo, R., Istiyanto, J. E., & Mustofa, K. (2011). Statistical
Analysis on Software Metrics Affecting Modularity in Open-Source Software.
International Journal of Computer Science & Information Technology (IJCSIT),
3(3).

Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S., Mendes, L. F. O., & Almeida, H.
C. (2012). Identifying Thresholds for Object-Oriented Software Metrics. Journal
System Software , 85(2), 244-257.

Field, A. (2013). Discovering statistics using SPSS (4th ed.). Londres.

Gefen, D., & Straub, D. (2005). A Practical Guide to Factorial Validity Using PLS-
Graph: Tutorial and Annotated Example. Communications of the Association for
Information Systems, 16(5).

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009).
Multivariate data analysis (7th ed.). Prentice-Hall.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial
Least Squares Structural Equation Modeling (PLS-SEM). (T. O. Sage, Ed.).

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet.
Journal of Marketing Theory and Practice, 19(2), 139-151.

ISO/IEC 25010. (2011). Systems and Software Engineering - Systems and Software
Quality Requirements and Evaluation (SQuaRE) - System and Software Quality

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

434

Models.
Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th

ed.). Rio de Janeiro: Prentice Hall.
Kayarvizhy, N., & Kanmani, S. (2011). Analysis of quality of object oriented systems

using object oriented metrics. In International Conference on Electronics
Computer Technology (ICECT) (pp. 203-206). doi:
10.1109/ICECTECH.2011.5941986

Kwong, K., & Wong, K. (2013). Partial Least Squares Structural Equation Modeling
(PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24.

Maroco, J. (2010). Análise estatística com a utilização do SPSS (3rd ed.). Lisboa:
Silabo.

Meirelles, P., Santos, C., Miranda, J., Kon, F., Terceiro, A., & Chavez, C. (2010). A
Study of the Relationships between Source Code Metrics and Attractiveness in
Free Software Projects. In Proceedings of the Brazilian Symposium on Software
Engineering (SBES) (pp. 11-20). Salvador, BA. doi: 10.1109/SBES.2010.27

Orenyi, B. A., Basri, S., & Low Tan Jung. (2012). Object-Oriented Software
Maintainability Measurement in the Past Decade. In International Conference on
Advanced Computer Science Applications and Technologies (pp. 257-262). Kuala
Lumpur: IEEE. doi: 10.1109/ACSAT.2012.54

Ping, L. (2010). A Quantitative Approach to Software Maintainability Prediction. In
Proceedings of the International Forum on Information Technology and
Applications (IFITA) (pp. 105-108). Kunming: IEEE. doi: 10.1109/IFITA.2010.294

Souza, L. B. L. de, & Maia, M. de A. (2013). Do Software Categories Impact Coupling
Metrics? In Working Conference on Mining Software Repositories (pp. 217-220).

Straub, D. W. (1989). Validating Instruments in MIS Research. MIS Q., 13(2), 147-169.
Tian, Y., Chen, C., & Zhang, C. (2008). AODE for Source Code Metrics for Improved

Software Maintainability. In Fourth International Conference on Semantics,
Knowledge and Grid (pp. 330-335). doi: 10.1109/SKG.2008.43

Tobias, R. D. (1995). An introduction to partial least squares regression. In SUGI
Proceedings (pp. 1-8). New York.

Treiblmaier, H., & Filzmoser, P. (2010). Exploratory factor analysis revisited: how
robust methods support the detection of hidden multivariate data structures in IS
research. Information & Management, 47(4), 197-207. doi:
http://dx.doi.org/10.1016/j.im.2010.02.002

XV Simpósio Brasileiro de Qualidade de Software / XV Brazilian Symposium on Software Quality
Dissertações de Mestrado / Masters Dissertations

435

