

Assessing the impact of Scrum in airborne software
quality assurance

Fernanda Comenale Portugal Motta Fernandes1, Ricardo Bedin França1
1EMBRAER S.A.

Rod. Presidente Dutra, km 134 – 12247-820 – São José dos Campos – SP – Brazil
{fernanda.fernandes,ricardo.franca}@embraer.com.br

Abstract. In this paper, we present an evaluation of Scrum's impacts over the
software quality assurance process in the embedded aerospace software
domain. We present basic concepts of the DO-178C and Scrum, then we assess
related work and introduce the case study used as reference for our study, as
well as the perceived results of using Scrum in both the development teams
and in quality assurance. Finally, we summarize good practices for using
Scrum in software quality assurance teams.

Resumo. Este artigo apresenta uma avaliação dos impactos do Scrum no
processo de garantia de qualidade de software no domínio de software
embarcado aeronáutico. Após uma introdução ao documento DO-178C e ao
Scrum, trabalhos correlatos são avaliados e o caso de estudo utilizado neste
artigo é apresentado, bem como os resultados do uso de Scrum tanto nos times
de desenvolvimento quanto na garantia de qualidade. Por fim, sugerem-se
boas práticas para o uso de Scrum em times de garantia de qualidade.

1. Introduction

1.1. Context
Software quality assurance (SQA1), in the domain of embedded airborne software
products, is a peculiar job. Its duties, according to the DO-178C guidance [SC-205
RTCA 2011], go beyond traditional product quality concepts (e.g. being bug-free) and,
in addition, deals with the software development process itself. Therefore, SQA teams
have different structure and workflow from "pure" development groups. SQA engineers
do not develop embedded code for the projects they work on - actually, SQA teams are
independent from development teams and have their own activities, which often involve
verifying and enforcing process compliance. However, SQA workflow is influenced by
the organization of development teams: the depth and frequency of activities such as
reviews and audits depend on the development cycle adopted by each team.

In particular, if developers work with agile, iterative development methods (e.g.
Scrum), quality assurance activities shall be synchronized with the product readiness
attained with such iterations - this often implies a need for agile practices in SQA teams
as well. In this work, we tackle the implications of Scrum in SQA activities.

1 In this paper, we use SQA when referring to software quality assurance as defined by the DO-178C.

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

204

1.2. Objectives
The general objective of this work is to evaluate the impact of agile development
practices in airborne software quality assurance teams. Specifically, we intend to:

• Assess the influence of agile development teams over SQA activities:
Although many agile practices are available for software development, we shall
focus on Scrum, as it often dictates product development rhythm. SQA strategies
depend on this rhythm to be effective.

• Identify strengths and challenges in the use of Scrum practices by SQA
teams: Since we assume iterative and incremental product development, it
seems natural to perform SQA activities iteratively and incrementally, too. Here,
too, we focus on Scrum, as coding-related agile practices have no use in SQA.

• Propose adaptations in Scrum practices to make them more suitable to
SQA: Since Scrum is not a rigid method, it can be tuned according to the team
needs and, in our study, we intend to use this freedom to make it more suitable to
SQA activities.

1.3. Research method
The two first specific objectives will be accomplished primarily with the help of a case
study, consisting of a SQA team that has had experience with Scrum. Qualitative
assessments will be obtained by discussions and interviews with team members,
whereas quantitative ones will be based on team performance indicators.

Proposed adaptations in Scrum for SQA will be based both in good practices
already used by the case study SQA team and in solutions devised by the authors in
conjunction with the case study team.

1.4 Structure of this paper
We follow this introduction with the main concepts involved in this work: section 2
describes the DO-178C document - with emphasis on its considerations on software
quality assurance - and section 3 presents the Scrum agile method. Related work is
presented and compared to ours in section 4, while the case study itself and its results
are shown in section 5. We draw conclusions and present future work in section 6.

2. Quality Assurance in DO-178C
Aircraft software programs may be among the most critical of all software products: for
certain aircraft systems, a software glitch might trigger a system failure condition that
could put entire aircraft - and all souls on board - in jeopardy. In order to reduce such
risk, the development of embedded airborne software follows "heavyweight" processes,
typically guided by the DO-178C document: aviation certification authorities (such as
FAA2 in the United States, EASA3 in Europe and ANAC4 in Brazil) do not explicitly

2 http://www.faa.gov/
3 https://www.easa.europa.eu/
4 http:// www.anac.gov.br

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

205

mandate its use, but they usually acknowledge the DO-178C as the main guidance to
evaluate the soundness and rigor of an airborne software product life cycle process.

The DO-178C provides extensive guidance for the entire life cycle of an airborne
software product: as shown in Figure 1, it comprises "life cycle processes" which
encompass the development itself (requirements, design, coding and integration) and
"integral processes" that exist throughout the development, such as verification,
configuration management, certification liaison and SQA itself. The basis for all product
life cycle processes is the software planning process, which "produces the software
plans and standards that direct the software development processes and the integral
processes" [SC-205 RTCA 2011].

Figure 1. A software life cycle scheme based on the DO-178C

The concept of SQA in DO-178C emphasizes process quality: SQA teams shall
make sure that development teams are compliant to the plans and standards defined in
their project. Whereas Rierson [2013] remarks that SQA activities may go beyond the
process and encompass the product itself, our work shall focus on process quality
assurance. Typical SQA activities include auditing life cycle artifacts, witnessing
development and verification activities (e.g. code builds and test procedures) and
reviewing product plans and standards.

SQA teams shall be independent from development teams to meet DO-178C
guidance. In this context, independence is achieved when two conditions are met:

• The person that has developed an artifact (e.g. a plan) and the person that
performs SQA activities over that artifact cannot be the same.

• The SQA team shall have authority to enforce corrective actions when it
judges them necessary.

3. Scrum basics
Scrum is a well-known agile technique that focuses on software management [Gomes
2013] rather than development issues. It aims to provide more adaptability to a dynamic
environment (e.g. clients who frequently change their requirements) by making use of
short development iterations (called "sprints") and frequent deliveries to product
customers. Developers may fulfill the following roles in Scrum:

• Product Owner – As implied by the name, the Product Owner is the main
product stakeholder. The product owner manages the Product Backlog - a list of

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

206

activities (usually, software requirements that become functionality) that are
needed to implement and deliver the software product. Those activities are
prioritized and their execution times are estimated before their start.

• Scrum Master – The Scrum Master usually has two main roles: enforcing
correct Scrum practices in the team and removing any impediments that may
disturb the team activities during the sprint.

• Scrum Team – The Scrum Team performs the sprint activities. Scrum teams are
usually small [Schwaber and Sunderland 2013] (between five and nine people)
and team members must be well-trained and cross-functional, in order to
operate efficiently and with a high level of empowerment.

Every sprint commences with a Sprint Planning, when top-priority activities
from the Product Backlog are transferred to the Sprint Backlog in order to be performed
in that specific sprint. The Scrum Team keeps up to date with activity status and
possible impediments by means of daily Scrums that usually last about 15 minutes
[Schwaber and Sunderland 2013].

When a sprint ends, the team produces a potentially shippable product increment
— i.e. product increment with value to customer, and results are presented to the
Product Owner in the Sprint Review. The sprint itself is evaluated in a Sprint
Retrospective, which may yield improvement proposals. The Scrum workflow is
illustrated in Figure 2.

Figure 2 - Scrum workflow (source: Mountain Goat Software)

4. Related Work
The coupling of software quality assurance - as described in DO-178C - and agile
practices is, to the best of our knowledge, a relatively unexplored topic. There is a fair
amount of work related to agile practices and software quality but, as stated in the
introduction, they tackle product quality rather than process quality: Itkonen et al [2005]
focus their work on agile testing, while Ambler [2005] underlines several development
and techniques but also focus on product quality. Stamelos and Sfetsos [2007] devote
their book to several quality assurance topics but they are also product-related.

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

207

There are previous works that evaluate the use of agile practices in software
products subject to DO-178C guidance: Chisholm's dissertation [Chisholm 2007]
assesses the use of agile practices through a whole product life cycle, based on the DO-
178B (the predecessor of DO-178C) practices. However, quality assurance activities are
a minor part of his study, due to the large number of product-related activities and
artifacts involved in the product life cycle. Since agile practices are most easily seen as
product-oriented (precluding documentation writing if it adds little or no value), one is
tempted to interpret process quality assurance activities as intrinsically "anti-agile", as
they often involve a large number of documents that do not add immediate value to the
product - although, of course, such documentation has paramount importance when it
comes to demonstrate the soundness of all software development processes.

 Other works that defend the use of agile methods in airborne software
development [VanderLeest and Buter 2009] [Wils et al 2006] [Chenu 2009] focus on
development and testing but do not provide specific guidance about the role and
workflow of SQA teams in an agile environment.

In this work, we focus on a seemingly neglected (at least, from an "agile" point
of view) process that differs significantly from product development and testing: since
process quality assurance is mandatory as per DO-178C guidance, performing it
efficiently is important to achieve an overall lean development.

5. The effects of SCRUM over SQA

5.1. The case study
The case study used in this paper consists of a SQA team that enforces quality assurance
over several software development projects that use Scrum. The most important tasks
performed by the team usually are:

• Reviewing plans and standards to assure they are consistent and they meet DO-
178C guidance.

• Auditing life cycle artifacts and development environment to evaluate their
compliance to plans and standards.

• Witnessing development activities to ensure that work instructions and
procedures are being followed correctly.

• Attest, in the closure of project, that all software life cycle data produced during
the software life cycle process meet DO-178C guidance.
The SQA team itself decided to adopt (and adapt) Scrum practices and has

performed more than fifty sprints since then. The team consists of one product owner
and eight team members, including one Scrum Master. SQA product backlog and
deliverables are prepared according to development team schedules - priority setting and
small adjustments are then made during sprint planning. Daily meetings can be held via
conference calls when the team is split in several physical locations and all sprint
artifacts are managed with the Jira5 tool, thus being available to all team members.

5 https://www.atlassian.com/software/jira

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

208

5.2. Enforcing SQA in agile development teams
Rierson [2013] emphasizes the need for SQA during the whole product life cycle - as
opposed to trying to enforce compliance only in late development phases. Thus, SQA
activities are strongly tied to the schedule and milestones defined by development teams
- in fact, one may consider product developers as SQA team clients. When dealing with
Scrum-based development teams, the case study SQA team highlighted the following
points:

• Developers are very committed to the deadlines set for deliveries to their clients.
This eases SQA activity planning, as artifact readiness becomes predictable.

• On the other hand, minor schedule and scope changes are much more frequent,
since developers' clients are freer to require changes and these may impact the
SQA work. Therefore, SQA should have an agile mindset, too - using Scrum
from the SQA side seems a good way to ensure synchronicity between them and
development teams.

• Even if products are officially at an initial development stage, Scrum-based
teams may adopt other agile techniques that enhance software maturity and
anticipate integration and verification efforts. This means that unofficial (i.e. not
oriented for obtaining certification credit) SQA-related discussions can take
place at early development stages and anticipate potential process
nonconformities. Such activities are also important to keep the SQA team up to
date with development methods and tools. This technical knowledge improves
the effectiveness of an SQA team by enhancing its understanding of software
products and strengthening its credibility before development teams. The need
for such credibility is stressed by Rierson [Rierson 2013] and plays an important
role to empower SQA teams with authority to enforce corrective action.

5.3. Managing SQA activities with Scrum
As stated in Section 4, other works suggest that the peculiarities of SQA activities
render agile methods unsuitable for use by SQA teams. However, when these teams are
inserted in an agile environment with Scrum-based clients, they must find ways to keep
up with the pace of product development.

One simple attempt is to adapt Scrum to the SQA scenario. This approach has a
very positive point: SQA sprints can be planned according to the needs of other teams. If
a development team sprint features - for instance - an official, "run-for-score" build
delivery, the SQA sprint for the same period may feature a build witness activity.

 The case study SQA team benefitted from some well-known Scrum positive
points: in particular, increased visibility over activity progress and results motivated it to
work more efficiently when doing activities that fit in the "short-term delivery" category.

Assessing the efficiency of Scrum is a tricky topic by itself: the pertinence of a
given performance criterion is subject to discussion even for more "orthodox" Scrum
projects. For example, Santana and Nunes [2014] remark that the Nokia Test (a well-
known Scrum efficiency evaluation) should not be used as an absolute measure to
compare Scrum efficiency of two or more teams. In our case study, the SQA group
struggled to find good metrics for sprint performance evaluation - they also had to be

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

209

adapted to SQA reality. In particular, the cross-project nature of our case study team and
the long development cycles of airborne software products often meant that it was
difficult to assess how team performance evolved over sprints, as the activities changed
according to the advancing phases of development projects subject to SQA. Hence, the
most meaningful performance indicators in our case study are individual sprint
burndown charts - which relate completed activities to planned ones. While the average
performance was around 85%, some sprints had lower performance due to sudden
priority changes by clients or workload changes caused by impediments (e.g. lack of
consensus between teams over a possible process nonconformity).

While common Scrum deliveries include software functionality, SQA teams
usually deliver documents: review results, audit reports, nonconformity reports and
(besides several other activity result documents) project documentation that shall be
maintained by the SQA team, such as the software quality assurance plan. Some of these
deliverables are the result of long activities that simply cannot be divided into small
ones: it would be difficult to ensure coherency if several people conducted or
documented the review of a given artifact. Besides, such reviews may take many cycles
of correction and reverification, which makes their execution time quite unpredictable.

In spite of all perceived difficulties, client feedback (in this case, development
teams) is positive: the active involvement from the project onset enables the SQA team
to have a faster and better understanding of processes and products. Compliance gaps
can be identified earlier, thus avoiding potential cost overruns due to late rework.

5.4 Good practices for agile SQA
Some long SQA activities, as described in section 5.3, simply cannot be divided into
smaller deliveries. However, it might be possible to perform then within a single sprint
window if more team members can work on the same delivery. As the quality assurance
team activities are based on sampling criteria - in other words, the SQA choose a
predictable amount of life cycle data - its activities can be shared by the team,
decreasing the workload of each team member and, consequently, ensuring that long
activities can be delivered in time. For example, if a requirement audit needs a certain
number of requirement samples but the team judges this number too high to be attained
by a single person in a single sprint, two persons or more can perform the audit. Good
teamwork is then important to achieve consistent audit results - once more, the Scrum
hypothesis of a well-trained, cross-functional team is crucial.
 Regarding activities that do not have sampling criteria (write the SQA plan,
review plans and standards), it is often difficult to share work among team members. On
the other hand, deliveries may be split along several sprints: for instance, one or more
document finished chapters, might be considered as a potentially shippable product.
 The involvement of SQA teams, at early development stages, on verification
activities (requirements, design, coding and integration) in parallel with verification
teams can lead to a more proactive thinking instead of a reactive one, anticipating
nonconformities and avoiding the hassle of late problem detection and correction.

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

210

6. Conclusion and future work
In this paper, we evaluate the effects of Scrum in the workflow of software quality
assurance teams in the airborne software domain. The influence of Scrum-based
developers and the effects of a Scrum-based SQA process were evaluated by means of a
case study: an SQA team presented strengths and challenges it had to face along several
sprints and interaction with several Scrum-based development teams. Despite the need
for some adaptations, the use of Scrum in SQA also presented advantages and helped
the case study team when it needed to keep pace with agile development teams.

Future work includes the evaluation of more advanced management techniques,
such as the Scrum of Scrums, to increase synchronicity between development and SQA
teams. The good results obtained with Scrum in SQA may open the way for another
seemingly unexplored, yet interesting, field of research: the adaptation of practices from
other agile methods (such as eXtreme Programming - XP) to the SQA domain.

References
Special Committee 205 (SC-205) of RTCA. (2011) “DO-178C, Software

Considerations in Airborne Systems and Equipment Certification”.
Itkonen, J., Rautiainen, K. and Lassenius, C. (2005). Toward an understanding of quality

assurance in agile software development. International Journal of Agile
Manufacturing, volume 8, number 2, pages 39-49.

Stamelos, I. G. and Sfetsos, P. (2007), Agile Software Development Quality Assurance,
IGI Global.

Ambler, S. (2005). Quality in an agile world. Software Quality Professional, 7(4),34-40.
Chisholm, R. A. (2007), "Agile Software Development Methods and DO-178B

Certification", Master’s Thesis, Division of Graduate Studies of the Royal Military
College of Canada.

VanderLeest, S. H. and Buter, A. (2009) "Escape the waterfall: Agile for aerospace".
28th Digital Avionics Systems Conference, Orlando, USA.

Santana, C. and Nunes A. (2014) "Using Nokia Test to Evaluating Quality and
Productivity on Scrum-CMMI Environments". Workshop Brasileiro sobre Métodos
Ágeis (WBMA 2014), Florianópolis, Brazil.

Chenu, E. (2009) "Agility and Lean for Avionics". Lean, Agile Approach to High-
Integrity Software Conference, Paris, France.

Wils, A., Van Baelen, S., Holvoet, T. and de Vlaminck, K. (2006) "Agility in the
Avionics Software World". XP 2006, Oulu, Finland.

Rierson, L. (2013). Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. CRC Press.

Gomes, André F. (2013). "Agile: Desenvolvimento de software com entregas frequentes
e foco no valor de negócio". Casa do Código.

Schwaber, K. and Sutherland, J. (2013). "The Scrum Guide.". Available at
<www.scrumguides.org>, accessed in May 2015.

XIV Simpósio Brasileiro de Qualidade de Software / XIV Brazilian Symposium on Software Quality
 Relatos de Experiência / Experience reports

211

