
SPLMT-TE: A Software Product Lines System Test Case Tool

Crescencio Rodrigues Lima Neto1,3, Eduardo S. Almeida2,3, Silvio R. L. Meira1,3
1Center for Informatics – Federal University of Pernambuco (CIn/UFPE)

2Computer Science Department – Federal University of Bahia (DCC/UFBA)
2Reuse in Software Engineering (RiSE)

{crln,srlm}@cin.ufpe.br, esa@dcc.ufba.br

Abstract. The product lines approach requires specific testing tools that
should help to manage reusable testing assets and automate the test execution.
Despite of the increasing interest by the research community regarding soft-
ware testing tools, Software Products Lines (SPL) still need tools to support
the testing process. This work presents briefly the results of a mapping study
on software testing tool and defines the requirements, design and implementa-
tion of a soft- ware product lines system test case tool, aiming at the creation
and management of test assets. A controlled experiment was also conducted to
evaluate the tool effectiveness.

1. Introduction
Software testing tools are available for testing in every stage of the software develop-
ment life cycle [Fewster and Graham 1999]. Some organizations have used testing tools
to manage, store and handle the tests. According to [Nakagawa et al. 2007], the tools
availability make testing a more systematic activity and minimizes the costs, the time
consumed, as well as the errors caused by human intervention.

 Integrating test environments and the test asset repository is a cumbersome work,
that is even worse due to the lack of automated support tool, which leads to be a manu-
ally performed task. There is a need for specific testing tools that should help to manage
the reusable testing assets and automate the execution of tests and the analysis of their
results as well [Tevanlinna et al. 2004].

 In the Software Product Lines (SPL) context, the amount of available tools de-
crease drastically, and the need of tools to reduce the effort during the SPL Testing Pro-
cess is a gap that need to be filled. We need testing tools to manage the variability and
avoid the explosion of test cases [Neto et al. 2012].

 The Reuse in Software Engineering Labs (RiSE1) dedicates its earlier research to
study SPL, based in the experience gained during industrial SPL project development,
the Software Product Lines Management Tool (SPLMT) was implemented [Cavalcanti
et al. 2011] to coordinate SPL activities, by managing different SPL phases and their
responsible, and to maintain the traceability and variability among different artifacts.

1 http://labs.rise.com.br

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

444444

 For this reason, we preferred to extend the SPLMT instead of start the creation
of a new tool. Based on the SPL Testing gaps identified by the RiSE Labs [Neto et al.
2011b] we developed the test module of the SPLMT named SPLMT-TE.

 In this context, this paper presents a tool developed in order to optimize the sys-
tem test case creation and decrease the time necessary to manage test assets from an SPL
testing process. The remainder of this paper is organized as follows: Section 2 discusses
the related work. Section 3 presents the mapping study. Section 4 details the SPLMT-
TE. Section 5 describes the experimental study; and finally, Section 6 concludes this
work and addresses some future work.

2. Related Work
There are few studies describing and detailing tools for testing SPL projects. If we de-
cide to narrow the scope, encompassing the search for only SPL system testing level
tools, the findings are worse. As a result from the mapping study [Neto et al. 2012], we
identified three Software Product Lines testing tools.

 According to [Reuys et al. 2005], the ScenTED-DTCD (Domain Test Case Sce-
nario Derivation) is a prototype tool focused on generating test cases scenarios that de-
scribe the test engineer’s activities and the system response if modeled within the activi-
ty diagram.

 Another prototype tool can be found in [Nebut et al. 2007]. It generates system
test scenarios from use cases. The approach is based on the automation of the generation
of application system tests, for any chosen product from the system requirements of a
product line.

 Finally, [Oster et al. 2011] presented a tool chain based on commercial tools
since it was developed within industrial cooperation. It contained a pairwise configura-
tion selection component on the basis of a feature model.

3. Mapping Study
A mapping study was undertaken to analyze important aspects that should be considered
when adopting testing tools [Neto et al. 2012]. A set of four research questions were
defined in which 33 studies, dated from 1999 to 2011, were evaluated. From the total of
33 studies considered, 24 of them described single system testing tools and the other 9
described SPL testing tools.

 The objective of the mapping study is to investigate how do the available tools
support the Software Product Lines Testing process? The study aims to map out existing
testing tools, to synthesize evidence to suggest important implications for practice, as
well as to identify research trends, open issues, and areas for improvement. We derived
four research questions:

• RQ1 - In which context the proposed tools were proposed and evaluated?
• RQ2 - Is it possible to use the single system testing tools to test software product

lines?
• RQ3 - Which testing levels are supported by existing tools?
• RQ4 - How are testing tools evolving?

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

445445

 Based on the analyzed tools, it was possible to identify that the tools are usually
developed to support a specific testing level, under the justification that there are no
tools supporting all functionalities of a testing process. None of the selected tools sup-
ports the overall SPL life cycle.

 From the selected tools, most of them were developed in the academic environ-
ment (14 for single systems and 7 for SPL), while 7 were developed exclusively in in-
dustry (6 for single system and 1 for SPL). The remaining 5 tools were developed in
both environments, academic and industrial (4 for single systems and 1 for SPL)

 However, there is insufficient information about publications describing tools
used in the industry. Hence, we performed a search on sites to find out some of the most
common tools. More details about it can be seen in: http://wp.me/p157qN-q

 The testing tools support is also important to increase the quality and at the same
time reduce the effort to perform them. Although, even with several existing testing
tools, they are mostly unable for directly support an SPL Testing process [Tevanlinna et
al. 2004], since there is no tool suitable to all testing levels of a SPL. Thus, researchers
need to consider the feasibility of adapting existing tools or constructing new tools.

4. A Tool for System Testing Case Creation
This section presents the SPLMT-TE, developed with the aim to assist the elaboration
of system test case based on the use cases from an SPL. With the tool, the users can
manage test assets from an SPL (such as: test cases, test plans, and test suites). The in-
formation extracted by SPLMT-TE is derived from the text content of the use cases
through regular expressions. Furthermore, the tool also focus on usability, thus the users
can have better experience during the creation of test cases.

4.1. Requirements

Based on the mapping study performed [Neto et al. 2012], each one of the tools from
system testing was analyzed in order to map its functionalities that were considered as
requirements for the SPLMT-TE development.

 [Nakagawa et al. 2007] identified functional requirements through investigation
of software testing processes, testing tools and testing ontology. It is noticed that these
requirements refer to the core activities of testing. The functional requirements that we
implemented are presented next.

4.1.1. Functional Requirements

The identified functional requirements and their rationale are described as follows:
• Include Test Cases Manually - The tool provides manually test cases creation.
• Store Test Cases - Stores the test cases into a repository.
• Generate Test Cases Automatically - It creates test cases automatically.
• Enable Test Cases - Activates test cases inside of the test suite.
• Disable Test Cases - Deactivate test cases from the test suite.
• Export Test Cases - It allows to export test cases into PDF files.
• Test Cases Report - Generates reports about the selected test cases.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

446446

• Remove Test Cases - It allows the exclusion of duplicated and obsolete test cas-
es.

• Test Cases Visualization - It provides the visualization of test cases.
• Test Suite Management - It groups test cases.
• Test Plan Management - It allows the management of test plans.
• Variability Management - It manages the variation points and the variants of

the software product lines assets.

4.1.2. Non-Functional Requirements

The non-functional requirements are following described:
• Reusability - the proposed tool must allow the reusability of test assets such as

test plans, test suites, and test cases. They can be reused to create new test assets.
• Extensibility - The architecture must presume the addition of new functionali-

ties and the level of effort required to implement them without impacting to ex-
isting system functions. For this reason, the proposed tool must be well-
structured, with low coupling modules to accommodate maintenance and exten-
sion demanded.

• Usability - The graphic interface of the tool must be built-in with intuitive com-
ponents to perform the functionalities.

• Performance - Performance is measured in terms of the response time. In dis-
tributed scenarios, variables such as network traffic, geographical distance, and
number of components must be considered.

• Platform Independence - An integrated reuse environment must be used in or-
der to maximize its user base and provide more effective results. The implemen-
tation of the environment functionalities must be based on technologies portable
across platforms.

4.2. SPLMT-TE Architecture

The SPLMT architecture was designed to be extensible providing the capacity to add
new features by including new components, which allows the creation of the SPLMT-
TE. Figure 1 shows the architecture of the proposed tool combined with the SPL
Metamodel [Cavalcanti et al. 2011]. Details of the layers are described next:

• Browser: Users access the application through web browsers.
• Template: A Django template separates the application from the data. A tem-

plate defines the presentation logic that regulates how the information should be
displayed.

• URL Dispatcher: It defines which view is called for a given URL pattern. Basi-
cally, it is a mapping between URL patterns and the view functions that should
be called for those URL patterns.

• View: It contains the business logic. Python view methods call a restricted tem-
plate language, which can itself be extended with custom tags. Exceptions can be
raised anywhere within a Python program. • Model: It describes the data struc-
ture/database schema. It contains a description of the database table, represented
by a Python class. This class is called a model. Using it, is possible to create, re-
trieve, update and delete records in the database using simple Python code.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

447447

SPLMT is composed by the Product Management (PM), Risk Management
(RM), Scope (SC), Requirements (RQ), and Test Module proposed in this work.

• Persistence Layer: All the data information is recorded at the repository.

Figura 1. Architecture improved from [Neto et al. 2011a]

4.2.1. Technologies

The architecture of the tool was structured based on a set of technologies, as follows:
• Django2 - is a Python Web framework that follows the Model-View-Controller

(MVC) pattern. Through Django, the metamodel mapped entities and their rela-
tionship into Python3 classes, and then it is automatically created a relational da-
tabase for these entities.

• Python - It is the programming language used to implement the logic business of
the tool. We decided to work with python because there is plenty of material
available. It is also free to use because of its open source license.

• MySQL - It is the database for the application. Such database was chosen be-
cause it features indexing of content, stability, good performance, good docu-
mentation, strong open source community, and it is a free project.

• re - Regular expression operations4 - It is a Python module that provides regu-
lar expression matching operations. re was used to construct the test cases steps
through the manipulation of strings.

4.3. Implementation

The proposed tool was developed during 4 months of development (20 hours/week). It
contains about 3000 lines of code, with approximately 85% of Django/Python code,
10% of HTML code and 5% of SQL. All the modules presented in the tool can run on
multiple operating systems and supports several browsers.

 Figure 2 presents the low level architecture that translates the process explained

2 http://www.djangoproject.com
3 http://www.python.org
4 http://docs.python.org/library/re.html

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

448448

at the previous sections and shows how the tool work precisely. After selecting the use
cases at the proposed tool and selecting the option to create the test cases, the commands
will be converted into ORM - Object Relational Mapping and the information will be
directly extracted from the database.

Figure 2. Low Level Architecture

 The server will manipulate the data using Python methods implemented using
regular expressions in order to create new test cases. Subsequently, these new test cases
will be saved directly at the repository. Finally, the tool can visualize the test cases and
the test assets can be organized into test suites and test plans, reducing the effort spent to
manage the test assets of the product line.

4.4. SPLMT-TE in Action

Figure 3 shows a screenshot of SPLMT-TE: on the top there is a field available to define
the search keywords (1), at the middle of the application there is a list of test cases (2), if
necessary, the testers can create more test cases (3) or invoke others functionalities (4).
The functionalities are described as following:

1. Search Bar - This is the part of the tool, which the tester can search for specific
test cases. It is also in that field where the search are specified by name of the
test case, specific words and responsible for the tests.

2. Test Case Visualization - This field shows all the test cases of the repository, it
also displays the results of the searches. Each line represents a test case, with in-
formation about: unique identification number of the test, Name of the test case,
brief summary about the test case, variability type and priority.

3. Adding Button - The adding button can be selected when the creation of manu-
ally test cases is needed. The test case will be saved only if the mandatory fields
were filled properly. Warning messages are displayed until the test case obeys
the demands. Figure 4 presents one of these alert messages, requiring the filling
of the Name field.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

449449

4. Combo Box - The combo box displays all the extra features of the tool such as
the creation of reports, the deletion of one or more selected items, the test case
creation, etc.

It is also possible to create tests suites. When the test suite creation option is selected,
the test suite will be saved only if the mandatory fields were filled properly.

Figure 3. SPLMT-TE screenshot

Figure 4. Alert Message

Warning messages will be displayed until the test suite obeys the demands. The respon-
sible for the test suite can be associated with the suite and a summary can explain and
add information referred to the suite.

 Moreover, at the test plan creation process, the test plan will be saved only if the
mandatory fields were filled properly. In accordance with the other requirements, warn-
ing messages will be displayed until the test plan respects the demands. The responsible

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

450450

for the test plan can be associated and a summary explains and adds important infor-
mation related to the test plan. The acceptance criteria field defines how many test cases
should pass in order to validate the test plan. Finally, the release field defines the version
of the application under test.

5. Experiment
We performed a controlled experimental study (in vitro) in order to evaluate the pro-
posed tool. The experimental study consisted of two phases. Firstly, a pilot study was
performed in order to analyze the experiment feasibility, as well as to identify possible
deficiencies in the design of the proposed experiment. Secondly, the experiment was
performed.

5.1. Experiment Design

This study applied the GQM method [Basili 1992] in order to collect and analyze met-
rics that are intended to define goals and was structured as follows:

Goal. The objective of this experimental study is to analyze the SPLMT-TE tool for the
purpose of evaluation with respect to its efficiency and effectiveness from the point of
view of the potential users (testers) in the context of a SPL testing project in an academ-
ic environment.

Questions. To achieve this goal, the following questions were defined:

• Q1 - Is the time required to design system test cases reduced when the tool is
used?

• Q2 - Is the amount of test cases increased when the tool is used?

• Q3 - Is the time required to execute the designed test cases reduced when the
tool is used?

• Q4 - Is the amount of errors detected increased when the tool is used?

• Q5 - Is the effectiveness of test cases improved when the tool is used?

 Metrics. The questions were mapped to a measurement value, in order to char-
acterize and manipulate the attributes in a formal way. Hence, the metrics used in this
analysis are described next:

• M1 - Designed Test Cases (DTC)[Juzgado et al. 2004]: It refers to the number of
designed test cases. This metric refers to Q2.

• M2 - Efficiency in Test Case Design (ETCD)[Juzgado et al. 2004]: This metric is
related to the number of designed test cases (DTC) over the amount of time spent
to create test cases (TSC) [Juzgado et al. 2004]. It is related to Q1.

• M3 - Efficiency of Test Cases Execution (ETCE)[Juzgado et al. 2004]: Compre-

hends to the amount of executed test cases (ETC) over the amount of time neces-
sary to execute the designed test cases (TSE) [Juzgado et al. 2004], including er-
rors report. This metric is connected to Q3.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

451451

• M4 - Number of Errors Found (NEF)[Juzgado et al. 2004]: It represents the

number of errors found by the subjects during the execution. This metric is
linked to Q4.

• M5 - Test Cases Effectiveness (TCE): [Chernak 2001] proposed the metric to
mea- sure test case effectiveness. He defines this metric as the ratio of defects
found by test cases to the total number of defects reported during a test cycle.
Test cases that find more defects are considered more effective. We adapted this
metric to our context, so TCE consists of the amount of errors found (M4) re-
ported to the total number of test cases created (M1). This metric is associated
with the Q5.

5.2. Planning

In order to avoid the risks of conducting experiments in real projects, the experiment
was conducted in an academic environment (not industrial software development). We
also performed a pilot study to analyze the experiment feasibility, as well as to identify
possible deficiencies in the design of the proposed experiment.

 The subjects of the pilot study were 14 undergraduate students from the Soft-
ware Engineering course at Federal University of Bahia, Brazil. The pilot was executed
from June to July in 2011 and addressed a problem that was analyzed based on two spe-
cific SPL projects scenarios. All activities of the experiment were performed at the pilot
study.

 After performing the pilot study, the actual experiment was implemented. The
subjects of the experiment were composed by graduate students (7 M. Sc. Students and
5 Ph. D. Students) from Federal University of Bahia and Federal University of
Pernambuco, Brazil. The experiment was performed in July 2011, and used the same
projects as pilot study.

5.2.1. Hypothesis Formulation

In this experimental study, we focused on ten hypotheses. They are formally stated with
the measures needed to evaluate them.

 Null Hypothesis (H0n) - There is no benefit of using the proposed tool (de-
scribed below as Tool) to support the design and execution of system test cases, if com-
pared to the manual process (described below as manual), in terms of effectiveness. The
Null hypotheses are:

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

452452

 Alternative Hypothesis (H1n) - Conversely to what was defined as Null Hy-
potheses, the alternative hypothesis determines that the proposed tool produces benefits
that justify its use. We herein define the set of alternative hypotheses, as follows:

5.3. Operation

The experiment was hold at the Software Engineering Laboratory (LES5) from the Fed-
eral University of Bahia. The subjects used the Eclipse IDE, the software of the Arcade
Game Maker6, the software of the NotepadSPL extracted from the FeatureVisu7, and the
proposed tool. The requirements documents, all the forms and reports were provided in
digital copies.

5.3.1. Execution

The activities involved in the experiment were executed by the subjects. The characteri-
zation was made when the subjects filled in the background form, allowing us to organ-
ize the subjects into two groups.

 After the characterization, the subjects were trained at the concepts of software
testing. Both groups learned how to create a good test case, how to execute test cases,
and how to report errors.

 Before using the proposed tool, the subjects learned how to use the tool. Both
groups performed the experiment using the tool in one phase and without using the tool
in the other phase. At the end, they had to fill out the feedback questionnaire.

5.4. Analysis and Interpretation

We analyzed all the artifacts produced by the subjects, including the error report forms
and the feedback questionnaires.

5 http://wiki.dcc.ufba.br/LES/WebHome
6 http://www.sei.cmu.edu/productlines/ppl/index.html
7 http://fosd.de/FeatureVisu

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

453453

5.4.1. Designed Test Cases

Boxplot shown in Figure 5(a) contains data from the distribution of test cases created by
tool usage. In groups (1 and 2) using the tool, the mean was 26.10 with Standard Devia-
tion (Std.Dev.) of 6.06; and 15.70 of mean with Std.Dev. of 3.83 in groups (1 and 2)
without using the tool. Median of groups using the tool is higher than groups that did
not use tool support.

 According to Figure 5(a) the amount of designed test cases created with the tool
is higher than without tool support. The proposed tool enabled the creation of more test
cases, 261 with tool support and 157 without it.

Figure 5. Bloxplots

5.4.2. Efficiency in Test Case Design

Figure 5(b) presents the distribution of time to design the test cases per subject. In
groups (1 and 2) using the tool, the mean value was 25.70 with Std.Dev. of 10.48, while
in groups (1 and 2) without using tool support, the mean value was 82.00, with Std.Dev.
of 43.69. The median value of groups using the tool is greater than groups without using
tool support.

 The efficiency in test case design was higher with groups that used the tool,
which allowed the creation of more test cases faster than without tool support as pre-
sented in Figure 5(b). The time needed to create system test cases decreases using the
tool, reducing from 820 minutes to 257 minutes, saving 563 minutes.

5.4.3. Efficiency in Test Cases Execution

The mean in groups (1 and 2) using the tool was 0.94 with Std.Dev. of 0.74. In groups
without the tool, the mean was 0.59 with Std.Dev. of 0.33. Median of groups using the
tool is higher than in groups without using the tool (see Figure 5(c)).

 There was no significant difference during the execution of the created test tools.
Both groups, with and without tool support, executed a similar number of test cases dur-
ing the same period of time. The effort of test case execution were almost the same too,

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

454454

328 minutes with tool support and 300 minutes without, we need to consider that the
number of test cases executed were higher with the tool (256 test cases) than without
tool support (149 test cases).

5.4.4. Number of Errors Found

Figure 6(a) shows the Boxplot with distribution of the number of errors found per sub-
ject. Mean of the groups (1 and 2) using the tools was 5.20 with Std.Dev. of 2.97. The
mean of the groups (1 and 2) without using the tool was 2.90 with Std.Dev. of 2.23. Me-
dian of the groups that used the tool is higher than in the groups that did not use it.

 According to Figure 6(a), the amount of errors found with the test cases created
by the tool was slightly higher than with the test cases created manually. Moreover, the
subjects were able to find more errors during the use of the tool, 38 errors found with
tool support and 26 without.

Figure 6. Bloxplots

5.4.5. Test Cases Effectiveness

Concerning the use and applicability of the TCE metric, to determine whether if a test
case created by the SPLMT-TE was effective, we compared the TCE from both groups,
using and without using tool support. We measured the test case effectiveness as a ratio
of the total amount of designed test cases by the total of errors found.

 By applying the TCE formula, we obtained the distribution presented in Figure
6(b). It shows the data similarity. Mean of the groups (1 and 2) using the tool was 0.19
with Std.Dev. of 0.11. The mean of the groups (1 and 2) without using the tool was the
same, 0.16 with Std.Dev. of 0.12. Median of groups using and not using the tool is the
same, 0.17.

 There was no significant difference between the test case effectiveness. The
number of errors found per number of test cases was almost the same using and without
using the tool. Test case effectiveness with and without the tool support was almost the
same, 14.55 using the tool and 16.56 without using it.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

455455

5.4.6. Hypotheses Testing

Since the experiment has one factor with two treatments, completely randomized de-
sign, the data collected during the experiment were submitted to parametric tests, t-test
to analyze the hypothesis. The tests are primarily presented for a significance level of
5%.

 Regarding the Q2, the amount of test cases created using the tool is higher than
without using it (see Figure 5(a)), t-value = -4.59, degrees of freedom (df) = 15.2, and p-
value = 0.0001729. The number of the p-value is lower than the significance level, re-
jecting the null hypothesis.

 Time spent creating test cases without the tool is higher than using it (see Figure
5(b)). For this reason, in order to answer the Q1, the Null Hypothesis H02 is rejected,
since, t-value = 5.9, df = 9.4, and p-value = 0.0001999. This p-value allowed the rejec-
tion with high significance level.

 Figure 5(c) shows the efficiency in test case execution, which supports the Null
Hypothesis H03. Thus, the question Q3 is answered, t-value = 1.4, df = 12 and p-value =
0.09917. Since, the p-value is lower than 0.1, we raise the significance level to 10% in
order to reject this hypothesis.

 The Null Hypothesis H04 is rejected. The number of errors found were higher
using the tool support, t-value = -1.96, df = 16.7, and p-value = 0.0373, answering the
Q4. The p-value is lower than 5% rejecting the null hypothesis.
As a result, the Null Hypothesis H05 cannot be rejected. t-value = -0.498, p-value =
0.3122, and df = 17.9. Since the p-value is higher than the significance level the hypoth-
esis cannot be rejected and no conclusion can be drawn. Regarding Q5, there is no sig-
nificant differences between the effectiveness test cases values during the tool usage and
without use it.

5.4.7. Qualitative analysis

Data from subjects who used the tool were qualitatively analyzed. Only 20% of the sub-
jects needed additional information other than the available artifacts. The majority of
subjects approved the use of the tool, except the factor on how effective the tool was. In
summary, the overall comments regarding difficulties referred to lack of expertise in
software testing, which impacted on their activities.

 Ninety percent of the subjects agreed that the SPLMT-TE helped them at the
creation of test cases and find more errors. Sixty percent of the subjects believed that the
tool created sufficient test cases. Moreover, 33% changed the test cases created by the
tool and 35% created more test cases.

5.5. Lessons Learned

After concluding the experimental studies, we gathered information that was used as a
guide to the replication. The structure presented in this section can be reused in other
general experiments in the SPL Testing practice.

 Some important aspects should be considered, specially the ones seen as limita-
tions in the experiment. We tried to mitigate some of these problems that we raised at

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

456456

the pilot study. The general impressions gathered from the experiment are described
below:

 Training. To eliminate the problem with lack of experience, we selected sub-
jects with experience in the SPL and software testing area.

 Motivation. To mitigate the complaints with boredom, we removed the 2 hours
limitation for creation and execution. A possible solution for future replications could be
to define only one activity by subject. The subjects with experience will be responsible
for test creation activities and the inexperienced subjects will only execute and report
errors.

 Questionnaires. To suppress some problems related to the wrong data collec-
tion, we changed some questions of the questionnaires. The questionnaires should be
constantly updated and calibrated before new replications.
 Project. We would select projects with more specification available in advance.
Subjects, mainly from the experiment, with a large experience in industry, complained
about the lack of documentation to aid them to create the test cases. Moreover, as we are
dealing with SPL projects, we need projects containing many variation points and vari-
ants in order to analyze the impact of the tool usage.

 Design Type. We changed the design type at the experiment. At the first round,
the subject from group 1 used the tool with the domain 1, and the group 2 also used the
domain 1 but without tool support. At the second round, group 1 analyzed the domain 2
without tool support and group 2 analyzed the domain 2 with tool support.

 Measurement. In order to eliminate the data loss that happened in the pilot
study, we changed the instructions for the experiment, where each subject did the activi-
ties individually allowing a better interpretation of the data. We also enforced the im-
portance of collect information during the creation of test cases with the tool.

6. Conclusion and Future Work
In this paper, we applied the mapping study [Neto et al. 2012], to collect evidence in the
literature that allowed us to sketch and comprehend the state-of-the-art of single system
and SPL testing tools research and practice field. The motivation was to identify the
evidence available on the topic and point out gaps in the existing tools.

 We presented the SPLMT-TE, a web-based tool developed to build system test
cases from use case and manage test assets such as test cases, test suites and test plans
[Neto et al. 2011a]. The tool was built based on the needs to facilitate these tasks reduc-
ing the effort and the costs of the Software Product Lines testing process.

 Thus, the architecture was presented as well as its components, features for cre-
ating and managing the test assets, and implementation details. Moreover, we performed
a controlled experimental study (in vitro) to evaluate the tool effectiveness in order to
re- duce the effort spent during the system testing level of the SPL testing process. We
also realized one replication of the experiment, but more investigation still needed in-
cluding a replication in industry context.

 The results for the quantitative analysis showed that the tool is adequate to per-
form the management of SPL test assets, in sense that it can reduce the time of analysis.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

457457

For qualitative analysis, all subjects preferred to use the SPLMT-TE. Finally, as future
work, the tool will be evolved to include functionalities that can improve the support of
the SPL Testing process.

 As future work, we intend to incorporate new requirements in the tool based on
the mapping study and feedback from the experiment. Moreover, we are planning the
replication of the experimental study before using the tool in industry.

Acknowledgment
This work was partially supported by the National Institute of Science and Technology for
Software Engineering (INES), funded by CNPq and FACEPE, grants 573964/2008-4 and APQ-
1037-1.03/08 and CNPq grants 305968/2010-6, 559997/2010-8, 474766/2010-1.

References
Basili, V. R. (1992). Software Modeling and Measurement: the Goal/Question/Metric

Paradigm. Technical Report CS-TR-2956, College Park, MD, USA.

Cavalcanti, Y. C., Machado, I. C., Neto, P. A. M. S., Lobato, L. L., Almeida, E. S., and
Meira, S. R. L. (2011). Towards Metamodel Support for Variability and Traceability
in Software Product Lines. 5th International Workshop on Variability Modelling of
Software-intensive Systems.

Chernak, Y. (2001). Validating and Improving Test-Case Effectiveness. IEEE Softw.,
18:81–86.

Fewster, M. and Graham, D. (1999). Software Test Automation: Effective Use of Test
Execution Tools, volume 10. John Wiley Sons, Ltd.

Juzgado, N. J., Moreno, A. M., and Vegas, S. (2004). Reviewing 25 Years of Testing
Technique Experiments. Empirical Software Engineering, 9(1-2):7–44.

Nakagawa, E. Y., Simão, A. S., Ferrari, F. C., and Maldonado, J. C.(2007). Towards a
Reference Architecture for Software Testing Tools. In International Conference on
Software Engineering & Knowledge Engineering, pages 157–162. Knowledge Sys-
tems Institute Graduate School.

Nebut, C., Traon, Y., and Jezequel, J. (2007). System Testing of Product Lines: From
Requirements to Test Cases. Software Product Lines, pages 447–477.

Neto, C. R. L., Machado, I. C., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L.
(2011a). Software Product Lines System Test Case Tool: A Proposal. In Interna-
tional Conference on Software Engineering & Knowledge Engineering, pages 699–
704. Knowledge Systems Institute Graduate School.

Neto, C. R. L., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L. (2012). A Map-
ping Study on Software Product Lines Testing Tools. In International Conference on
Soft- ware Engineering & Knowledge Engineering. Knowledge Systems Institute
Graduate School.

Neto, P. A. M. S., Runeson, P., Machado, I. C., Almeida, E. S., Meira, S. R. L., and
Engstrom, E. (2011b). Testing Software Product Lines. IEEE Software, 28:16–20.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

458458

Oster, S., Zorcic, I., Markert, F., and Lochau, M. (2011). MoSo-PoLiTe: Tool Support
for Pairwise and Model-Based Software Product Line Testing. In Proceedings of the
5th Workshop on Variability Modeling of Software-Intensive Systems, pages 79–82,
New York, NY, USA. ACM.

Reuys, A., Kamsties, E., Pohl, K., and Reis, S. (2005). Model-Based System Testing of
Software Product Families. International Conference on Advanced Information Sys-
tems Engineering, pages 519–534.

Tevanlinna, A., Taina, J., and Kauppinen, R. (2004). Product Family Testing: a Survey.
ACM SIGSOFT Software Engineering Notes, 29:12–12.

XI Simpósio Brasileiro de Qualidade de Software
Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

459459

