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Abstract. Organizations are becoming increasingly concerned about software 
quality. In object-oriented (OO) systems, quality is characterized by 
measurements of internal quality attributes. An efficient and proper method to 
analyze software quality in the absence of fault-prone or defective data labels 
is cluster analysis. The aim of this paper is to find similarities among project 
structures by measuring characteristics of internal software quality. In a 
sample of 150 open-source software systems, we evaluated software using 
macro and micro categories. Results obtained using cluster analysis indicated 
that some domains such as Graphics, Games, and Development tend to have 
similarities in specialization, abstraction, stability, and complexity. These 
results exploit the ability of OO software metrics to find similar behavior 
across domains. The results provide an immediate view of the trends and 
characteristics of internal software quality of Java systems that need to be 
addressed so that software systems can continue to be maintainable. 

1. Introduction 
Software quality assurance is a vital component of software development [Seliya; 
Khoshgoftaar, 2007]. Organizations around the world are growing increasingly 
concerned about software quality. However, software quality assurance activities are 
costly, taking up more than 50% of the project’s budget [Hildburn; Towhidnejad, 2002; 
Hamid; Hasan, 2010; Kannojia; Singh, 2013]. In this context, several alternatives have 
been studied to find efficient methods to obtain information on software quality.  

Software quality can be defined as the characteristics of products or services that 
satisfy the explicit and implicit needs of stakeholders [ISO/IEC 25010, 2011]. When the 
organization’s target is source code quality or its complexity, quality is defined as 
internal quality. Source code quality has a large impact on software quality and is 
essential to software maintainability [Plosch et al., 2007; Baggen et al., 2012]. One way 
to predict software quality is to evaluate key software attributes through software 
metrics [Kayarvizhy; Kanmani, 2011]. When metrics are specific, they can represent 
aspects and characteristics inherent to a programming technology, such as inheritance 
(object-oriented) [Tian et al., 2008]. One of the reasons that software development has 
evolved using object-oriented (OO) technology is the belief that the OO code has high 
quality and maintainability [Briand et al., 1997]. The classes of an OO project are 
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expected to have such characteristics because they are compilation units where the 
source code is developed. 

Despite the existence of several theories about what constitutes good OO design, 
only empirical studies on real system structure can provide tangible answers regarding a 
project’s quality [Briand et al., 2000]. The aim of this study is to identify similar 
characteristics among project structures, considering their different domains through 
software metrics. The underlying assumption is that software components with similar 
attributes will have similar quality characteristics [Seliya; Khoshgoftaar, 2007]. Cluster 
analysis has proven to be a suitable method to analyze software quality without fault-
prone or defective data labels [Zhong et al., 2004]. This analysis is expected to aid 
stakeholders in identifying needs and problems related to specific quality attributes of 
each project’s domains or categories [McMillan et al.; 2011; Souza; Maia, 2013]. Thus, 
this study intends to answer the following research question: 

Do the software domains have structural similarities with each other in aspects such as 
modularity, abstraction, stability, complexity, and specialization? 

The paper is organized as follows: A brief theoretical background is provided in 
Section 2. The methodology used to analyze the data is explained in Section 3. The 
analysis of results is discussed in Section 4. Related work is presented in Section 5. 
Threats to validity are shown in Section 6. Finally, the conclusion and suggestions for 
future work are provided in Section 7. 

2. Background 
In this section, software domains, metrics used to characterize OO software, and cluster 
analysis are discussed. 

2.1. Software Domains 
Software can be classified into different categories, and content is an important factor in 
determining their application or domain. Content is related to the meaning and form of 
the information input and output [McMillan et al., 2011; Souza; Maia, 2013]. The 
development of significant generic domains for software applications is a difficult task; 
as software complexity grows, specific domain characteristics become unclear 
[Pressman, 2009]. Software can be classified into eight main domains [Pressman, 2009] 
(Table 1). 

Table 1 Software Categories 
Domain Description 

System Software (SS) Collection of software to be used by other software (e.g., compilers, editors, and IDEs) 
Real-Time Software (RTS) Software to monitor, analyze, and control real-world events at the time they occur 
Business Software (BS) Software for information management to facilitate business operations and decision making 
Engineering and Scientific Software (ESS) Software characterized by conventional numerical algorithms 

Embedded Software (ES) Software that is read only by memory systems and used to control products and systems for 
industrial and consumer markets 

Personal Computer Software (PCS) Software used in personal daily tasks (e.g., word processing and spreadsheets) 
Web-Based Software (WBS) Software accessible on web pages by a browser with executable instructions and data 

Artificial Intelligence Software (AIS) Software developed with non-numerical algorithms for solving complex problems that cannot 
be solved by computation or simple analysis 

This arrangement presents a macro view of the concept of application domains, 
which can cause confusion. For example, software in the BS domain, such as 
management systems and inventory control, can be software for desktop computers. 
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Another classification of software has been suggested by Sourceforge, the most popular 
open-source software repository. Sourceforge has approximately 3.4 million users 
(developers) registered, almost 324,000 projects, and almost 4,722 commits/day. 
Sourceforge’s suggested classification is detailed, and it considers content and 
information. It groups software into 10 domains: Audio and Video (AV), Business and 
Enterprise (BE), Development (D), Games (G), Communication (C), Home and 
Education (HE), Graphics (GPH), Science and Engineering (SE), Security and Utilities 
(SU), and Systems Administration (SA). 

We used both classifications to identify areas that have similar characteristics in 
a general way and a more specific way. The macro categories are the first type of 
classification, and the micro categories are the second type of classification. 

2.2. Software Metrics 

Software metrics are used to categorize and quantify qualitative data of software or its 
internal and external specification value [ISO/IEC 25010, 2011]. Their main function is 
to help software professionals plan and predict software development and control 
quality and effort (quantified) for developing software. In general, software metrics can 
be classified into software product and software process metrics [Li, 2000]. In this 
paper, only software product metrics are addressed. 

At the end of the 1980s, several studies concluded that traditional software 
metrics were not sufficient to analyze and characterize OO software quality [Hamid; 
Hasan, 2010]. New metrics have been proposed to evaluate the structural quality of OO 
code [Chidamber; Kemerer, 1991; Li; Henry, 1993; Chidamber; Kemerer, 1994; Lorenz; 
Kidd, 1994; Bieman; Kang, 1995; Hitz; Montazeri, 1995; Lee et al., 1995; Briand et al., 
1997]. Such metrics are intended to provide a way to assess internal software quality.  

The first set of metrics for OO software was proposed by Chidamber and 
Kemerer (CK) [Chidamber; Kemerer, 1991; Chidamber; Kemerer, 1994]. This set is 
composed of six metrics: weighted method per class (WMC), coupling between objects 
(CBO), response for class (RFC), lack of cohesion of methods (LCOM), depth in 
inheritance tree (DIT), and number of children (NOC). These metrics reflect some OO 
mechanisms such as inheritance, association, aggregation, and polymorphism, but not 
all [Prasad; Nagar, 2009]. Thus, new metrics were proposed to complement the CK 
suite. Since a large number of software metrics are available in the literature, the CK 
suite and metrics proposed by McCabe (1976) (Cyclomatic Complexity), Li and Henry 
(1993), Lorenz and Kidd (1994), Bieman and Kang (1995), and Martin and Martin 
(2006) were used in this study. 

2.3. Cluster Analysis 
Several studies have used clustering to predict and identify software characteristics 
[Yang et al., 2006; Shanthin; Chandrasekaran, 2012]. This multivariate technique 
consists of finding groups that have similar elements and that are different from other 
groups of elements according to some similarity measures [Jiawei; Micheline, 2011]. 
This technique has four phases [Hair et al.; 2009, Muhammad et al., 2012] (Table 2). 

Cluster analysis was performed using Weka 3.6.10, an analytical tool developed 
by the University of Waikato. Statistical tests were conducted using four clustering 
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algorithms: i) K-means with the Euclidean similarity function (KM-E) [MacQueen, 
1967], ii) K-means with the Manhattan similarity function (KM-M) [Vaidya; Clifton, 
2003], iii) Expectation-Maximization (EM) clustering algorithm [Zhang et al., 1999], 
and iv) hierarchical clustering. These algorithms generated their own clusters using the 
same dataset. The produced results were then interpreted. 

Table 2 Phases of Cluster Analysis 
Phase Description 

Selection of entities The first step is to select entities to be grouped. In this study, 150 software systems were used and 
separated into macro and micro categories. 

Selection of grouping attributes 
Characteristics/attributes of entities that can be grouped are identified based on their similarity. In this 
case, the goal is to capture structural similarities/differences in source code using metrics as 
parameters that characterize internal quality factors. 

Selection of clustering algorithm As the initial research goal is to find similarities among software domains, clustering algorithms are 
used, particularly K-means (most common algorithm) and hierarchical clustering. 

Data interpretation 
A clustering solution that produces the lowest possible classification error is found. If the initial 
solution is likely to be a subject of optimization, the number of clusters should be reconsidered and 
the whole process should be repeated. 

3. Methodology 
In this section, the study design, data collection procedures, study variables, and 
hypotheses are described. 

3.1. Study Design 
The sample used was formed by open source Java software selected from two of the 
most popular repositories on the web: Github (https://github.com/) and Sourceforge 
(http://sourceforge.net/). The selection criteria were software with more than 50 stars 
(marked as a favorite by users) for Github and an assessment of over 3.5 stars for 
Sourceforge. These criteria were essential to eliminate “toy projects,” which can be 
described as personal software without adequate standardization. We collected 150 valid 
software systems for analysis, with a total of 12,178,587 lines of code and 69,334 
classes. These software systems were separated into macro and micro categories. 

Software systems selected from Github were arranged into micro categories 
based on the description of the system, provided on its web page, since the repository 
does not categorize software by domains. For example, if the project description is an 
API for application development on the Android platform, then it belongs to the D 
domain. Software systems were classified into macro categories based on the 
description of each domain. The software systems were compatible with only six 
domains. The STR and SE domains were discarded from the analysis.  

Internal quality characteristics are the dependent variable (variable to be 
explained [Hair et al., 2009]) in this study. The dependent variable is affected by 
changes in the independent variable [Hair et al., 2009]. Coupling, inheritance, 
complexity, cohesion, abstraction, and size metrics are the independent variables (Table 
3) in this study. To extract measures from the source code, we used the tools listed in 
Table 4. 

3.2. Hypotheses 
In this study, we tested the hypotheses (Table 5) based on the definition of each 

measure to answer questions about the design and similarity between projects. When 
software domains are considered, some metrics can have a few differences or significant 
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variations from project to project. The hypotheses formulated will help determine which 
metrics are relevant to a domain. Those that do not differentiate classes very well or fail 
to build well-defined clusters are unlikely to be useful predictors of similar 
characteristics in the study dataset. In positive cases, they should be in the same clusters. 

Table 3 Metrics Used 
# Metric Acronym Type Description Reference 

1 McCabe Cyclomatic 
Complexity VG Complexity Number of linearly independent paths in the code McCabe (1976) 

2 Weighted methods per class WMC Complexity Sum of the methods complexities defined in a class  
Chidamber; 

Kemerer (1991; 
1994) 

3 Number of overridden 
methods NOVM Inheritance Number of overridden methods of a class Lorenz; Kidd 

(1994) 

4 Number of children NOC Inheritance Number of classes that directly inherit from a given class 
Chidamber; 

Kemerer (1991; 
1994) 

5 Depth of inheritance tree DIT Inheritance Size of the longest path from a class to the root in the 
project hierarchy 

Chidamber; 
Kemerer (1991; 

1994) 

6 Specialization index SIX Inheritance (NOVM*DIT)/number of methods Lorenz; Kidd 
(1994) 

7 Lack of cohesion of methods LCOM Cohesion Number of pairs of methods in a class using no attribute 
in common 

Chidamber; 
Kemerer (1991; 

1994) 

8 Tight class cohesion TCC Cohesion Percentage of pairs of public methods of a class that are 
connected, i.e., directly or indirectly used as attributes. 

Bieman; Kang 
(1995) 

9 Afferent coupling CA Coupling Number of packages in other classes that rely inside the 
package. It is an indicator of package responsibility 

Martin; Martin 
(2006) 

10 Efferent coupling CE Coupling Number of other packages that the classes in the 
package depend 

Martin; Martin 
(2006) 

11 Instability RMI Coupling Indicator of the resilience of the package changes. 
Defined as I = CE / (EC + CA) 

Martin; Martin 
(2006) 

12 Coupling between objects CBO Coupling Number of classes that a class is referenced plus 
number of classes referencing the class. 

Chidamber; 
Kemerer (1991; 

1994) 

13 Response for class RFC Coupling 
Number of methods in the class (not including methods 

inherited) plus number of distinct methods called by 
methods of the class. 

Chidamber; 
Kemerer (1991; 

1994) 
14 Message passing coupling MPC Coupling Number of invocations in a class Li; Henry (1993) 

15 Data abstraction coupling DAC Coupling Number of attributes in a class that has another class as 
type Li; Henry (1993) 

16 Abstractness RMA Abstraction Ratio between the number of abstract classes (and 
interfaces) and the number of classes in the package. 

Martin; Martin 
(2006) 

17 Lines of code LOC Size Number of lines in a class - 
18 Number of classes NC Size Number of classes in a project - 
19 Number of methods NOM Size Number of methods in a class - 
20 Number of attributes NOA Size Number of attributes in a class - 

Table 4 Tools Used 
Tools Metrics 

Eclipse Metrics VG, WMC, NOVM, NOC, DIT, SIX, LCOM, CA, CE, RMI, RMA, NC, NOM, NOA 
Vizz Maintenance CBO, RFC, MPC, DAC, TCC, LOC 

4. Results 
In this section, we describe how analyses were performed and what algorithms were 
used to create the set of clusters and results, considering the algorithm with the lowest 
error rate. To perform the clustering analysis, we used KM-E, KM-M, EM, and 
hierarchical clustering. The number of clusters generated was four, since the results for 
these clusters produced the lowest error rate. Table 6 shows the error rate of the 
clustering algorithms for the proposed categories, considering all metrics in the dataset. 
The best result (lowest error rate) is highlighted in bold. KM-E, KM-M, and EM 
achieved the best performance based on the average error rate. 

If a group of variables in a dataset can produce heterogeneous clusters, these 
variables are likely to measure similarity between the objects to be tested. Three 
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algorithms had a similar average error. In this case, the algorithm chosen was the one 
with the lowest error rate in each analysis performed on all combinations of pairs of 
metrics. Results of the analyses will be shown using the algorithm that obtained the 
lowest error for each approach (macro and micro categories). 

 Table 5 Hypotheses 
Hypothesis Description 

H-Coupling and cohesion (CA, CE, RFC, 
CBO, DAC, MPC, TCC, and LCOM) 

H0: Software domains that have classes with high coupling and low cohesion are more 
likely to have dissimilar characteristics to software domains that have classes with low 
coupling and high cohesion. H1: Metrics selected are not capable of identifying 
characteristics among domains in relation to coupling and cohesion. This means that the 
behavior on coupling and cohesion are similar for all domains. The hypothesis is partially 
validated if a pair of metrics presents the expected behavior. 

H-Complexity and inheritance (VG, WMC, 
NOC, and DIT) 

H0: Software domains that have a larger inheritance hierarchy and more complex classes 
are more likely to have dissimilar characteristics to software domains that have a smaller 
inheritance hierarchy and less complex classes. H1: Metrics selected are not capable of 
identifying characteristics among domains in relation to complexity and inheritance. This 
means that the behavior on complexity and inheritance are similar for all domains. The 
hypothesis is partially validated if a pair of metrics presents the expected behavior. 

H-Complexity and size (VG, WMC, LOC, 
NOM, NC, and NOA) 

H0: Software domains that have a larger size and more complex classes are more likely to 
have dissimilar characteristics to software domains that have less complex classes. H1: 
Metrics selected are not capable of identifying characteristics among domains in relation to 
complexity and size. This means that the behavior on complexity and size are similar for all 
domains. The hypothesis is partially validated if a pair of metrics presents the expected 
behavior. 

H-Depth and descendants (DIT, NOC, RMI, 
and RMA) 

H0: Software domains that have classes located deeper in the inheritance hierarchy (less 
abstract) are more likely to have dissimilar characteristics to software domains that have 
less deep classes in the inheritance hierarchy (more abstract). H1: Metrics selected are not 
capable of identifying characteristics among domains in relation to inheritance and 
abstraction. This means that the behavior on inheritance and abstraction are similar for all 
domains. The hypothesis is partially validated if a pair of metrics presents the expected 
behavior. 

H-Complexity and overriding (NOVM, SIX, 
WMC, and VG) 

H0: The more overriding methods are used, the more complex it is to understand or test the 
class. Software domains that have more classes with overridden methods are more likely to 
have dissimilar characteristics to software domains with fewer classes with overridden 
methods. H1: Metrics selected are not capable of identifying characteristics among domains 
in relation to complexity and inheritance. This means that the behavior on complexity and 
inheritance are similar for all domains. The hypothesis is partially validated if a pair of 
metrics presents the behavior expected. 

H-Abstraction and stability (RMI and RMA) 

H0: Software domains that have more stable and abstract classes are more likely to have 
dissimilar characteristics to software domains that have less abstract and unstable classes.  
H1: Metrics selected are not capable of identifying characteristics among domains in 
relation to abstraction and coupling. This means that the behavior on abstraction and 
coupling are similar for all domains. Since these are just two metrics, there is no partial 
validation for this hypothesis.  

Table 6 Error Rate (%) Obtained by the Algorithms 
Database KM-E KM-M EM HC 

Micro 82% 83% 82% 87% 
Macro 60% 59% 60% 58% 

     

Average error 71% 71% 71% 73% 

4.1. Micro Categories 

In this subsection, we describe the analysis results for micro categories according to the 
five defined research hypotheses. For the analysis of micro categories, the KM-M 
algorithm obtained the lowest error. 
x H1-Coupling and cohesion (CA, CE, RFC, CBO, DAC, MPC, TCC, and 

LCOM): Using coupling and cohesion metrics as parameters for classifying clusters, 
none of the algorithms formed heterogeneous clusters. This indicates that these 
metrics are common and not relevant to finding similarities among projects. 

x H2-Complexity and inheritance (VG, WMC, NOC, and DIT): Using complexity 
and inheritance metrics as parameters for classifying clusters, none of the algorithms 
formed heterogeneous clusters. This indicates that these metrics are common and not 
relevant to finding similarities among projects. 

x H3-Depth and descendants (DIT, NOC, RMI, and RMA): Using inheritance, 
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abstraction, and coupling metrics as parameters for classifying clusters in pairs, only 
the pair DIT (Axis X) and RMI (Axis Y) showed good results with an error rate of 
82.7%, where Axis X is composed of the interval values measured for DIT and Axis 
Y is composed of the interval values measured for RMI (Figure 1). This result 
partially validates the hypothesis. Table 7 shows the different characteristics for each 
cluster: The SE domain is predominant in Cluster 0 (dark blue), the SU and GPH 
domains are predominant in Cluster 1 (red), the D and C domains are predominant in 
Cluster 2 (green), and the G and SA domains are predominant in Cluster 3 (light 
blue). Cluster 2 has elements with medium values for RMI and the lowest values for 
DIT in relation to the other three clusters. The behavior of Cluster 1 in the inheritance 
attribute is inversely related to that of Cluster 2, with higher values for DIT. This 
result indicates that the SU and GPH domains tend to have few abstract classes 
(more stability) and few descendants. On the other hand, the D and C domains tend 
to have a higher average number of descendants. The SE and BE domains seem to 
have a more balanced relationship between abstraction and inheritance. An analysis of 
Cluster 4 shows that most of the objects have an RMI close to 1, meaning the systems 
in the G and SA domains have more stable classes than the other clusters do. The 
existence of more abstract classes and interfaces allows the growth of direct 
descendants. Thus, the ratio between the number of abstract classes in the package and 
the number of classes in the package tends to be higher. 

 
Figure 1 Four-Cluster Solution with DIT (Axis X) and RMI (Axis Y) 

Table 7 Four-Cluster Solution Obtained with DIT and RMI 
Cluster G AV D C BE GPH HE SE SU SA 

0 4 4 4 3 8 6 6 10 4 2 
1 1 3 1 3 3 4 3 - 5 3 
2 5 4 6 5 2 4 3 2 4 5 
3 5 4 4 4 2 1 3 3 2 5 

x H4-Complexity and size (VG, WMC, LOC, NOM, NC, and NOA): Using 
complexity and size metrics as parameters for classifying clusters in pairs, WMC (Axis 
X) and LOC (Axis Y) showed good results with an error rate of 79.3%, where Axis X 
is composed of the interval values measured for WMC and Axis Y is composed of 
the interval values measured for LOC (Figure 2). This result partially validates the 
hypothesis. Table 8 shows the different characteristics of each cluster: The SE and 
GPH domains are predominant in Cluster 0 (dark blue), the SU domain is predominant 
in Cluster 1 (red), the BE domain is predominant in Cluster 2 (green), and the G, D, C, 
and SA domains are predominant in Cluster 3 (light blue). Clusters 1 and 2 have 
elements with medium values for WMC and the lowest values for LOC; Cluster 1 has 



Trabalhos Técnicos / Technical Papers  SBQS 2014 

216 

 
 

  

lower values than Cluster 2. This result indicates that systems in the SU and BE 
domains tend to have few lines of code, making the code less complex. Systems in the 
G, D, C, and SA domains tend to have the lowest average for both metrics. On the other 
hand, systems in the GPH and SE domains seem to have more lines of code, but only 
some objects have higher values for WMC. The hypothesis that bigger classes have 
more complex software cannot be validated in this analysis. 

x H5-Complexity and overriding (NOVM, SIX, WMC, and VG): Using complexity 
and inheritance metrics as parameters for classifying clusters, none of the algorithms 
formed heterogeneous clusters. This indicates that these metrics are common and not 
relevant to finding similarities among projects. 

 
Figure 2 Four-Cluster Solution with WMC (Axis X) and LOC (Axis Y) 

Table 8 Four-Cluster Solution Obtained with WMC and LOC  
Cluster G AV D C BE GPH HE SE SU SA 

0 1 3 2 1 2 4 2 4 - - 
1 1 3 2 4 2 2 4 3 9 3 
2 4 6 3 2 9 3 6 4 4 3 
3 9 3 8 8 2 6 3 4 2 9 

x H6-Abstraction and stability (RMI and RMA): Using RMI and RMA as 
parameters for classifying clusters in pairs, the results (84%) supported this 
hypothesis. Figure 3 shows the cluster solution, where Axis X is composed of the 
interval values measured for RMA and Axis Y is composed of the interval values 
measured for RMI. Table 9 shows the different characteristics for each cluster: The G 
domain is predominant in Cluster 0 (dark blue), the HE and SE domains are 
predominant in Cluster 1 (red), and the SU, SA, D, and BE domains are predominant 
in Cluster 2 (green). The G and SA domains tend to group elements in the same 
clusters. This behavior can be seen in Clusters 0 and 3. In Figure 3, Cluster 3 has 
high values for RMI and low values for RMA. Most of the elements of Clusters 0, 1, 
and 2 have average values for RMI, but only Cluster 0 has objects with values close 
to the medium value for RMA, based on metric results. This result indicates that the 
G domain tends to balance abstraction and stability better than other domains. 
Therefore, systems in the G domain, which appear in the SA domain in Cluster 3, 
have higher values for RMI. This arrangement indicates that classes of the systems in 
this domain tend to be very rigid, cannot be extended (not abstract), and can handle 
only small changes to remain stable. These indications are not ideal when software 
quality is the focus, because maintenance is difficult. If a line is drawn between the 
points [1, 1] (Figure 4), we can define the principal sequence. The points near this 
line are not abstract for their stability or unstable for their abstraction. This behavior 
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is ideal for ensuring system quality and maintainability. 
 

 
Figure 3 Four-Cluster Solution with RMA (Axis X) and RMI (Axis Y) 

Table 9 Four-Cluster Solution Obtained with RMA and RMI  
Cluster G AV D C BE GPH HE SE SU SA 

0 6 3 3 3 4 4 1 1 2 1 
1 1 5 3 6 5 7 8 8 6 4 
2 3 3 5 4 5 3 4 3 5 5 
3 5 4 4 2 1 1 2 3 2 5 

4.2. Macro Categories 

Results of the analysis using KM-E for macro categories are as follows: 
x H1-Coupling and cohesion (CA, CE, RFC, CBO, DAC, MPC, TCC, and LCOM): 

Using coupling and cohesion metrics as parameters for classifying clusters, none of the 
algorithms formed heterogeneous clusters. This indicates that the values of these 
metrics are common and not relevant to identifying similarities among projects. 

 
Figure 4 Dispersion of Elements in Principal Sequence for Micro-Category Analysis 

x H2-Complexity and inheritance (VG, WMC, NOC, and DIT): Using complexity 
and inheritance metrics as parameters for classifying clusters, none of the algorithms 
formed heterogeneous clusters. This indicates that the values of these metrics are 
common and not relevant to identifying similarities among projects. 

x H3-Depth and descendants (DIT, NOC, RMI, and RMA): Using inheritance, 
abstraction, and coupling metrics as parameters for classifying clusters in pairs, DIT 
(Axis X) and RMI (Axis Y) showed good results with an error rate of 68.5%, where 
Axis X is composed of the interval values measured for DIT and Axis Y is composed 
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of the interval values measured for RMI (Figure 5). This result partially validates the 
hypothesis. Table 10 shows the different characteristics for each cluster: The PCS 
domain is predominant in all clusters; the SS domain is predominant in Cluster 0 
(dark blue), Cluster 1 (red), and Cluster 2 (green); and the ESS domain is 
predominant in Cluster 3 (light blue). Despite having a smaller error for the same 
analysis for micro categories, this solution is less heterogeneous (Figure 5). The 
existence of more abstract classes and interfaces allows the growth of direct 
descendants. Regarding RMI concept, the ratio between the number of abstract 
classes in the package and the number of classes in the package tends to be higher. 
Systems in the PCS domain (composed of the AV, C, and GPH domains) tend to 
have more descendants and average stability in comparison with other systems of the 
same domain and systems of different domains. The SS domain has similar behavior 
those micro-categories, and is mainly composed of the D domain.  

x H4-Complexity and size (VG, WMC, LOC, NOM, NC, and NOA): Using 
complexity and size metrics as parameters for classifying clusters in pairs, WMC 
(Axis X) and LOC (Axis Y) showed good results with an error rate of 61.1%, where 
Axis X is composed of the interval values measured for WMC and Axis Y is 
composed of the interval values measured for LOC (Figure 6). This result partially 
validates the hypothesis. Table 11 shows the different characteristics for each cluster: 
The PCS domain is predominant in Cluster 0 (dark blue) and Cluster 3 (light blue), 
and the BS domain is predominant in Cluster 1 (red) and Cluster 2 (green). This 
solution is less heterogeneous than the same solution in micro categories (Figure 6). 
The PCS domain is composed of the AV, C, and GPH domains. Some systems (21 
systems) in the PCS domain have higher complexity and a higher average number of 
lines of code than other domains. The BS domain has more lines of code than the 
other domains, so it is the most extensive. 

x H5-Complexity and overriding (NOVM, SIX, WMC, and VG): Using complexity 
and inheritance metrics as parameters for classifying clusters, none of the algorithms 
formed heterogeneous clusters. This indicates that the values of these metrics are 
common and not relevant to identifying similarities among projects. 

 
Figure 5 Four-Cluster Solution with DIT (Axis X) and RMI (Axis Y) 

Table 10 Four-Cluster Solution Obtained with DIT and RMI 
Cluster SS BS ESS PCS WBS AIS 

0 11 2 3 18 1 4 
1 7 6 1 25 2 2 
2 7 1 3 10 - 3 
3 4 6 8 18 1 6 
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Figure 6 Four-Cluster Solution with WMC (Axis X) and LOC (Axis Y) 

Table 11 Four-Cluster Solution Obtained with WMC and LOC  
Cluster SS BS ESS PCS WBS AIS 

0 24 3 7 45 2 7 
1 1 3 2 1 - - 
2 1 7 2 4 2 4 
3 3 2 4 21 - 4 

x H6-Abstraction and stability (RMI and RMA): Using RMI and RMA as 
parameters for classifying clusters in pairs, the results (59.1%) supported this 
hypothesis, where Axis X is composed of the interval values measured for RMA and 
Axis Y is composed of the interval values measured for RMI. Table 12 shows the 
different characteristics for each cluster: The SS domain is predominant in Cluster 0 
(red), and the PCS domain is predominant in Cluster 1 (red). Despite having a 
smaller error for the same analysis for micro categories, this solution is less 
heterogeneous. In Figure 7, Cluster 3 (light blue) has average values for RMA and 
RMI. Although Cluster 3 has average results, these results are higher than those of 
the other clusters. Some of the elements of Cluster 2 (green) have values near 0 for 
RMA, indicating that some systems in the PCS domain have more abstract classes. If 
a line is drawn between the points [1, 1] (Figure 8), we can define the principal 
sequence. The points near this line are not abstract for their stability or unstable for 
their abstraction. This behavior is ideal for ensuring system quality and 
maintainability. 

 
Figure 7 Four-Cluster Solution with RMA (Axis X) and RMI (Axis Y) 

Table 12 Four-Cluster Solution with RMA and RMI  
Cluster SS BS ESS PCS WBS AIS 

0 15 3 6 12 2 8 
1 10 8 8 45 2 3 
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2 2 - - 8 - - 
3 2 4 1 9 - 4 

 
Figure 8 Dispersion of Elements in Principal Sequence for Macro-Category Analysis 

4.3. Discussion 
Regarding H-Depth and descendants, the results show that systems in the SU and GPH 
domains tend to have few abstract classes (more stability) and few descendants. The D 
and C domains tend to have a higher average number of descendants. For instance, 
systems in the SE and BE domains seem to have a more balanced relationship between 
abstraction and inheritance. Systems in the G and SA domains have more stable classes. 
However, this assumption may be valid partly because the metrics that produced 
heterogeneous clusters were the DIT x RMI combination. Thus, domains with classes 
located deeper in the inheritance hierarchy (less abstract), such as the D and C domains, 
are more likely to have dissimilar characteristics to software domains that have classes 
located less deep in the inheritance hierarchy (more abstract), such as the G, SA, BE, 
and SE domain. 

Regarding H-Abstraction and stability for micro categories, systems in the G and 
SA domains tend to have highly stable, concrete classes that are less prone to change, 
which may make the task of code maintenance of the systems difficult, directly affecting 
the internal quality. In addition, systems in the G domain tend to balance abstraction and 
stability better than the other domains. The idea is to design OO software to respect the 
Stable Abstractions Principle (SAP), in which a component is not too abstract or rigid to 
hinder changes. For macro categories, the result was partly similar, since part of the 
systems in the SA domain are classified as SS and PCS domains. The G domain 
composes the AIS domain. This hypothesis can be fully validated because RMI and 
RMA produced heterogeneous clusters for micro and macro categories. The behaviors 
analyzed in this study indicate that more efforts in these aspects are necessary so that 
systems can continue to be maintainable. However, the study has biases that we can 
consider threats to the validity of the results. 

5. Related Work 
The study of Dallal [2013] analyzed the relationship between internal quality attributes 
(size, cohesion, and coupling) and external quality attributes (maintainability in classes). 
Using statistical techniques, models were constructed using internal attributes (based on 
metric combinations) to predict maintainability in selected classes. The results indicate 
that developers can increase the maintainability (i.e., reduce maintenance efforts and 
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costs) of their classes by reducing the size and coupling and increasing cohesion. 
However, the number of metrics and the data collected from software projects were 
limited. In addition, the study used three software systems from three different domains, 
making it difficult to generalize the study results.  

Another study [Romano; Pinzger, 2011] aimed to investigate changes in Java 
interfaces and check if an interface has an impact on change in concrete and abstract 
classes. The authors found that the Service Interface Usage Cohesion (SIUC) metric 
(adapted to the OO concept) has a strong correlation with interface metrics than CK 
metrics. A third study [Malviya; Yadav, 2012] used the clustering technique for data 
mining projects to find OO sustainable systems (with high capacity for maintainability) 
using the K-means algorithm. The study covered 71 classes and 11 metrics including 
size metrics and the CK suite. Three clusters were found; the largest population of 
classes was grouped in the third cluster, which means the grouped classes were similar. 
However, the study was performed on one software system developed by Ada, so it may 
not represent the population of systems in the current IT industry. Authors of another 
study [Souza; Maia, 2013] proposed some reference values for a set of coupling metrics, 
considering software domains and evaluating 100 systems from the Sourcerer 
repository. The results showed that using reference values for systems from different 
domains may not be suitable to detect some characteristics. 

This study differs from the aforementioned ones because it proposes a model 
that explains the similarity among domains in OO internal software quality. It provides a 
more immediate view of the trends and characteristics of internal Java software quality. 

6. Threads to Validity 
In terms of construct validity, which is the degree to which the variables under study can 
accurately measure the concepts they purport to measure, some of the metrics selected 
could have characteristics validated by statistical tests, such as WMC, DIT, LOC, RMI, 
and RMA. The results indicate that these metrics are relevant to analyzing the project 
similarity (considering domains) and assessing internal software quality. However, for 
other metrics, it is possible that the clustering technique is not sufficient to completely 
validate and detect characteristics inherent in OO Java software projects. Regarding 
internal validity, the results demonstrate empirical evidence and the practical significance 
of the project similarities, but they do not provide in-depth technical details of the projects. 
Such details would require qualitative analysis. For example, a code inspection in classes 
of the SU, GPH, D, and C domains and problems with inheritance, modularity, 
abstraction, and complexity could be shown qualitatively. As a threat to external validity, 
the study analyzes only OO software developed in Java. 

7. Conclusion 
The study aims to find similarities among structures of projects through metrics that 
characterize the internal software quality. Statistical tests were performed on a sample of 
150 projects classified into macro and micro categories to identify which of these 
classifications provide better information on projects. Regarding the research question 
“Do the software domains have structural similarities with each other in aspects such 
as modularity, abstraction, stability, complexity, and specialization,” the results 
indicate that some specific domains tend to have similarities relating to four properties. 
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Systems in the SU and GPH domains have few descendants and few abstract classes. 
Software in the D and C domains can have similar characteristics in inheritance and 
abstraction, with a higher average number of descendants. Software in the SE and BE 
domains tend to make good use of inheritance. Software in the G and SA domains can 
have more stable classes and are harder to maintain due to the lack of flexibility in 
changes. Some software in the G and SA domains tend to have highly stable and 
concrete classes, which cannot be extended. Some software in the G domain tends to 
balance abstraction and stability better than the other domains.  

This study contributes to the field of software engineering through quantitative 
techniques that provide observations of structural aspects of OO development, such as 
specialization, stability, abstraction, and complexity. In addition, the study identifies 
metrics such as WMC, DIT, LOC, RMI, and RMA that are relevant to the 
characterization of Java internal software quality. For software developers, the study 
shows that some domains such as GPH, G, and D tend to have the same characteristics 
and that more efforts in these aspects are necessary so that systems can continue to be 
maintainable. For future work, we suggest repeating the analyses on a larger sample of 
software, using other repositories of available projects and other metrics of OO software 
to obtain new results on characteristics that have not yet been explored. 
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