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Abstract. Software Product Lines (SPL) testing techniques are commonly fo-
cused on handling variability from a high level abstraction perspective, despite
the importance of understanding the nature of issues emerging from source code
that could affect the overall quality of products. In this investigation, we present
a framework aimed to handle such a neglected issue by augmenting an SPL
testing process with fault modeling support. Fault modeling is an strategy em-
ployed to capture the behaviour of the system against faults. By understanding
the nature of faults before developing the tests might improve the likelihood of
finding particular classes of errors. The proposed framework encompasses test
assessment, to evaluate the effectiveness of existing test suites, and test design,
by focusing on fault-prone elements. We carried out a controlled experiment to
assess the test effectiveness of the proposed framework. Software engineers from
an industrial partner acted as subjects. The assessment has shown promising
results that confirm the hypothesis that combining fault models in an SPL testing
process performs significantly better on improving the quality of test inputs.

1. Introduction
Software Product Lines (SPL) engineering has proved to be an important strategy to cope
with the diversity of customer needs. Owing to the use of mechanisms to implement
variability, instead of offering a single product as a compromise of the varying needs,
SPL engineering enables companies to offer several products with slightly varying capa-
bilities. Instead of developing products independently, the products of a product line
are developed by reusing existing product line assets in a prescribed way; these as-
sets include software components, requirements, test cases, and other reusable artifacts
[Clements and Northrop 2001].

A required activity in SPL engineering is to ensure that an artifact holds an ade-
quate level of quality, as it is likely to be used in a range of different product configurations
[Pohl et al. 2005]. In this effect, SPL engineering demands cost-effective quality assur-
ance techniques that attempt to minimize the overall effort, while improving, or at least
not worsening, fault detection rates. There are many well-known quality assurance tech-
niques such as reviews or testing. However, in industry, software testing is still the most
prevalent quality assurance technique [Ammann and Offutt 2008].

Although not as mature as in single-system development, software testing has
evolved in SPL engineering, in a range of topics [Machado et al. 2014a]. The demand for
specific SPL testing approaches has led the research community to increasingly propose
novel techniques, methods, and tools, as earlier discussed in [Neto et al. 2011]. When
analyzing existing literature on SPL testing [Machado et al. 2014a], we might observe
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two main groups of interests: (i) Selecting instances of products for testing - verifies
if the features of a product work properly together. It handles how the assets can be
combined so that valid products can be composed; and (ii) Testing actual products -
verifies if the features fulfill their specifications, i.e., it deals with the actual functionalities
of built assets.

Both interests are important and one should not advance completely towards one
overlooking the other. Notwithstanding, in practice it is not always observed. The re-
search community has largely investigated the former, with a range of formalized tech-
niques, some of them even including strong evidence from large-scale SPL projects
[Machado et al. 2014a]. In the latter, techniques do not take into consideration fine-
grained variability issues, when desigining testing assets. The overall focus has been
on modeling variability in the problem domain, leaving aside the variability support at the
solution domain [Machado et al. 2014b].

We might enlist two main likely reasons to explain this phenomenon: (i) the un-
derlying assumptions of most SPL testing techniques is that, handling tests at source code
level is a straighforward task, and as such, techniques from single system development
suffices; and (ii) the challenge of handling variabilities is more easily addressed at higher
levels of abstractions (e.g., through models), rather than at low levels (i.e., at source code).
Given that models are more abstract and less detailed than source code, variability is likely
less scattered, what simplifies its management.

However, while such a simplification shall facilitate the understanding of how to
compose features in order to build a product instance, it is rather important to manage
variability at source code level, given that it holds an important role in establishing vari-
able behavior. Indeed, no empirical evidence can be found in the literature to ensure that
such a statement is not a simple guess [Machado et al. 2014a, Neto et al. 2011].

By considering existing testing support for SPL engineering, and the SPL de-
mands, the central problem we seek to address in this investigation is the lack of adequate
support for the low-level variability testing in SPL engineering. More than verifying
whether the features fulfill their specifications, or whether the features of a product work
properly together, what usually do not have to do with source code, but high-level mod-
els instead, the challenge is to establish an understanding on how testing an SPL could
benefit from the variability awareness. That is, not only using variability to define high-
level tests, but also to deal with the source code particularities, so as to enable better fault
coverage still while developing the artifacts.

In this sense, we developed a framework for building fault models to support test-
ing in SPL engineering, surrounding low-level variability implementation issues. The
goal is to establish an affordable strategy to design effective test cases that prioritize
the fault-prone parts in a system implemented relying on different variability mecha-
nisms. In general, a fault model is an engineering model of something that could go
wrong in the construction or operation of a piece of equipment, structure, or software
[Martin and Xie 2007]. In SPL testing, the objective is to modeling source code state-
ments that could be faulty when implementing variations in an SPL project.
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2. Background

Experienced software engineers, when designing test sets, may have in mind where the
hotspots in the project are. Hotspots are herein considered as the points in the software
where most problems are likely to occur, and as a consequence, where most effort should
be expended. In this sense, while it is possible that test design may be carried out without
any fault modeling support, it is not true that a common testing strategy does not involve
fault models, at least implicitly.

It is rather important to build models that reflect the occurrence of faults, so that
testing activities can be planned more realistically and effectively. In line with information
on the nature of faults, another testing strategy may emerge. It consists of fault modeling.
It is tied to the idea of building fault dictionaries to augment the efficacy of testing, thus
improving the overall quality of the delivered software.

Due to the complexity present in the cause-effect relationship of faulty software
components, it becomes apparent that a fault model has a broader meaning. In this work,
we consider that a fault model is a description of the behavior of, and assumptions about,
how components in a faulty system behave. A fault model provides testers with specific
fault types for which to search based on the types of technologies used and the activities
that have preceded the tests, such as requirements specification, design, and implementa-
tion. Tests or review scenarios are written to search for each possible type of fault.

A fault model describes the space of erroneous behaviors which can be expected as
a result of an error. Such a description consists of a fault list or dictionary. From the fault
list/dictionary, faults can be selected, and test inputs can be developed [McGregor 2008].
It is an effective means to design test cases that have a high probability of revealing
faults [Martin and Xie 2007]. The tester with access to a fault model and the frequency
of occurrence of fault types could use this information as the basis for generating fault
hypotheses and test cases, aiming at building a minimal complete test suite.

Determining the frequency occurrence should rely on the extensive analysis of
historical data, encompassing a collection of experience, in terms of common faults, about
the scenario under analysis in a range of criteria, e.g., application domain, programming
language, structural complexity of the software, etc. In this effect, it is unlikely that a
generic fault model may emerge, that could be used in all scenarios. Fault models are
usually dependent on particular domains. However, when understanding the issues of a
particular domain, the interest is on the behaviour of the system under various common
faults. While the fault model support cannot guarantee the absence of a specific type of
fault, it can be used in assurance arguments that specific procedures have been used to
search for specific faults.

A measurement of the efficiency of a fault model can be defined as the ratio of
existing actual faults covered by testing the modeled faults. As more thorough fault mod-
els need higher test effort, because more possible faults have to be considered, a trade-off
between quality and cost of a test must be found in practice.

2.1. Fault models in the Software Development Life Cycle

Different fault models helps detecting defects that were introduced during different
phases, so that they could be fixed in the earlier stages of the projects avoiding rework.
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Thus, a fault management process could be defined as a means to determine where faults
are found and where they are introduced.

A template for a development phase description can be defined to support the
process. It comprises four elements of interest for the development phase, as follows:

• Faults expected - When defining a process each phase will propagate some faults
on to the next phase. The activities in the second phase should be created to
identify and handle these faults.

• Faults eliminated - The activities in each development phase may eliminate faults
that have been previously introduced.

• Faults introduced - Each phase of development has the potential to inject faults
into the product or its supporting artifacts. The nature of the phase determines
what is possible.

• Faults propagated - Faults that are either anticipated or introduced must either
be eliminated or they will be passed on to the following phase.

Artifacts created at one phase are passed on to, and used by, later phases. As
a consequence, any fault injected and not detected by the verification activities in that
particular phase is still in the artifact when it is used by the later phase. This action is
referred to as fault propagation.

When a fault is injected into a development artifact, such as architecture or pro-
gram code, that fault remains until it is recognized and removed. As the development
proceeds and the artifacts are used by later phases, a fault may cause errors that result in
additional faults being created in other artifacts. For example, a faulty requirement may
result in a fault in the architecture and several faulty test cases thereupon.

The Verification & Validation (V&V) activities of a development process are in-
tended to identify those faults. These activities should be planned with specific faults in
mind. Developing the V&V plan for a project is the point at which specific fault types
related to the technologies being used are mapped to the development process. This is the
point at which fault modeling becomes particularly interesting. At each phase, the V&V
activities will be defined in conjunction with the fault models. A process definition will be
a composition of phase definitions, as Figure 1 shows. The V&V activities in each phase
are the first line of defense. Expected fault types and introduced fault types are searched
for. Figure 1 depicts a classical waterfall process only for the purpose of presentation, as
a more iterative and incremental approach is more encouraged.

3. Conceptual Framework
SPL testing is focused on maximizing the quality of products delivered to customers while
reducing the cost of testing. Associated to the idea that a single problem within a feature
may have on the set of products that make use of it, the ultimate goal of an SPL testing
strategy is to avoid retesting feature in every single product instance derived from the
SPL. Thus, we may weight the importance of keeping features, both individually and in
conjunction, at an adequate level of quality.

Recall the generic fault model-based process earlier introduced in Figure 1. It is
possible to incorporate fault models in each SDLC phase, in order to guide the design of
artifacts, having in mind the likely mistakes an engineer can make, when in charge of such
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Figure 1. Software development life cycle enhanced with fault model support.

a task. The goal is to minimize the amount of faults that are propagated from one phase
to another. Indeed, later phases will also search for those faults that are expected to be
propagated from earlier ones. However, this is where the exponential problem comes into
play. Considering that a specification has a problem that had not been identified before
leaving to the design phase, and such a problem was then modeled as an architectural de-
sign, and, the problem earlier introduced in the specification phase had not been identified
again. Proceeding in the life cycle, the implementation is going to further materialize this
problem, that much probably will only be identified when testing is carried out.

Notwithstanding, while a complete fault model approach should consider all the
SDLC phases, the approach proposed in this present investigation narrowed down the
focus to investigate the problems that are likely to occur when implementing either the
source code or the test scripts. The preceding phases, such as requirements and design,
as well as other important SPL-related concerns (product derivation, process and man-
agement aspects) are left aside in this investigation. The literature on SPL engineering
has provided researchers with a large set of explicit activities and operations to follow
in the formulation of both specifications - comprising features and requirements, e.g.,
[Souza et al. 2013], and design - encompassing activities to assess the quality of the prod-
uct line architecture, e.g., [Nakagawa et al. 2011].

Figure 2 shows the overall SPL testing schema, enhanced by the fault modeling
support. It shows the relationship between the fault models and the test process. The
solid arrows represents a relationship among test tasks (design, execution, and reporting),
and between test phases and other elements (design, source code, fault models, test cases,
and knowledge base), highlighting which ones provide input to others. There are two
more kinds of relationships, represented by dashed arrows: (i) produces, that particularly
indicates that test cases are produced by the task test design, and (ii) uses, indicating that
some test phase/element makes use of any other element.

The fault models, by means of their associated fault dictionaries, will be mainly
used to support the design of test cases. The dictionaries pinpoint which faults are more
likely to occur, given a particular variability mechanism, involved in the source code
implementation. To this end, fault models should be aware of variability mechanisms
used in the project.
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Figure 2. Overview of the SPL testing schema.

As a living document, as new faults are found that have not been listed in the fault
model, an analysis on the problem should be undertaken, so as to enable its incorporation.
The feedback arrow from the test reporting task to the knowledge base repository illus-
trates such a task. The idea behind a knowledge base comes from the fact that all fault
models can evolve to include novel constructs. It might be compared to design patterns
[Gamma et al. 1995], where known problems are modeled to avoid repeating the prob-
lem. Likewise design patterns, in which developers are provided with usage scenarios,
every fault model is expected to accomplish a real application scenario.

A fault model contains historical data about commonly occurring errors, with data
coming from two main sources: (i) data from the same project under evaluation, in case
past test runs have provided the knowledge base (c.f. Fig. 2) with appropriate feedback,
or (2) from a historical database, which encompasses knowledge from other projects im-
plemented in similar conditions, in terms of project domain, size, programming language,
etc. All such information might influence the fault distribution and occurrence, and should
be taken into account accordingly.

3.1. Fault modeling for test suite evaluation

In this perspective, we assume that an SPL project already comes with a test suite. As a
consequence, every product instance may comprise a subset of the SPL test suite. Con-
sidering we are strictly working in testing variability mechanisms implemented in Java
programming language, we could consider test suites as a set of test scripts, implemented
in any widely used test automation framework such as the JUnit.

This first perspective is aimed at employing fault models to evaluate the effective-
ness of the existing test sets.

Let S be a set of N tuples {(F0, T0), (F1, T1), ..., (Fn�1, Tn�1)}, where F is the set
of features and T the set of test suites of an SPL, and F

i

and T
i

are valid subsets of F and
T , respectively. A program P

i

2 S is a runnable instance of this SPL. P
i

is not an actual
product instance, but it is rather a valid subset of features � ✓ F , or even a single feature
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f
j

2 F , that can be tested as an isolated instance. Hereinafter, each P
i

will be referred to
as a program i under test (PUT

i

).

Each feature f
j

2 F may be associated to a set of tests t
j

2 T . Let R be a
subset of T , then there is a function X(f

j

) : F ! R, which represents the set of test
cases that are suitable to a feature f

j

. Each feature f
j

also holds information about the
variability mechanisms VM = {vm0, vm1, ..., vmn

} employed to implement variability
in the feature. As we intend to take into account variability information, we consider that
a variability implementation mechanism vm 2 VM can be associated to a set of fault
models FM = {fm0, fm1, ..., fmp

}, so that Y (vm) : VM ! S
FM

, where S
FM

is a
subset of FM .

A fault model fm
i

subsumes information about fault types to search for when
testing a program P which uses it. Building a fault model consists of analyzing histor-
ical data to understand which fault types, and associated faults, are occurring in a given
variability mechanism, and in which frequency range.

Now, let S be the program specification S represented schematically as S `
{8inputs, 9output | spec(input, output)}, where input is a vector of arguments, output
is an expected result and spec is a proposition function describing the required relation
between them. Hence, a program P under test (PUT) is a 3-tuple (X, Y, S). Testing P
consists of checking that the behavior of an implementation, its actual output is conform
to its specification, namely its expected output (the output from function spec above),
given a set of inputs.

Hence, to carry out a test evaluation, a subset of features � will be selected. Each
f
i

✓ � is associated to a set R of test cases. These are developer tests, i.e., those de-
velopers design to test their code as they write it, as opposed to the tests carried out by
third-party testers. Developer testing, often in the form of unit or integration tests, helps
developers to both gain high confidence in the program unit (e.g., a class) under test while
they are writing it, and reduce fault-fixing cost by detecting faults early when they are
freshly introduced in the program unit [Xiao et al. 2012]. However, as we are dealing
with features composed of one or more classes, we also consider the integration test level.
While a unit test is usually a sequence of method calls on an object instance, therefore the
main components are method and constructor calls, an integration test involves interfaces
between components, and, from a broader perspective, the likely interaction between fea-
tures, whenever a feature depends upon calling an external object.

Furthermore, as each f
i

✓ � holds information about the variability implemen-
tation mechanism, then let faultModels(vm) be a function that returns a list containing
the classes of errors of the fault models that are appropriate to the mechanism vm used
to implement f

i

. Besides, let ⌧(P,R) be a function that executes test cases t
i

⇢ R on
program P against the specifications S and returns the outcome of the test execution.

In the assessment schema, we include a task called fault injection, and a repository
called mutation operators. We can use a set of mutation operators to describe all expected
errors, and therefore defines the behavioral fault model. The proposed approach does not
make distinctions, for the time being, between static and dynamic fault injection. Given
that we combine mutation analysis and fault injection techniques, we could be inclined
to narrow down the focus to the former. However, it is important to mention that a wide
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variety of faults listed in the fault models can be dynamically emulated as well.

Given a set of test cases T , the fault models may indicate some mutation operators
to program P to produce a modified version, a mutant P 0. A set of representative faults,
suggested by the fault models, are injected into the code of P . Hence, let function ⌧(P, T )
be executed. Then, it will be possible to measure the adequacy of test cases, i.e., a test
case is adequate if it is effective at detecting faults in the program [Offutt et al. 2001].

The mutants are run with input data from a given test set T . If a test set can
distinguish a mutant P 0 from the original program P , i.e., it produces a different output,
the mutant P 0 is said to be killed. Otherwise, the mutant is called as a live mutant. That is,
if after modifying the source code, with the set of mutatns, the same output is observed,
it means that the test cases are not adequate enough. Conversely, a test set which can kill
all non-equivalent mutants is said to be adequate. That can be explained by the mutant
score calculation, as follows.

Mutation score ms(P, T ) is defined as the ratio between the number of mutants de-
tected and the total number of mutants minus the equivalent ones [Jia and Harman 2011].
A mutant is said to be equivalent if it syntacticaly differs from the original program, but
semantically the mutation can not be detected. A test set T is mutation adequate if its
mutation score is 100%. The score can be calculated as follows:

ms(P, T ) = 100 ⇤ DM(P, T )

MT (P )

where DM(P, T ) is the number of mutants killed by T ; and MT (P ) is the total number
of mutants generated from P .

Fault models are expected to increase the probability of finding a given fault as
the associated metric. However, this attribute should really reflect the percentage of faults
that the technique can detect.

3.2. Fault modeling for test suite design

The second perspective encompasses the fault modeling support for test design purposes.
Relying primarily on a prioritization strategy, test design seeks to identify what to look at
prior to testing.

There exists a bunch of formalized test prioritization techniques, as deeply dis-
cussed in [Catal and Mishra 2012]. Most of them are concerned about establishing effec-
tive means to improve test case selection aimed at regression testing. They are usually
concerned about analyzing past historical data about modules structure (e.g., size, cou-
pling, etc), bugs reported, bug fixing modifications, and general maintenance modifica-
tions. Based on such data, some heuristics are calculated that enable prioritization.

Our goal is not to propose a novel test case prioritization strategy. Indeed, this
perspective aims at prioritizing the units for testing, not the test cases themselves, as they
do not exist yet.

Figure 3 shows an overview of the test design schema. There is a task
called prioritize units. We followed the prioritization principles first introduced in
[Rothermel et al. 2001]. The heuristic defines that each unit in the source code will be
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Figure 3. Schema for test set design.

attributed to a weight, namely an integer value. In this sense, a feature f
i

is composed of a
set of units u

i

2 U , where U is the set of all implementation units of the SPL. Following
the ideas of generating unit tests described by [Fraser and Zeller 2012], and tailoring it to
encompass integration concerns, as it may illustrate how variable entities should interact
with each other, let a unit be a 6-tuple u = (cs,ms, fs, ps, ci, ce), with all values of type
integer, where:

• cs is the number of constructor statements in a unit;
• ms is the number of method statements;
• ps is the number of primitive statements;
• ci is the number of calls to internal units, i.e., units from the same feature;
• ce is the number of calls to external units, i.e., units from other features.

The prioritization strategy consists of analyzing every attribute and weighting ev-
ery unit. We leverage a feature weight by summing all the values of each u element. The
principle is that the element with maximum weight is taken first, followed by the element
with the second highest weight, and so on. The running example presented in the next
Section illustrates how it can be done.

4. Evaluation
This section describes a controlled experiment aimed at evaluating the strength and
significance of the proposed fault modeling framework. We analyzed how the fault
models could support the testing of variable features in an SPL project. The experiment
was carried out in an industrial setting, involving seven experienced software engineers,
all of them familiar with the development of variant-rich software systems.

4.1. Experiment planning

This experimental study focused on answering the following research questions:
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Table 1. Hypothesis formulation

Null Hypothesis Alternative Hypothesis

H01 : µTCEFM
 µ

TCEAH
H11 : µTCEFM

> µ
TCEAH

H02 : µTCovFM
 µ

TCovAH
H12 : µTCovFM

> µ
TCovAH

H03 : µMSFM
 µ

MSAH
H13 : µMSFM

> µ
MSAH

Legend: AH - adhoc (without the support of fault models) — FM
- fault model supported test design

• RQ1. Does the use of fault models lead to best SPL testing results? This
question aims at investigating whether the fault model solution is worthwhile to
be used by practitioners.

• RQ2. Is the fault modeling approach helpful to uncover the prescribed faults?
Not only finding more errors, but finding those that were actually pointed out by
the fault models might be another measure of effectivenes.

We applied the Mutation Score (MS) calculation, to assess whether the fault mod-
els help identifying the expected fault types, as earlier explained, and also the Test Case
Effectiveness (TCE), Test Coverage (TCov) metrics [Machado et al. 2012a], as explained
next.

TCE: The more defects test cases find, the more effective they are. It is defined
as the ratio of defects found by test cases to the total number of defects reported during a
test cycle. We tailored such measure to our context, so that (TCE) is defined as the ratio
of the amount of defects (D

tot

) reported to the total number of test cases (N
tc

). This value
provides insights on the effectiveness of functional test cases. TCE calculations can be

defined as: TCE =
D

tot

N
tc

.

TCov: It gives the fraction of all code elements covered by a selected number of
test cases or a complete test suite. We assume C

ov

as the basic blocks coverage generated
by the Eclemma1 code coverage tool.

Hypotheses.The use of fault models to anticipate hotspots for testing is assumed
to yield better fault coverage, improving the software testing activity. Thus, we formalized
the definition of the null and alternative hypotheses that drive this investigation. Table 1
shows both the null (H0n) and alternative (H1n) hypotheses.

Variables. As independent variables we considered the designed test cases and
the background experience of the participants. The dependent variables are the set of
uncovered faults.

Subjects. The subjects were chosen based on convenience sampling. We ran-
domly selected a set of software engineers from a partner company from Salvador, Brazil2,
a 15-year-old software house, mostly working in the domain of learning environments and
educational systems.

1
http://www.eclemma.org/

2Recôncavo Institute of Technology. http://reconcavotecnologia.org.br/.
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We randomly selected seven software engineers, experienced in software devel-
opment with Java programming language. All of them had at least three years of industry
experience. We provided them with training sessions on the topic, in which they could
learn from us how to systematically reuse their developed software artifacts, and next,
some of them were selected to serve as subjects in this evaluation.

Instrumentation. The instruments used are the consent form, background and
feedback questionnaires, and the source code and documentation of the SPL project un-
der evaluation. We used a Java-based SPL, called PL SimElevator. The project consists of
an SPL aimed at simulating the operation of an elevator controller. Variability in the SPL
was implemented using the following variability mechanisms [Svahnberg et al. 2005]: in-
heritance, polymorphism and encapsulation. The project comprises over 3,500 lines of
code, 12 packages, 32 classes, and 11 optional features. From this SPL, distinct variants
of elevator controllers can be generated, to meet different product configurations. Some
of the variants are bound at compile-time, while others necessarily at runtime.

Design. We employed a completely randomized design, with one factor with two
treatments. We compared the two treatments against each other, namely test design with
and without the support of fault models. The participants were randomly arranged into
groups. The control group applied software testing techniques they commonly use in their
daily tasks as software developers (unit and integration tests). The experiment group used
the fault lists/dictionaries from the fault models available to them.

4.2. Experiment operation
The participants were all given an 1-hour-introductory lecture.The participants also had
a 3-hour-introductory lecture on SPL engineering. In addition, a 4-hour-training session
was undertaken, when they could become familiar with the SPL project. All participants
had the opportunity to practising their own test design strategy.

During the experiment session, the participants had about four hours to com-
plete the task, which consisted of designing and implementing JUnit test cases.They
had to analyze the source code, and implement unit and integration test cases from
the source code.We intended to simulate a real testing environment, hence the par-
ticipants were told to implement both unit [Machado et al. 2011] and integration tests
[Machado et al. 2012b]. These are usually tests a developer implement to either execute
a specific functionality in the code (unit) or test the behavior of a component or the in-
tegration between a set of components (integration). The participants could implement
mocks whenever a method depended on other parts of the system, not available to them.

The participants had to design test cases to handle the SPL. In this sense, their
must cover the more variation points they could, from the set of packages previously
mentioned. The idea was to design the test cases thinking of their further reusability. The
test effectiveness would be measured by considering the capability of a test case to be
reused in other product instances, and also its capability of uncovering defects. Hence,
they were recommended to design domain test cases, to cover commonalities and proceed
with the capabilities of each variability mechanism to enable further specializations when
a variant was present.

Fault injection. In order to measure the effectiveness of designed test cases,
we emulated faults in the source code.They represent some of the commonly occurring
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problems when implementing variability using Java constructs. The selected modules
represent suitable locations for emulating some of the desired types of faults. It means a
fault was identified and classified according to an operator library of type of faults. Indeed,
the faults should only be emulated where they could actually exist in the compiled code,
considering the logic of programming structures.

4.3. Analysis and interpretation

This section presents the statistical analysis of the gathered data, collected from the test
cases implemented by the participants, and the defect log report they filled out during the
experiment session. Each defect found in each log was analyzed to check whether they
represented an actual defect. False positives were discarded from the final analysis.

4.3.1. Does the use of fault models lead to best variability testing results?

By applying a randomized design, we assigned the participants to two different groups:
Group A (ad-hoc testing): P3, P4, P5, P6; Group B (fault model support): P1, P2, P7.
As we observed an expertise homogeneity, and especially for the small number of partic-
ipants, we did not make the effort to achieve an even distribution of participants.

The results indicate a higher mean value for the TCE calculations for the group
which employed the notion of fault models for test case design: 0.504 with a sd of 0.182,
against 0.343, with a sd of 0.078. When the participant implemented a test case, he should
have in mind its reuse potential. That is, a test case aimed at a class c can be reused in
any product configuration containing such a class. Hence, the results may demonstrate
the reuse capability of the set of designed test cases.

The descriptive statistics for each product is as follows. Premium: Group A
(mean: 29.525, sd: 19.145), Group B (mean: 36.500, sd: 22.035); Enhanced: Group
A (mean: 28.450, sd: 18.034), Group B (mean: 26.167, sd: 16.614); Simple: Group
A (mean: 22.000, sd: 14.288), Group B (mean: 23.833, sd: 37.302). Group B reached
better mean for the first two products, while Group A for the third one. It may indicate
that the more variability the source code includes the more useful the fault model can be.

4.3.2. Is the fault modeling approach helpful to uncover the prescribed faults?

The ultimate goal of using fault models is to reduce the number of test cases designed.
Besides, the idea is to uncover the more defects with less test cases. In order to investigate
the effects of using a fault modeling approach, we calculated the accuracy of the fault
models at uncovering the fault types they were expected to. By analyzing the mean values
of groups A and B, respectively 6.675 (sd: 2.735) and 17.800 (sd: 1.905), the group of
participants using a fault model had better results.

4.3.3. Hypothesis testing

The hypotheses were tested using a standard paired t-test with a 95% confidence level.
We calculated the t-test to compare the two treatments against all metrics. Table 2 shows
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Table 2. t-test results.
metric t df p-value n

TCE 1.434 2.549 0.262
TCOV Premium 0.438 4.042 0.684
TCOV Enhanced 0.173 4.667 0.870

TCOV Simple 0.081 2.445 0.942
ms 6.338 4.999 0.001

7

the results for all three metrics. We may observe a significant difference between the ms
score of both groups A and B. It may indicate that programmers using fault models can
achieve higher accuracy on finding the faults they are searching for. Such an observation
enable us to refute the null hypothesis H03. However, the same does not hold true for
the remainder hypothesis. Although descriptive statistics showed better results for the
group undertaking the task with the fault model support, we have not found evidence of
a statistically significant difference for the hypotheses H01 and H02, what prevent us to
make any conclusions about such findings.

4.4. Threats to Validity

A general threat to conclusion validity observed in the experiment is the small number of
samples, which may reduce the ability to reveal real patterns in the data as well as to estab-
lish the true strength of the relationship between variables. Such an observation may also
reduce the statistical power. The analysis and interpretation of the results was described
using descriptive statistics and a parametric test was employed. While the choice of a
nonparametric statistic over the parametric one should be used, especially for the small
sample, the literature indicates the choice of the latter as being more robust considering
the data type collected in the experiment [Briand et al. 1996], and the kind of analysis
to be applied. It is worth mentioning that no extreme violation of the assumptions was
identified in the collected data.

Regarding internal validity, the instruments used in the experiment may emerge
as a source of a discussions. We should consider the project employed in the analysis as
a factor that may have affected the results. For instance, the source code might contain an
additional set of issues, other than those injected faults (expected to be uncovered by the
tests), so that those were also considered as valid defects. Regarding subjects selection,
as we carried out the experiment inside a software company, with software engineers we
were not aware of, prior to the study, we mitigated such a likely threat.

In our observation, we could consider two main threats that may affect the con-
struct validity. The first threat is that the measurements as defined may not be appropriate.
Besides, the pre-chosen fault models may not be representative or good enough for the
scenario under testing. These may limit the scope for the conclusions made to the use of
the fault modeling approach.

Besides, despite we counted on experienced software engineers as subjects, their
small number may limit generalisations of findings. This may pose a threat that affects
the external validity. However, as the study settings resembled a real testing scenario, the
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inferences about the use of fault models in SPL testing might be strengthen.

5. Concluding Remarks
Most existing SPL testing techniques are focused on handling variability testing at high
level of abstraction, e.g., through the analysis of feature models. Conversely, in this in-
vestigation we focused on issues emerging at source code level. That is, we handle vari-
ability testing at a lower level of abstraction, where the implementation mechanisms are
used consistently.

The contribution of this investigation consists of designing a framework to build
fault models capable of providing SPL testing with an adequate support, from two main
perspectives: test assessment - focused on the evaluation of the effectiveness of existing
test suites; and test design - focused on the construction of test sets, by leveraging fault-
prone elements. The goal of employing fault models is to support test case design with
a prioritization strategy, to focus on the hotspots in the source code, and consequently
anticipate the likely faults. Another role a fault model may perform is to evaluate existing
test suites effectiveness.

As a means to evaluate the capability of the proposed framework, we carried out
an empirical study, in which experienced software engineers could make use a set of fault
models to design a set of developer tests. The evaluation showed promising results. We
understand that there are many promising improvements opportunities. Hence, as future
work, we plan to investigate aspects of automation, addressing challenges of generating
desirable test inputs and checking the behavior of the features under test. In addition, we
plan to carry out empirical studies to better understand the role of fault models in other
domains and scenarios.
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