
XIII Simpósio Brasileiro de Qualidade de Software

 209

Similar Characteristics of Internal Software Quality
Attributes for Object-Oriented Open-Source Software

Projects

Mariana Santos, Rodrigo Amador, Paulo Henrique de Souza Bermejo, Heitor
Costa

DCC - UFLA - Lavras - MG - Brazil
mariana@bsi.ufla.br, toluenotnt@gmail.com, bermejo@dcc.ufla.br

heitor@dcc.ufla.br

Abstract. Organizations are becoming increasingly concerned about software
quality. In object-oriented (OO) systems, quality is characterized by
measurements of internal quality attributes. An efficient and proper method to
analyze software quality in the absence of fault-prone or defective data labels
is cluster analysis. The aim of this paper is to find similarities among project
structures by measuring characteristics of internal software quality. In a
sample of 150 open-source software systems, we evaluated software using
macro and micro categories. Results obtained using cluster analysis indicated
that some domains such as Graphics, Games, and Development tend to have
similarities in specialization, abstraction, stability, and complexity. These
results exploit the ability of OO software metrics to find similar behavior
across domains. The results provide an immediate view of the trends and
characteristics of internal software quality of Java systems that need to be
addressed so that software systems can continue to be maintainable.

1. Introduction
Software quality assurance is a vital component of software development [Seliya;
Khoshgoftaar, 2007]. Organizations around the world are growing increasingly
concerned about software quality. However, software quality assurance activities are
costly, taking up more than 50% of the project’s budget [Hildburn; Towhidnejad, 2002;
Hamid; Hasan, 2010; Kannojia; Singh, 2013]. In this context, several alternatives have
been studied to find efficient methods to obtain information on software quality.

Software quality can be defined as the characteristics of products or services that
satisfy the explicit and implicit needs of stakeholders [ISO/IEC 25010, 2011]. When the
organization’s target is source code quality or its complexity, quality is defined as
internal quality. Source code quality has a large impact on software quality and is
essential to software maintainability [Plosch et al., 2007; Baggen et al., 2012]. One way
to predict software quality is to evaluate key software attributes through software
metrics [Kayarvizhy; Kanmani, 2011]. When metrics are specific, they can represent
aspects and characteristics inherent to a programming technology, such as inheritance
(object-oriented) [Tian et al., 2008]. One of the reasons that software development has
evolved using object-oriented (OO) technology is the belief that the OO code has high
quality and maintainability [Briand et al., 1997]. The classes of an OO project are

Trabalhos Técnicos / Technical Papers SBQS 2014

210

expected to have such characteristics because they are compilation units where the
source code is developed.

Despite the existence of several theories about what constitutes good OO design,
only empirical studies on real system structure can provide tangible answers regarding a
project’s quality [Briand et al., 2000]. The aim of this study is to identify similar
characteristics among project structures, considering their different domains through
software metrics. The underlying assumption is that software components with similar
attributes will have similar quality characteristics [Seliya; Khoshgoftaar, 2007]. Cluster
analysis has proven to be a suitable method to analyze software quality without fault-
prone or defective data labels [Zhong et al., 2004]. This analysis is expected to aid
stakeholders in identifying needs and problems related to specific quality attributes of
each project’s domains or categories [McMillan et al.; 2011; Souza; Maia, 2013]. Thus,
this study intends to answer the following research question:

Do the software domains have structural similarities with each other in aspects such as
modularity, abstraction, stability, complexity, and specialization?

The paper is organized as follows: A brief theoretical background is provided in
Section 2. The methodology used to analyze the data is explained in Section 3. The
analysis of results is discussed in Section 4. Related work is presented in Section 5.
Threats to validity are shown in Section 6. Finally, the conclusion and suggestions for
future work are provided in Section 7.

2. Background
In this section, software domains, metrics used to characterize OO software, and cluster
analysis are discussed.

2.1. Software Domains
Software can be classified into different categories, and content is an important factor in
determining their application or domain. Content is related to the meaning and form of
the information input and output [McMillan et al., 2011; Souza; Maia, 2013]. The
development of significant generic domains for software applications is a difficult task;
as software complexity grows, specific domain characteristics become unclear
[Pressman, 2009]. Software can be classified into eight main domains [Pressman, 2009]
(Table 1).

Table 1 Software Categories
Domain Description

System Software (SS) Collection of software to be used by other software (e.g., compilers, editors, and IDEs)
Real-Time Software (RTS) Software to monitor, analyze, and control real-world events at the time they occur
Business Software (BS) Software for information management to facilitate business operations and decision making
Engineering and Scientific Software (ESS) Software characterized by conventional numerical algorithms

Embedded Software (ES) Software that is read only by memory systems and used to control products and systems for
industrial and consumer markets

Personal Computer Software (PCS) Software used in personal daily tasks (e.g., word processing and spreadsheets)
Web-Based Software (WBS) Software accessible on web pages by a browser with executable instructions and data

Artificial Intelligence Software (AIS) Software developed with non-numerical algorithms for solving complex problems that cannot
be solved by computation or simple analysis

This arrangement presents a macro view of the concept of application domains,
which can cause confusion. For example, software in the BS domain, such as
management systems and inventory control, can be software for desktop computers.

XIII Simpósio Brasileiro de Qualidade de Software

 211

Another classification of software has been suggested by Sourceforge, the most popular
open-source software repository. Sourceforge has approximately 3.4 million users
(developers) registered, almost 324,000 projects, and almost 4,722 commits/day.
Sourceforge’s suggested classification is detailed, and it considers content and
information. It groups software into 10 domains: Audio and Video (AV), Business and
Enterprise (BE), Development (D), Games (G), Communication (C), Home and
Education (HE), Graphics (GPH), Science and Engineering (SE), Security and Utilities
(SU), and Systems Administration (SA).

We used both classifications to identify areas that have similar characteristics in
a general way and a more specific way. The macro categories are the first type of
classification, and the micro categories are the second type of classification.

2.2. Software Metrics

Software metrics are used to categorize and quantify qualitative data of software or its
internal and external specification value [ISO/IEC 25010, 2011]. Their main function is
to help software professionals plan and predict software development and control
quality and effort (quantified) for developing software. In general, software metrics can
be classified into software product and software process metrics [Li, 2000]. In this
paper, only software product metrics are addressed.

At the end of the 1980s, several studies concluded that traditional software
metrics were not sufficient to analyze and characterize OO software quality [Hamid;
Hasan, 2010]. New metrics have been proposed to evaluate the structural quality of OO
code [Chidamber; Kemerer, 1991; Li; Henry, 1993; Chidamber; Kemerer, 1994; Lorenz;
Kidd, 1994; Bieman; Kang, 1995; Hitz; Montazeri, 1995; Lee et al., 1995; Briand et al.,
1997]. Such metrics are intended to provide a way to assess internal software quality.

The first set of metrics for OO software was proposed by Chidamber and
Kemerer (CK) [Chidamber; Kemerer, 1991; Chidamber; Kemerer, 1994]. This set is
composed of six metrics: weighted method per class (WMC), coupling between objects
(CBO), response for class (RFC), lack of cohesion of methods (LCOM), depth in
inheritance tree (DIT), and number of children (NOC). These metrics reflect some OO
mechanisms such as inheritance, association, aggregation, and polymorphism, but not
all [Prasad; Nagar, 2009]. Thus, new metrics were proposed to complement the CK
suite. Since a large number of software metrics are available in the literature, the CK
suite and metrics proposed by McCabe (1976) (Cyclomatic Complexity), Li and Henry
(1993), Lorenz and Kidd (1994), Bieman and Kang (1995), and Martin and Martin
(2006) were used in this study.

2.3. Cluster Analysis
Several studies have used clustering to predict and identify software characteristics
[Yang et al., 2006; Shanthin; Chandrasekaran, 2012]. This multivariate technique
consists of finding groups that have similar elements and that are different from other
groups of elements according to some similarity measures [Jiawei; Micheline, 2011].
This technique has four phases [Hair et al.; 2009, Muhammad et al., 2012] (Table 2).

Cluster analysis was performed using Weka 3.6.10, an analytical tool developed
by the University of Waikato. Statistical tests were conducted using four clustering

Trabalhos Técnicos / Technical Papers SBQS 2014

212

algorithms: i) K-means with the Euclidean similarity function (KM-E) [MacQueen,
1967], ii) K-means with the Manhattan similarity function (KM-M) [Vaidya; Clifton,
2003], iii) Expectation-Maximization (EM) clustering algorithm [Zhang et al., 1999],
and iv) hierarchical clustering. These algorithms generated their own clusters using the
same dataset. The produced results were then interpreted.

Table 2 Phases of Cluster Analysis
Phase Description

Selection of entities The first step is to select entities to be grouped. In this study, 150 software systems were used and
separated into macro and micro categories.

Selection of grouping attributes
Characteristics/attributes of entities that can be grouped are identified based on their similarity. In this
case, the goal is to capture structural similarities/differences in source code using metrics as
parameters that characterize internal quality factors.

Selection of clustering algorithm As the initial research goal is to find similarities among software domains, clustering algorithms are
used, particularly K-means (most common algorithm) and hierarchical clustering.

Data interpretation
A clustering solution that produces the lowest possible classification error is found. If the initial
solution is likely to be a subject of optimization, the number of clusters should be reconsidered and
the whole process should be repeated.

3. Methodology
In this section, the study design, data collection procedures, study variables, and
hypotheses are described.

3.1. Study Design
The sample used was formed by open source Java software selected from two of the
most popular repositories on the web: Github (https://github.com/) and Sourceforge
(http://sourceforge.net/). The selection criteria were software with more than 50 stars
(marked as a favorite by users) for Github and an assessment of over 3.5 stars for
Sourceforge. These criteria were essential to eliminate “toy projects,” which can be
described as personal software without adequate standardization. We collected 150 valid
software systems for analysis, with a total of 12,178,587 lines of code and 69,334
classes. These software systems were separated into macro and micro categories.

Software systems selected from Github were arranged into micro categories
based on the description of the system, provided on its web page, since the repository
does not categorize software by domains. For example, if the project description is an
API for application development on the Android platform, then it belongs to the D
domain. Software systems were classified into macro categories based on the
description of each domain. The software systems were compatible with only six
domains. The STR and SE domains were discarded from the analysis.

Internal quality characteristics are the dependent variable (variable to be
explained [Hair et al., 2009]) in this study. The dependent variable is affected by
changes in the independent variable [Hair et al., 2009]. Coupling, inheritance,
complexity, cohesion, abstraction, and size metrics are the independent variables (Table
3) in this study. To extract measures from the source code, we used the tools listed in
Table 4.

3.2. Hypotheses
In this study, we tested the hypotheses (Table 5) based on the definition of each

measure to answer questions about the design and similarity between projects. When
software domains are considered, some metrics can have a few differences or significant

XIII Simpósio Brasileiro de Qualidade de Software

 213

variations from project to project. The hypotheses formulated will help determine which
metrics are relevant to a domain. Those that do not differentiate classes very well or fail
to build well-defined clusters are unlikely to be useful predictors of similar
characteristics in the study dataset. In positive cases, they should be in the same clusters.

Table 3 Metrics Used
Metric Acronym Type Description Reference

1 McCabe Cyclomatic
Complexity VG Complexity Number of linearly independent paths in the code McCabe (1976)

2 Weighted methods per class WMC Complexity Sum of the methods complexities defined in a class
Chidamber;

Kemerer (1991;
1994)

3 Number of overridden
methods NOVM Inheritance Number of overridden methods of a class Lorenz; Kidd

(1994)

4 Number of children NOC Inheritance Number of classes that directly inherit from a given class
Chidamber;

Kemerer (1991;
1994)

5 Depth of inheritance tree DIT Inheritance Size of the longest path from a class to the root in the
project hierarchy

Chidamber;
Kemerer (1991;

1994)

6 Specialization index SIX Inheritance (NOVM*DIT)/number of methods Lorenz; Kidd
(1994)

7 Lack of cohesion of methods LCOM Cohesion Number of pairs of methods in a class using no attribute
in common

Chidamber;
Kemerer (1991;

1994)

8 Tight class cohesion TCC Cohesion Percentage of pairs of public methods of a class that are
connected, i.e., directly or indirectly used as attributes.

Bieman; Kang
(1995)

9 Afferent coupling CA Coupling Number of packages in other classes that rely inside the
package. It is an indicator of package responsibility

Martin; Martin
(2006)

10 Efferent coupling CE Coupling Number of other packages that the classes in the
package depend

Martin; Martin
(2006)

11 Instability RMI Coupling Indicator of the resilience of the package changes.
Defined as I = CE / (EC + CA)

Martin; Martin
(2006)

12 Coupling between objects CBO Coupling Number of classes that a class is referenced plus
number of classes referencing the class.

Chidamber;
Kemerer (1991;

1994)

13 Response for class RFC Coupling
Number of methods in the class (not including methods

inherited) plus number of distinct methods called by
methods of the class.

Chidamber;
Kemerer (1991;

1994)
14 Message passing coupling MPC Coupling Number of invocations in a class Li; Henry (1993)

15 Data abstraction coupling DAC Coupling Number of attributes in a class that has another class as
type Li; Henry (1993)

16 Abstractness RMA Abstraction Ratio between the number of abstract classes (and
interfaces) and the number of classes in the package.

Martin; Martin
(2006)

17 Lines of code LOC Size Number of lines in a class -
18 Number of classes NC Size Number of classes in a project -
19 Number of methods NOM Size Number of methods in a class -
20 Number of attributes NOA Size Number of attributes in a class -

Table 4 Tools Used
Tools Metrics

Eclipse Metrics VG, WMC, NOVM, NOC, DIT, SIX, LCOM, CA, CE, RMI, RMA, NC, NOM, NOA
Vizz Maintenance CBO, RFC, MPC, DAC, TCC, LOC

4. Results
In this section, we describe how analyses were performed and what algorithms were
used to create the set of clusters and results, considering the algorithm with the lowest
error rate. To perform the clustering analysis, we used KM-E, KM-M, EM, and
hierarchical clustering. The number of clusters generated was four, since the results for
these clusters produced the lowest error rate. Table 6 shows the error rate of the
clustering algorithms for the proposed categories, considering all metrics in the dataset.
The best result (lowest error rate) is highlighted in bold. KM-E, KM-M, and EM
achieved the best performance based on the average error rate.

If a group of variables in a dataset can produce heterogeneous clusters, these
variables are likely to measure similarity between the objects to be tested. Three

Trabalhos Técnicos / Technical Papers SBQS 2014

214

algorithms had a similar average error. In this case, the algorithm chosen was the one
with the lowest error rate in each analysis performed on all combinations of pairs of
metrics. Results of the analyses will be shown using the algorithm that obtained the
lowest error for each approach (macro and micro categories).

 Table 5 Hypotheses
Hypothesis Description

H-Coupling and cohesion (CA, CE, RFC,
CBO, DAC, MPC, TCC, and LCOM)

H0: Software domains that have classes with high coupling and low cohesion are more
likely to have dissimilar characteristics to software domains that have classes with low
coupling and high cohesion. H1: Metrics selected are not capable of identifying
characteristics among domains in relation to coupling and cohesion. This means that the
behavior on coupling and cohesion are similar for all domains. The hypothesis is partially
validated if a pair of metrics presents the expected behavior.

H-Complexity and inheritance (VG, WMC,
NOC, and DIT)

H0: Software domains that have a larger inheritance hierarchy and more complex classes
are more likely to have dissimilar characteristics to software domains that have a smaller
inheritance hierarchy and less complex classes. H1: Metrics selected are not capable of
identifying characteristics among domains in relation to complexity and inheritance. This
means that the behavior on complexity and inheritance are similar for all domains. The
hypothesis is partially validated if a pair of metrics presents the expected behavior.

H-Complexity and size (VG, WMC, LOC,
NOM, NC, and NOA)

H0: Software domains that have a larger size and more complex classes are more likely to
have dissimilar characteristics to software domains that have less complex classes. H1:
Metrics selected are not capable of identifying characteristics among domains in relation to
complexity and size. This means that the behavior on complexity and size are similar for all
domains. The hypothesis is partially validated if a pair of metrics presents the expected
behavior.

H-Depth and descendants (DIT, NOC, RMI,
and RMA)

H0: Software domains that have classes located deeper in the inheritance hierarchy (less
abstract) are more likely to have dissimilar characteristics to software domains that have
less deep classes in the inheritance hierarchy (more abstract). H1: Metrics selected are not
capable of identifying characteristics among domains in relation to inheritance and
abstraction. This means that the behavior on inheritance and abstraction are similar for all
domains. The hypothesis is partially validated if a pair of metrics presents the expected
behavior.

H-Complexity and overriding (NOVM, SIX,
WMC, and VG)

H0: The more overriding methods are used, the more complex it is to understand or test the
class. Software domains that have more classes with overridden methods are more likely to
have dissimilar characteristics to software domains with fewer classes with overridden
methods. H1: Metrics selected are not capable of identifying characteristics among domains
in relation to complexity and inheritance. This means that the behavior on complexity and
inheritance are similar for all domains. The hypothesis is partially validated if a pair of
metrics presents the behavior expected.

H-Abstraction and stability (RMI and RMA)

H0: Software domains that have more stable and abstract classes are more likely to have
dissimilar characteristics to software domains that have less abstract and unstable classes.
H1: Metrics selected are not capable of identifying characteristics among domains in
relation to abstraction and coupling. This means that the behavior on abstraction and
coupling are similar for all domains. Since these are just two metrics, there is no partial
validation for this hypothesis.

Table 6 Error Rate (%) Obtained by the Algorithms
Database KM-E KM-M EM HC

Micro 82% 83% 82% 87%
Macro 60% 59% 60% 58%

Average error 71% 71% 71% 73%

4.1. Micro Categories

In this subsection, we describe the analysis results for micro categories according to the
five defined research hypotheses. For the analysis of micro categories, the KM-M
algorithm obtained the lowest error.
x H1-Coupling and cohesion (CA, CE, RFC, CBO, DAC, MPC, TCC, and

LCOM): Using coupling and cohesion metrics as parameters for classifying clusters,
none of the algorithms formed heterogeneous clusters. This indicates that these
metrics are common and not relevant to finding similarities among projects.

x H2-Complexity and inheritance (VG, WMC, NOC, and DIT): Using complexity
and inheritance metrics as parameters for classifying clusters, none of the algorithms
formed heterogeneous clusters. This indicates that these metrics are common and not
relevant to finding similarities among projects.

x H3-Depth and descendants (DIT, NOC, RMI, and RMA): Using inheritance,

XIII Simpósio Brasileiro de Qualidade de Software

 215

abstraction, and coupling metrics as parameters for classifying clusters in pairs, only
the pair DIT (Axis X) and RMI (Axis Y) showed good results with an error rate of
82.7%, where Axis X is composed of the interval values measured for DIT and Axis
Y is composed of the interval values measured for RMI (Figure 1). This result
partially validates the hypothesis. Table 7 shows the different characteristics for each
cluster: The SE domain is predominant in Cluster 0 (dark blue), the SU and GPH
domains are predominant in Cluster 1 (red), the D and C domains are predominant in
Cluster 2 (green), and the G and SA domains are predominant in Cluster 3 (light
blue). Cluster 2 has elements with medium values for RMI and the lowest values for
DIT in relation to the other three clusters. The behavior of Cluster 1 in the inheritance
attribute is inversely related to that of Cluster 2, with higher values for DIT. This
result indicates that the SU and GPH domains tend to have few abstract classes
(more stability) and few descendants. On the other hand, the D and C domains tend
to have a higher average number of descendants. The SE and BE domains seem to
have a more balanced relationship between abstraction and inheritance. An analysis of
Cluster 4 shows that most of the objects have an RMI close to 1, meaning the systems
in the G and SA domains have more stable classes than the other clusters do. The
existence of more abstract classes and interfaces allows the growth of direct
descendants. Thus, the ratio between the number of abstract classes in the package and
the number of classes in the package tends to be higher.

Figure 1 Four-Cluster Solution with DIT (Axis X) and RMI (Axis Y)

Table 7 Four-Cluster Solution Obtained with DIT and RMI
Cluster G AV D C BE GPH HE SE SU SA

0 4 4 4 3 8 6 6 10 4 2
1 1 3 1 3 3 4 3 - 5 3
2 5 4 6 5 2 4 3 2 4 5
3 5 4 4 4 2 1 3 3 2 5

x H4-Complexity and size (VG, WMC, LOC, NOM, NC, and NOA): Using
complexity and size metrics as parameters for classifying clusters in pairs, WMC (Axis
X) and LOC (Axis Y) showed good results with an error rate of 79.3%, where Axis X
is composed of the interval values measured for WMC and Axis Y is composed of
the interval values measured for LOC (Figure 2). This result partially validates the
hypothesis. Table 8 shows the different characteristics of each cluster: The SE and
GPH domains are predominant in Cluster 0 (dark blue), the SU domain is predominant
in Cluster 1 (red), the BE domain is predominant in Cluster 2 (green), and the G, D, C,
and SA domains are predominant in Cluster 3 (light blue). Clusters 1 and 2 have
elements with medium values for WMC and the lowest values for LOC; Cluster 1 has

Trabalhos Técnicos / Technical Papers SBQS 2014

216

lower values than Cluster 2. This result indicates that systems in the SU and BE
domains tend to have few lines of code, making the code less complex. Systems in the
G, D, C, and SA domains tend to have the lowest average for both metrics. On the other
hand, systems in the GPH and SE domains seem to have more lines of code, but only
some objects have higher values for WMC. The hypothesis that bigger classes have
more complex software cannot be validated in this analysis.

x H5-Complexity and overriding (NOVM, SIX, WMC, and VG): Using complexity
and inheritance metrics as parameters for classifying clusters, none of the algorithms
formed heterogeneous clusters. This indicates that these metrics are common and not
relevant to finding similarities among projects.

Figure 2 Four-Cluster Solution with WMC (Axis X) and LOC (Axis Y)

Table 8 Four-Cluster Solution Obtained with WMC and LOC
Cluster G AV D C BE GPH HE SE SU SA

0 1 3 2 1 2 4 2 4 - -
1 1 3 2 4 2 2 4 3 9 3
2 4 6 3 2 9 3 6 4 4 3
3 9 3 8 8 2 6 3 4 2 9

x H6-Abstraction and stability (RMI and RMA): Using RMI and RMA as
parameters for classifying clusters in pairs, the results (84%) supported this
hypothesis. Figure 3 shows the cluster solution, where Axis X is composed of the
interval values measured for RMA and Axis Y is composed of the interval values
measured for RMI. Table 9 shows the different characteristics for each cluster: The G
domain is predominant in Cluster 0 (dark blue), the HE and SE domains are
predominant in Cluster 1 (red), and the SU, SA, D, and BE domains are predominant
in Cluster 2 (green). The G and SA domains tend to group elements in the same
clusters. This behavior can be seen in Clusters 0 and 3. In Figure 3, Cluster 3 has
high values for RMI and low values for RMA. Most of the elements of Clusters 0, 1,
and 2 have average values for RMI, but only Cluster 0 has objects with values close
to the medium value for RMA, based on metric results. This result indicates that the
G domain tends to balance abstraction and stability better than other domains.
Therefore, systems in the G domain, which appear in the SA domain in Cluster 3,
have higher values for RMI. This arrangement indicates that classes of the systems in
this domain tend to be very rigid, cannot be extended (not abstract), and can handle
only small changes to remain stable. These indications are not ideal when software
quality is the focus, because maintenance is difficult. If a line is drawn between the
points [1, 1] (Figure 4), we can define the principal sequence. The points near this
line are not abstract for their stability or unstable for their abstraction. This behavior

XIII Simpósio Brasileiro de Qualidade de Software

 217

is ideal for ensuring system quality and maintainability.

Figure 3 Four-Cluster Solution with RMA (Axis X) and RMI (Axis Y)

Table 9 Four-Cluster Solution Obtained with RMA and RMI
Cluster G AV D C BE GPH HE SE SU SA

0 6 3 3 3 4 4 1 1 2 1
1 1 5 3 6 5 7 8 8 6 4
2 3 3 5 4 5 3 4 3 5 5
3 5 4 4 2 1 1 2 3 2 5

4.2. Macro Categories

Results of the analysis using KM-E for macro categories are as follows:
x H1-Coupling and cohesion (CA, CE, RFC, CBO, DAC, MPC, TCC, and LCOM):

Using coupling and cohesion metrics as parameters for classifying clusters, none of the
algorithms formed heterogeneous clusters. This indicates that the values of these
metrics are common and not relevant to identifying similarities among projects.

Figure 4 Dispersion of Elements in Principal Sequence for Micro-Category Analysis

x H2-Complexity and inheritance (VG, WMC, NOC, and DIT): Using complexity
and inheritance metrics as parameters for classifying clusters, none of the algorithms
formed heterogeneous clusters. This indicates that the values of these metrics are
common and not relevant to identifying similarities among projects.

x H3-Depth and descendants (DIT, NOC, RMI, and RMA): Using inheritance,
abstraction, and coupling metrics as parameters for classifying clusters in pairs, DIT
(Axis X) and RMI (Axis Y) showed good results with an error rate of 68.5%, where
Axis X is composed of the interval values measured for DIT and Axis Y is composed

Trabalhos Técnicos / Technical Papers SBQS 2014

218

of the interval values measured for RMI (Figure 5). This result partially validates the
hypothesis. Table 10 shows the different characteristics for each cluster: The PCS
domain is predominant in all clusters; the SS domain is predominant in Cluster 0
(dark blue), Cluster 1 (red), and Cluster 2 (green); and the ESS domain is
predominant in Cluster 3 (light blue). Despite having a smaller error for the same
analysis for micro categories, this solution is less heterogeneous (Figure 5). The
existence of more abstract classes and interfaces allows the growth of direct
descendants. Regarding RMI concept, the ratio between the number of abstract
classes in the package and the number of classes in the package tends to be higher.
Systems in the PCS domain (composed of the AV, C, and GPH domains) tend to
have more descendants and average stability in comparison with other systems of the
same domain and systems of different domains. The SS domain has similar behavior
those micro-categories, and is mainly composed of the D domain.

x H4-Complexity and size (VG, WMC, LOC, NOM, NC, and NOA): Using
complexity and size metrics as parameters for classifying clusters in pairs, WMC
(Axis X) and LOC (Axis Y) showed good results with an error rate of 61.1%, where
Axis X is composed of the interval values measured for WMC and Axis Y is
composed of the interval values measured for LOC (Figure 6). This result partially
validates the hypothesis. Table 11 shows the different characteristics for each cluster:
The PCS domain is predominant in Cluster 0 (dark blue) and Cluster 3 (light blue),
and the BS domain is predominant in Cluster 1 (red) and Cluster 2 (green). This
solution is less heterogeneous than the same solution in micro categories (Figure 6).
The PCS domain is composed of the AV, C, and GPH domains. Some systems (21
systems) in the PCS domain have higher complexity and a higher average number of
lines of code than other domains. The BS domain has more lines of code than the
other domains, so it is the most extensive.

x H5-Complexity and overriding (NOVM, SIX, WMC, and VG): Using complexity
and inheritance metrics as parameters for classifying clusters, none of the algorithms
formed heterogeneous clusters. This indicates that the values of these metrics are
common and not relevant to identifying similarities among projects.

Figure 5 Four-Cluster Solution with DIT (Axis X) and RMI (Axis Y)

Table 10 Four-Cluster Solution Obtained with DIT and RMI
Cluster SS BS ESS PCS WBS AIS

0 11 2 3 18 1 4
1 7 6 1 25 2 2
2 7 1 3 10 - 3
3 4 6 8 18 1 6

XIII Simpósio Brasileiro de Qualidade de Software

 219

Figure 6 Four-Cluster Solution with WMC (Axis X) and LOC (Axis Y)

Table 11 Four-Cluster Solution Obtained with WMC and LOC
Cluster SS BS ESS PCS WBS AIS

0 24 3 7 45 2 7
1 1 3 2 1 - -
2 1 7 2 4 2 4
3 3 2 4 21 - 4

x H6-Abstraction and stability (RMI and RMA): Using RMI and RMA as
parameters for classifying clusters in pairs, the results (59.1%) supported this
hypothesis, where Axis X is composed of the interval values measured for RMA and
Axis Y is composed of the interval values measured for RMI. Table 12 shows the
different characteristics for each cluster: The SS domain is predominant in Cluster 0
(red), and the PCS domain is predominant in Cluster 1 (red). Despite having a
smaller error for the same analysis for micro categories, this solution is less
heterogeneous. In Figure 7, Cluster 3 (light blue) has average values for RMA and
RMI. Although Cluster 3 has average results, these results are higher than those of
the other clusters. Some of the elements of Cluster 2 (green) have values near 0 for
RMA, indicating that some systems in the PCS domain have more abstract classes. If
a line is drawn between the points [1, 1] (Figure 8), we can define the principal
sequence. The points near this line are not abstract for their stability or unstable for
their abstraction. This behavior is ideal for ensuring system quality and
maintainability.

Figure 7 Four-Cluster Solution with RMA (Axis X) and RMI (Axis Y)

Table 12 Four-Cluster Solution with RMA and RMI
Cluster SS BS ESS PCS WBS AIS

0 15 3 6 12 2 8
1 10 8 8 45 2 3

Trabalhos Técnicos / Technical Papers SBQS 2014

220

2 2 - - 8 - -
3 2 4 1 9 - 4

Figure 8 Dispersion of Elements in Principal Sequence for Macro-Category Analysis

4.3. Discussion
Regarding H-Depth and descendants, the results show that systems in the SU and GPH
domains tend to have few abstract classes (more stability) and few descendants. The D
and C domains tend to have a higher average number of descendants. For instance,
systems in the SE and BE domains seem to have a more balanced relationship between
abstraction and inheritance. Systems in the G and SA domains have more stable classes.
However, this assumption may be valid partly because the metrics that produced
heterogeneous clusters were the DIT x RMI combination. Thus, domains with classes
located deeper in the inheritance hierarchy (less abstract), such as the D and C domains,
are more likely to have dissimilar characteristics to software domains that have classes
located less deep in the inheritance hierarchy (more abstract), such as the G, SA, BE,
and SE domain.

Regarding H-Abstraction and stability for micro categories, systems in the G and
SA domains tend to have highly stable, concrete classes that are less prone to change,
which may make the task of code maintenance of the systems difficult, directly affecting
the internal quality. In addition, systems in the G domain tend to balance abstraction and
stability better than the other domains. The idea is to design OO software to respect the
Stable Abstractions Principle (SAP), in which a component is not too abstract or rigid to
hinder changes. For macro categories, the result was partly similar, since part of the
systems in the SA domain are classified as SS and PCS domains. The G domain
composes the AIS domain. This hypothesis can be fully validated because RMI and
RMA produced heterogeneous clusters for micro and macro categories. The behaviors
analyzed in this study indicate that more efforts in these aspects are necessary so that
systems can continue to be maintainable. However, the study has biases that we can
consider threats to the validity of the results.

5. Related Work
The study of Dallal [2013] analyzed the relationship between internal quality attributes
(size, cohesion, and coupling) and external quality attributes (maintainability in classes).
Using statistical techniques, models were constructed using internal attributes (based on
metric combinations) to predict maintainability in selected classes. The results indicate
that developers can increase the maintainability (i.e., reduce maintenance efforts and

XIII Simpósio Brasileiro de Qualidade de Software

 221

costs) of their classes by reducing the size and coupling and increasing cohesion.
However, the number of metrics and the data collected from software projects were
limited. In addition, the study used three software systems from three different domains,
making it difficult to generalize the study results.

Another study [Romano; Pinzger, 2011] aimed to investigate changes in Java
interfaces and check if an interface has an impact on change in concrete and abstract
classes. The authors found that the Service Interface Usage Cohesion (SIUC) metric
(adapted to the OO concept) has a strong correlation with interface metrics than CK
metrics. A third study [Malviya; Yadav, 2012] used the clustering technique for data
mining projects to find OO sustainable systems (with high capacity for maintainability)
using the K-means algorithm. The study covered 71 classes and 11 metrics including
size metrics and the CK suite. Three clusters were found; the largest population of
classes was grouped in the third cluster, which means the grouped classes were similar.
However, the study was performed on one software system developed by Ada, so it may
not represent the population of systems in the current IT industry. Authors of another
study [Souza; Maia, 2013] proposed some reference values for a set of coupling metrics,
considering software domains and evaluating 100 systems from the Sourcerer
repository. The results showed that using reference values for systems from different
domains may not be suitable to detect some characteristics.

This study differs from the aforementioned ones because it proposes a model
that explains the similarity among domains in OO internal software quality. It provides a
more immediate view of the trends and characteristics of internal Java software quality.

6. Threads to Validity
In terms of construct validity, which is the degree to which the variables under study can
accurately measure the concepts they purport to measure, some of the metrics selected
could have characteristics validated by statistical tests, such as WMC, DIT, LOC, RMI,
and RMA. The results indicate that these metrics are relevant to analyzing the project
similarity (considering domains) and assessing internal software quality. However, for
other metrics, it is possible that the clustering technique is not sufficient to completely
validate and detect characteristics inherent in OO Java software projects. Regarding
internal validity, the results demonstrate empirical evidence and the practical significance
of the project similarities, but they do not provide in-depth technical details of the projects.
Such details would require qualitative analysis. For example, a code inspection in classes
of the SU, GPH, D, and C domains and problems with inheritance, modularity,
abstraction, and complexity could be shown qualitatively. As a threat to external validity,
the study analyzes only OO software developed in Java.

7. Conclusion
The study aims to find similarities among structures of projects through metrics that
characterize the internal software quality. Statistical tests were performed on a sample of
150 projects classified into macro and micro categories to identify which of these
classifications provide better information on projects. Regarding the research question
“Do the software domains have structural similarities with each other in aspects such
as modularity, abstraction, stability, complexity, and specialization,” the results
indicate that some specific domains tend to have similarities relating to four properties.

Trabalhos Técnicos / Technical Papers SBQS 2014

222

Systems in the SU and GPH domains have few descendants and few abstract classes.
Software in the D and C domains can have similar characteristics in inheritance and
abstraction, with a higher average number of descendants. Software in the SE and BE
domains tend to make good use of inheritance. Software in the G and SA domains can
have more stable classes and are harder to maintain due to the lack of flexibility in
changes. Some software in the G and SA domains tend to have highly stable and
concrete classes, which cannot be extended. Some software in the G domain tends to
balance abstraction and stability better than the other domains.

This study contributes to the field of software engineering through quantitative
techniques that provide observations of structural aspects of OO development, such as
specialization, stability, abstraction, and complexity. In addition, the study identifies
metrics such as WMC, DIT, LOC, RMI, and RMA that are relevant to the
characterization of Java internal software quality. For software developers, the study
shows that some domains such as GPH, G, and D tend to have the same characteristics
and that more efforts in these aspects are necessary so that systems can continue to be
maintainable. For future work, we suggest repeating the analyses on a larger sample of
software, using other repositories of available projects and other metrics of OO software
to obtain new results on characteristics that have not yet been explored.

References
Baggen, R.; Correia, J. P.; Schill, K.; Visser, J. (2012) Standardized Code Quality Benchmarking

for Improving Software Maintainability. Software Quality Control 20, 2, pp. 287-307.
Bieman, J.; Kang, B. (1995) Cohesion and Reuse in an Object-Oriented System. In: ACM

Symposium on Software Reusability. pp. 259-262
Briand, L. C.; Bunse, C.; Daly, J. W.; Differing, C. (1997) An Experimental Comparison of the

Maintainability of Object-Oriented and Structured Design Documents. In: Empirical
Software Engineering. pp. 291-312.

Briand, L. C.; Wüst, J.; Daly, J. W.; Porter, V. D. (2000) Exploring the Relationship Between
Design Measures and Software Quality in Object-Oriented Systems. In: Journal of Systems
and Software, vol. 51, no. 3, May 2000, pp. 245-273.

Chidamber, S.; Kemerer, C. (1991) Towards a Metrics Suite for Object-Oriented Design. In:
Conference on Object-Oriented Programming: Systems, Languages and Applications.
Published in SIGPLAN Notices 26 (11), pp. 197-211.

Chidamber, S.; Kemerer, C. (1994) A Metrics Suite for Object-Oriented Design. In:
Transactions on Software Engineering 20 (6), pp. 476-493.

Dallal, J. A. (2013) Object-Oriented Class Maintainability Prediction Using Internal Quality
Attributes. In: Inf. Software Technology 55, 11. pp. 2028-2048.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009)
Multivariate Data Analysis, 6th edition, Bookman, 688p.

Hamid, N. F. I. A.; Hasan, M. K. (2010) Industrial-Based Object-Oriented Software Quality
Measurement System and Its Importance. In: International Symposium in Information
Technology, vol.3, no., pp.1332-1336.

Hitz, M.; Montazeri, B. (1995) Measuring Coupling and Cohesion in Object-Oriented Systems.
In: International Symposium on Applied Corporate Computing.

ISO/IEC 25010 (2011) Systems and Software Engineering - Systems and Software Quality
Requirements and Evaluation - System and Software Quality Models.

Jiawei, H.; Micheline, K. (2011) Data Mining, Concepts and Techniques. Morgan Kaufmann
Publishers. 744p.

XIII Simpósio Brasileiro de Qualidade de Software

 223

Kayarvizhy, N.; Kanmani, S. (2011) Analysis of Quality of Object Oriented Systems Using Object
Oriented Metrics. In: International Conf. on Electronics Computer Technology, pp.203-206.

Lee, Y.; Liang, B.; Wu, S.; Wang, F. (1995) Measuring the Coupling and Cohesion of an
Object-Oriented Program Based on Information Flow. In: International Conference on
Software Quality.

Li, W. (2000) Software Product Metrics. In: Potentials. vol.18, no.5, pp. 24-27.
Li, W.; Henry, S. (1993) Object-Oriented Metrics that Predict Maintainability. In: Journal of

Systems and Software 23 (2), pp. 111-122.
Lorenz, M.; Kidd, J. (1994) Object-Oriented Software Metrics. Prentice Hall Object-Oriented

Series, Englewood Cliffs. 146p.
MacQueen, J. B. (1967) Some Methods for Classification and Analysis of Multivariate

Observations. In: Symposium on Mathematical Statistics and Probability. pp.281-297.
Malviya, A. K.; Yadav, V. K. (2012) Maintenance Activities in Object Oriented Software

Systems Using K-Means Clustering Technique: A Review. In: Sixth International
Conference on Software Engineering, pp. 1-5.

Martin, R.C.; Martin, M. (2006) Agile Principles, Patterns, and Practices in C#. Prentice Hall.
768p.

McCabe, T. J. (1976) A Complexity Measure. In: Trans. on Sw. Engineering, no.4, pp.308-320.
McMillan, C.; Vasquez, M. L.; Poshyvanyk, D.; Grechanik, M. (2011) Categorizing Software

Applications for Maintenance. In: International Conf. on Software Maintenance pp.343-352.
Plosch, R.; Gruber, H.; Hentschel, A.; Korner, C.; Pomberger, G.; Schiffer, S.; Saft, M.; Storck,

S. (2007) The EMISQ Method - Expert Based Evaluation of Internal Software Quality. In:
Software Engineering Workshop, pp. 99-108.

Pressman. R. S. (2009) Software Engineering. McGraw-Hill. 928p.
Romano, D.; Pinzger, M. (2011) Using Source Code Metrics to Predict Change-Prone Java

Interfaces. In: International Conference on Software Maintenance, pp. 303-312.
Seliya, N.; Khoshgoftaar, T. M. (2007) Software Quality Analysis of Unlabeled Program

Modules with Semi supervised Clustering. In: Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol.37, no.2, pp. 201-211.

Shanthin, A.; Chandrasekaran, R. M. (2012) Applying Machine Learning for Fault Prediction
Using Software Metrics. In: International Journal of Advanced Research in Computer
Science and Software Engineering

Singh, B.; Kannojia, S. P. (2013) A Review on Software Quality Models. In: Intern. Conference
on Communication Systems and Network Technologies, pp. 801-806

Souza, L. B. L. de; Maia, M. de A. (2013) Do Software Categories Impact Coupling Metrics?
In: Working Conference on Mining Software Repositories. pp. 217-220.

Tian, Y.; Chen, C.; Zhang, C. (2008) AODE for Source Code Metrics for Improved Software
Maintainability. In: Int. Conf. on Semantics, Knowledge and Grid.pp.330-335.

Vaidya, J.; Clifton, C. (2003) Privacy-Preserving K-Means Clustering Over Vertically Partitioned
Data. In: Int. Conf. on Knowledge Discovery and Data Mining. pp.206-215.

Yang, B.; Zheng, X.; Guo, P. (2006). Software Metrics Data Clustering for Quality Prediction.
In: Computational Intelligence. pp. 959-964.

Zhang, B.; Hsu, M.; Dayal, U. (1999) K-Harmonic Means - A Data Clustering Algorithm.
Hewlett-Packard Labs Technical Report HPL-1999-124

Zhong, S.; Khoshgoftaar, T. M.; Seliya, N. (2004) Analyzing Software Measurement Data with
Clustering Techniques. In: Intelligence Systems. vol. 19, no. 2, pp. 20-27.

