
A Bug Report Analysis and Search Tool and Its Validation
Yguaratã Cerqueira Cavalcanti1,3, Eduardo Santana de Almeida2,3,

Silvio Romero de Lemos Meira1,3

1Center for Informatics – Federal University of Pernambuco (UFPE)
2Computer Science Department – Federal University of Bahia (UFBA)

3RiSE – Reuse in Software Engineering (RiSE)
{ycc,srlm}@cin.ufpe.br, esa@dcc.ufba.br

Abstract. According to recent work, duplicate bug report entries in bug trackers
impact negatively on software maintenance and evolution productivity due to,
among other factors, the increased time spent on report analysis. Such type of
duplication is characterized by the submission of two or more bug reports that
describe the same software issue. In this sense, this dissertation investigates and
characterizes the problem of bug report duplication and proposes a solution to
it.

1. Introduction
Software maintenance and evolution are characterised by their high cost and slow speed
of implementation. However, they are inevitable activities – almost all software that is
useful and successful stimulates user-generated requests for change and improvements
[7]. Sommerville [29] is even more emphatic and says that software changes is a fact of
life for large software systems. In addition, a set of studies [12, 13, 17, 23] has stated
along the years that software maintenance and evolution is the most expensive phase of
software development, taking up to 90% of the total costs.

All of these characteristics from software maintenance leaded the academia and
industry to investigate constantly new solutions to reduce costs in such phase. In this
context, Software Configuration Management (SCM) is a set of activities and standards
for managing and evolving software, defining how to record and process the proposed
system changes, how to relate these to system components, among other procedures. For
all these tasks, it has proposed different tools, such as version control systems and bug
trackers [29]. However, some issues may arise due to these tools usage. In this work, the
focus are the issues from bug trackers, as it will be discussed along this paper.

Aiming to improve change management processes of software projects develop-
ment, some organizations have used specific systems (generally called bug-trackers) to
manage, store and handle change requests (also known as bug reports). A bug report is
defined as a software artifact that describes some defect, enhancement, change request,
or an issue in general, that is submitted to a bug tracker; generally, bug report submitters
are developers, users, or testers. Such systems are useful because changes to be made in
a software can be quickly identified and submitted to the appropriate people [3].

Moreover, the use of bug trackers helps to monitor software evolution, because
bug reports are recorded in a database as well as people involved in a particular bug
report are recorded. Thus, changes and their respective responsible can be easily found.
Organizations also use such systems to guide the software development, thus any task

IX Simpósio Brasileiro de Qualidade de Software

455

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

to be undertaken in the software development process must be registered and monitored
through a bug-tracker. Moreover, the historical data of these systems can be used as
history and documentation for the software. Examples of such systems are Bugzilla,
Mantis and Trac.

Each bug report is stored with a variety of fields of free text and custom fields
defined according to the necessity of each project. In Trac, for example, it is defined
fields for summary and detailed description of a bug report. In the same bug report it can
also be recorded information about software version, dependencies with other bug reports
(duplicate bug reports, for example), the person who will be assigned to the bug report,
among other information. Moreover, during the life cycle of a bug report, comments can
be inserted to help solving it.

Nevertheless, some challenges have emerged through the use of bug trackers,
among them, we can cite: dynamic assignment of bug reports [4], change impact analy-
sis and effort estimation [30], quality of bug report descriptions [20], software evolution
and traceability [28], and duplicate bug reports detection [16]. These issues are further
discussed later.

The focus of this work is trying to avoid duplicate bug reports submission; the
duplicate problem is characterized by the submission of two or more bug reports that
describe the same issue. In this context, this work investigates the problem of bug report
duplication emerged by bug trackers, characterizing it empirically to understand its causes
and consequences to the software development projects, and provides a tool for search and
analysis of bug reports to reduce the effort spent on such tasks.

2. Mining Bug Report Repositories: A Brief Survey
There is a variety of work related to mining bug report repositories. However, the work
found on the literature are relatively new, dating back from 2003. In general, these types of
repositories have been mined for different purposes, such as: bug reports similarity (also
referenced as duplicate detection), dynamic assignment of bug reports, software evolution
and traceability, change impact analysis and effort estimation, and quality of bug report
descriptions.

There are also studies that combine mining bug report repositories and mining
other types of repositories, such as source code repositories. For more information about
other work not described here, there is a taxonomy proposed by Kagdi et al. [19]. In
addition, for more detailed characteristics about the work presented here, the complete
text of this dissertation must be consulted.

Bug Reports Similarity (duplicate detection). Duplicate bug reports detection
consists on searching for past bug reports to find similar bug reports that describe the
same issue as the one being reported, in order to avoid duplicate submission. Podgurski
et al. [25] was the first to investigate bug reports similarity. The bug reports explored
in their work were software failures automatically submitted when the software did not
work properly. Thus, Podgurski et al. proposed an automated support for classifying
these reports in order to prioritize and diagnostic their causes.

The work performed by Hiew [16] is closer to ours than the first one described.
It investigated the duplication problem caused by natural language bug reports submis-

IX Simpósio Brasileiro de Qualidade de Software

456

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

sion. Hiew proposed to group similar bug reports into centroids, thus it would be possible
to compare incoming bug reports to the centroid with high similarity through the Term
Frequency-Inverse Document Frequency (TF-IDF) [5] technique. In this same direction,
Runeson et al. [26] addressed the problem of detecting duplicated bug reports using Nat-
ural Language Processing (NLP) techniques.

In Wang et al. [31], it was proposed an approach to mitigate bug reports duplica-
tion problem using NLP and execution information. The execution information is con-
cerned to data about the software execution when the error occurred, such as method calls
or variables state. This type of data was combined with natural language data to improve
the recall.

Bug Report Dynamic Assignment. The bug report dynamic assignment consists
of identifying which is the best developer to solve a new bug report. Several work have
used machine learn techniques combined with versioning system data and/or bug report
repositories. Anvik et al. [4] presented an approach for semi-automated bug report assign-
ment. The approach used a machine learning algorithm to a bug report repository to learn
the types of bug reports that each developer resolves. The work of Canfora and Cerulo
[10] also proposed a method to bug report assignment, however in such work it was used
information from versioning systems combined with bug reports information.

Anvik and Murphy [2] compared whether versioning systems or bug report repos-
itories is better to assign the best developer to a bug report. The work concluded that using
bug report repositories is better if the objective is to determine the expertise group with
less false positives (developers that are not expert in the given subject), while versioning
systems are better for retrieving all experts for a given problem (in this case false positives
can occur).

Software Evolution and Traceability. Mining bug repositories for software evo-
lution and traceability is concerned with understanding what drives the changes performed
in the software along the time. Sandusky et al. [28] conducted an empirical research about
Bug Report Networks (BRNs) in open source projects. According to them, a BRN is cre-
ated when members of a software development project assert duplication, dependency,
or reference relationships among bug reports. They pointed that BRNs understanding
can be useful for decreasing cognitive and organizational effort, refined representations
of software and work-organization issues, and rearrange the relationships among project
members.

Antoniol et al. [1] proposed a framework to merge information from bug report
repositories, source code, and versioning systems. Such framework aids the developer to
browse and navigate through the information provided by such artifacts in an intercon-
nected way. For example, some developer could use the framework to visualize what bug
reports were fixed in a given software version. Furthermore, he/she could visualize what
files of source code were modified.

Koponen and Lintula [21] proposed an approach to integrate versioning systems
and bug report repositories. Koponen and Lintula investigated if the changes in such
projects were driven by bug reports. It was observed that in some projects only a small
percentage of the changes is guided by bug reports, while in other the opposite is true,
thus not having a confidence pattern.

IX Simpósio Brasileiro de Qualidade de Software

457

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

There are also other work in the same direction of Koponen and Lintula [21], such
as Kagdi et al. [18] and Fischer et al. [14, 15]. In the first, commits of versioning sys-
tem were analyzed to verify frequent co-changes sets of artifacts (e.g. source code and
documentation). The second one aimed to understand the software evolution by integrat-
ing versioning systems and bug report repositories, thus looking at the bug reports it is
possible to determine which commits were performed to solve a specific issue.

Impact Analysis and Effort Estimation. The impact analysis and effort estima-
tion purposes are related to determine the amount of time, costs and complexity that a bug
report needs to be resolved. For that purpose of effort estimation, three work were found
in the literature: Song et al. [30], Panjer [24], and Weiss et al. [32]. All of them used
data from bug report repositories as input for their approach. For impact analysis there
is the work of Canfora and Cerulo [9], where it was explored bug report repositories and
versioning systems using information retrieval techniques to predict the impacted source
files for a new bug report submission.

Bug reports Quality. The quality analysis of bug reports is concerned with how
submitters are describing software issues on bug reports free-text fields. In Ko et al. [20],
it was performed a study to understand how submitters describe software problems. They
discovered that bug reports summary generally describe software entity or behavior and
its execution context. Additionally, Bettenburg et al. [8] performed a survey with Eclipse
developers to understand what type of information they use in bug reports and problems
found.

3. The Bug Report Duplication Problem: A Characterization Study
This section presents a characterization study about bug repositories and search and anal-
ysis of bug reports. The Goal Question Metric (GQM) method [6] was used to define this
characterization study. Briefly, the GQM consists of the definition of the study’s goal, the
questions to be answered, and the related metrics. Due to space constraints, we omitted
some metrics explanation.

The goal of this study was to analyze bug repositories and the activities for search-
ing and analyzing bug reports with the purpose of understanding them with respect to the
possible factors that could impact on the duplication problem and their consequences on
software development, from the point of view of the researcher, in the context of soft-
ware development projects. Eight (8) open source projects1 and one private project were
selected. For the private project, we chose bug reports from a project being developed at
Recife Center for Advanced Studies and Systems (C.E.S.A.R.)

Do the analyzed projects have a considerable amount of duplicate bug reports?
This is the starting point of this study. Thus, we investigated the projects to find out if they
have duplicate bug reports in their repositories, and if the amount of duplicates is large
enough to cause problems. We answered it by computing the percentage of duplicate bug
reports.

Is the submitters productivity being affected by the bug report duplication prob-
lem? The productivity here is measured in terms of time that is needed to perform bug
tracking activities, such as search and analysis. To answer this question, we considered

1Bugzilla, Firefox, Eclipse, GCC, Thunderbird, Evolution, Tomcat, Epiphany

IX Simpósio Brasileiro de Qualidade de Software

458

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

the amount of time spent to search and analyze bug reports before opening a new bug
report, the ratio between the average time to resolve duplicate bug reports and average
time to resolve valid bug reports, and the average frequency of bug reports per day.

Is there a common vocabulary for bug report descriptions? It is believed that a
controlled vocabulary could help avoiding duplicate bug reports [22]. For example, with
a well defined vocabulary, the submitters could perform better searches using keywords
closer from those present in the new bug report. To answer it, we computed the percentage
of common words shared in a bug report group to describe the same problem.

How are the relationships between master bug reports and duplicate bug reports
characterized? In this work, we consider three types of bug reports: unique; master; and
duplicate. We computed the distribution of each type. The following distributions were
analyzed: master bug reports that have only one duplicate bug report, also known as one-
to-one relationships; and master bug reports that have more than one duplicate bug report,
also known as one-to-many relationships.

Does the type of bug report influence the amount of duplicates? There are mainly
two types of bug reports: enhancements and defects. Intuitively, it may be argued that
defects have more duplicates, because it is more likely that two users will notice the
same defect than the same enhancement. For each bug report type we calculated the ratio
between the duplicate and total bug reports.

What are the possible factors that could impact on the bug report duplication
problem? We chose six variables that we believe could be the factors for duplication or,
at least, have some indirect relation to it: staff size – the number of people involved
in the project development; number of submitters – the amount of submitters in
the period that we collected the bug reports; software size – the number of lines
of code (LOC); software life-time – the time that a software project has been in
development; bug Repository size – the amount of bug reports; submitters’
profile – the type of submitter profile that is more susceptible to submitting duplicate
bug reports (sporadic, average, and frequent).

3.1. Main Findings on The Bug Report Duplication Problem
This study was conducted with the goal of understanding which characteristics of the
projects can be factors for bug report duplication. We would like to understand also if the
problem actually exists in the examined projects, and where it impacts on development.
After all the analysis performed with the outcome data from this study, we can point out
the main findings as following:

a) All the analyzed projects have duplicate bug reports in their repositories, which
we consider that they are being affected by the duplication problem. Some projects are
less affected than others, but in general, all of them are affected;

b) The submitters productivity in the analyzed projects is being affected by the bug
reports duplication problem. According to the estimative of this study (taking into account
all projects), almost 48 man-hours are necessary each day to do search and analysis of bug
reports due to duplication in bug repositories;

c) Generally, the submitters do not use a common vocabulary to describe the con-
tent of bug reports. This situation makes it more difficult to identify duplicates. Moreover,

IX Simpósio Brasileiro de Qualidade de Software

459

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

none of the projects have explicitly defined a vocabulary to control the descriptions;

d) We observed that submitters from private project are more likely to submit
reports using a common vocabulary than submitters from open source projects;

e) For the bug reports grouping analysis, we observed that more than 80% of the
groups are composed by one-to-one grouping type. Thus, clustering and IA techniques
may not be applicable to identify duplicates;

f) The bug report duplication problem can occur independently of the type of bug
reports that are being submitted (for example, defect and enhancement bug reports);

g) The number of LOC does not seem to be a factor to duplication problem;

h) The size of the repository does not seem to be a factor for duplication;

i) Projects’ life-time does not seem to be a factor for duplication;

j) The staff size does not seem to be a factor for the duplication problem;

k) The profile of the submitter is a determining factor for the submission of dupli-
cates, as well as the amount of submitters; and

l) According to our study, sporadic submitters seem to be more likely to submit du-
plicate bug reports as well as a larger quantity of submitters can also increase the amount
of duplicates.

4. BAST: Bug Report Analysis and Search Tool
In this section, we present a tool, its architecture and features, called Bug Report Analysis
and Search Tool (BAST), built in order to facilitate the activities of search and analysis
of bug reports, focused on the detection of duplicates bug reports submission. The BAST
goal is to provide a Web-based application for search and analysis of bug reports, thus,
the time spent in these activities can be reduced and more duplicates can be avoided.

4.1. BAST Search Features
The search for bug reports is one of the main and most important services that BAST
provides for the submitters. It is through these searches that the submitters find similar
bug reports in order to not submit duplicates. The following subsections describe the
mechanisms for indexing and ranking, query, and visualization of searches.

Ranking and Indexing – Vector Space Model. To sort the results of a search,
it was used the Vector Space Model (VSM) [5]. With VSM, the documents are repre-
sented in a space of vectors of terms. Each dimension (vector) of this space is represented
by a term, and this term is associated with a weight known as Term Frequency-Inverse
Document Frequency (TF-IDF) [27]. The symbol TF-IDF is an abbreviation for Term
Frequency-Inverse Document Frequency, and means that the value of the weight of a
term is calculated taking into account the frequency in which this term appears in the
collection of documents, and the frequency in which it appears in each document.

Queries. In BAST, it is provided natural language queries with a combination
of a variation of boolean queries Baeza-Yates and Ribeiro-Neto [5]. Such variation on
boolean queries allows submitters to search for complete phrases. For example, if a sub-
mitter put some keywords enclosed in quotes (i.e. “radio fm error”), the system will

IX Simpósio Brasileiro de Qualidade de Software

460

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

return only the bug reports that match the entire query “radio fm error”, also respecting
the order of the keywords. BAST also implements some search filters that can be inserted
directly in queries, improving the use of keywords.

4.2. Architecture Components

The architecture of the tool is composed of a database module, a core module, and a Web
interface module. Figure 1 illustrates a simplified organization of the architecture of the
application: the database stores in an organised way the bug reports from the bug reposi-
tories to facilitate further searches; the main module has sub-modules for text processing,
indexing of content, parsers, search, and information extractors; and the Web module im-
plements the user interaction features that will be exposed to submitters through a Web
browser. Next, it will be provided more details for each component.

Figure 1. BAST Architecture - Web interface, core module and database

BAST Database. It uses the database to store all data from bug reports inserted
in the application. We did not use only a simple structure for indexing and retrieval,
as provided by Lucene2, because BAST needs to make complex SQL queries, such as
one to draw relationships among bug reports. The technologies used to implement the
database were: MySQL to implement the database; and SQLAlchemy – which is an Object-
Relational Mapper (ORM) for Python language.

BAST Web Application. Running the tool on the Web was one of the main
requirements defined for the construction of the tool. To achieve such purpose, we chose
the following tools: HTML, DOJO JavaScript Toolkit and Cheetah for the interface; and
Cherrypy for the Web application.

2http://lucene.apache.org

IX Simpósio Brasileiro de Qualidade de Software

461

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

BAST Core Components. BAST Core module contains the main components
of the tool, which are responsible for running the search engine, indexing, information
extraction and so on. These components are database Crawlers, bug report Parsers, text
processors, indexers, query parsers, and information extractors.

5. Case Study at C.E.S.A.R.
In this section, it is described a case study conducted inside a private test center partner
from C.E.S.A.R., where BAST was tested during 30 days by one tester during a real cycle
for software testing. In this context, BAST was compared with the baseline tool from
such organization. Although it was an initial evaluation for BAST, the results were very
significant. Furthermore, this case study served as a pilot project for the experiment that
will be described next.

The null and alternative hypothesis are as follows, respectivelly: H0:
µtime with BAST >= µtime with baseline and µduplicates avoided with BAST <=
µduplicates avoided with baseline; H1: µtime with BAST < µtime with baseline and
µduplicates avoided with BAST > µduplicates avoided with baseline

Case study design. The submitter was instructed on how he should use both tools
to search and analyze the bug reports. Thus, we divided the assessment period in two
treatments: the first stage (from July 17 to August 07), the submitter should carry out the
analysis first in the private organization internal tool, and if he did not find a similar bug
report, he should use our tool to perform a new analysis; in the second stage (from August
08 to August 29), this sequence was reversed.

Quantitative analysis mechanisms and data gathering. Descriptive statistics,
such as percentages, mean, standard deviation and pie and bar charts were used to analyze
the results. For data gathering we used spread-sheets where the submitter was responsible
for recording the types of bug reports that were analyzed, the time spent on each analysis
and, when a duplicate is found, to specify in which tool it was found.

5.1. Result Analysis
During the case study, it were examined 144 bug reports by the bug report master. A
description of the types of bug reports analyzed in each treatmen is described next: Unre-
producible are errors that testers and developers are unable to reproduce; Feature Not Yet
Available are bug reports about the addition of new features; WAD is an acronym for Work
as Design; H/W Issue means that the error found is caused by a defect in the hardware;
Workaround means that the errors found can be avoided if the tests run in another way.

Analysis of the First Treatment. During the first treatment, it was analyzed 42
bug reports. According to the analysis, 72% of bug reports that were analyzed would be
duplicate if they were not avoided. Meanwhile, only 14% were valid bug reports, 7%
were Unreproducible, 2% WAD, 2% H/W Issue, and 2% Feature Not Yet Available. These
data show that the majority of time spent with analysis and search is due to duplicates.

Furthermore, performing the analysis activity with the baseline tool prevented
the submission of 58% of duplicates, while BAST prevented 35%. Moreover, 7% were
avoided due to the information provided by developers, through email or other type of
communication. Therefore, BAST had lower performance than the baseline tool in order
to prevent duplicates.

IX Simpósio Brasileiro de Qualidade de Software

462

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

Another analysis was the average time spent on search and analysis using the
baseline tool and BAST. Although BAST has avoided less duplicates than the baseline
tool, as mentioned before, the time to do search and analysis with BAST was less than
with the baseline tool.

Analysis of the Second Treatment. During the period of the second treatment, it
was analyzed 99 bug reports. According to the analysis, 44% of bug reports were dupli-
cates that had been avoided, while 34% were valid bug reports, 9% were unreproducible,
7% WAD, 2% H/W Issue, 2% workaround and 1% Feature Not Yet Available.

Although the amount of bug report submitted increased, there was a reduction on
the submission of duplicate bug reports and a growth of valid bug reports submission.
We believe it is a consequence of the project maturation; testers and developers are more
engaged and there is better knowledge of the bug reports currently being handled.

In this second treatment, the bug reports were analyzed first using BAST, and if it
was not found similar bug reports, a new analysis should be performed with the baseline
tool. At the end of this treatment, the analysis made with BAST avoided the submission
of 89% of duplicates, while the baseline tool prevented just 7%. In addition, 7% were
avoided due to the fact that the submitter had prior knowledge of similar bug reports.

The average time spent on search and analysis of bug reports on both tools did
not have big difference. Although BAST had a little better performance in the second
treatment (it spend 1 minute less than baseline tool in average), in regard to the time of
search and analysis, we believe that further analysis (i.e. to analyze the complexity of bug
reports) should be done to decide whether such difference was caused by the use of BAST
or if it was influenced by other factors.

Analysis Conclusion. Although the individual analysis of the treatments showed
few difference among the tools in some aspects, such as the time spent on analysis, ac-
cording to the descriptive statistics analysis we can confirm the alternative hypothesis µ1

and refute the null hypothesis µ0. In other words, BAST can save more time than the
baseline tool during the analysis of bug reports, and it can also avoid more duplicates.

6. BAST Empirical Evaluation Experiment
A controlled experiment was performed with 18 subjects in order to evaluate the tool
against a baseline tool, so that more concrete conclusion can be drawn. This section
describes such experiment, discussing its definition, planning, operation, analysis and
interpretation.

Definition. This experiment was also performed using the GQM method [6]. The
goal of this experiment is to analyze a tool to improve search and analysis of bug reports
for evaluating it with respect to its effectiveness and efficiency on detection of duplicate
bug reports and time saving, in the view point of researchers, in the context of software
development projects. The following quantitative and qualitative questions were defined:

Is there a reduction on the number of duplicated bug reports with the new tool?

Is there a reduction on the time that submitters spend to perform the search and
analysis of bug reports with the tool adoption?

Did the submitters have difficulties to use the tool?

IX Simpósio Brasileiro de Qualidade de Software

463

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

The experiment was performed as an off-line experiment. The subjects will be
composed by M.Sc. students from the Computer Science department at Federal Univer-
sity of Pernambuco/Brazil. In addition, the experiment will be performed distributed,
which means that the subjects are free to choose their work environment, such as their
home or university laboratories.

6.1. Planning
The subjects of this experiment were selected by convenience sampling [33]. All subjects
received descriptions of defects from some open source software project. However, it is
important to highlight that such descriptions are not the bug reports themselves, but only
few words describing software errors.

Thus, it was created two lists of such objects for the experiment, where each list
contained 32 descriptions, being 50% with defects that already have bug reports describ-
ing them in the repository, and 50% with unique/not-reported defects. It is crucial that
such list holds some descriptions about already submitted bug reports, thus we can deter-
mine which duplicates were correctly avoided.

Descriptive statistics was used to analyze the data from the experiment. In order
to test the hypotheses defined for the experiment, it will be used a paired test-t [33]. The
qualitative analysis was conducted to understand the subjective aspects of the tool, such
as the difficulties faced by the subjects during the use of the tool. The subject was asked
about the applicability and usability of the tool.

For the experiment design it was used the one factor with two treatments design
[33]. In such case, the factor is BAST. Thus, there is a treatment with such tool and
another with the baseline tool. The two treatments are described as follow: Treatment 1
– in the first treatment, the group of subjects received the list of error descriptions. Then,
before submitting such errors as new bug reports, they used BAST to perform searches and
analysis of existing bug reports in order to avoid duplicates submission; in the Treatment
2 the group of subjects used the baseline tool to perform the searches and analysis.

The null and alternative hypothesis were defined as fallows, respectively:
H0: µtime with BAST >= µtime with baseline and µduplicates avoided with BAST <=
µduplicates avoided with baseline; H1: µtime with BAST < µtime with baseline and
µduplicates avoided with BAST > µduplicates avoided with baseline

6.2. Operation
One open source project was selected for the execution of this experiment, Firefox Internet
browser. We chose this project because it is a tool well known both by end users and
Computer Science students.

Baseline tool. The Bugzilla bug tracker with all bug reports from Firefox was
chose to compose the baseline. Since Firefox uses Bugzilla to handle its bug reports,
it was convenient to choose this bug tracker. Furthermore, Bugzilla is one of the most
known bug trackers, being used by several open source and private projects.

Bug reports lists. It was delivered to the participants of the experiment two lists,
each one with 32 descriptions of error of Firefox. To compose this amount, for each list
it was randomly chose 16 (50% of the list) bug reports that were submitted to the Firefox
project during the year 2008, and the other 50% were composed of unique bug reports.

IX Simpósio Brasileiro de Qualidade de Software

464

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

6.3. Analysis and Interpretation
Table 1 shows the data obtained during the experiment. The first column shows the ID of
the participant, second and third columns show the time spent in analysis of bug reports,
and the remaining columns show the amount of duplicate bug reports avoided. We firstly
used descriptive statistics to visualize the data collected.

Time spent on analysis Duplicates avoided
BAST Bugzilla BAST Bugzilla
1 3.09 2.56 5 9
2 3.03 2.47 8 10
3 3.31 3.09 8 12
4 6.78 6.84 13 10
5 5.1 4.82 4 2
6 3.06 2.75 11 11
7 4.97 3.91 12 9
8 5.04 9.56 2 8
9 5 2.97 8 8

Time spent on analysis Duplicates avoided
BAST Bugzilla BAST Bugzilla
10 3.63 3 7 10
11 6.84 6.88 7 8
12 1.78 2.66 6 4
13 6.66 5.41 9 10
14 3.69 4.19 13 10
15 6.47 4.31 9 11
16 3.75 2.72 8 10
17 4.47 4.91 6 8
18 4.97 4.78 0 0

Table 1. Collected data during the experiment.

Descriptive statistics Table 2 shows some statistics about the experiment results.
For time spent on analysis, BAST had mean value of 4.54 minutes and standard deviation
(SD) of 1.49, while Bugzilla had mean value of 4.32 and SD of 1.91. The differences
among these values are few, thus we plot boxes to better understand them. From Figure 2,
we can conclude that people using Bugzilla to analyze bug report spent a little less time
than using BAST. Furthermore, it is important to note that most of subjects from BAST
keep their time spent on analysis below the median value.

Figure 2. Time spent. Figure 3. Dupls. avoided.

For duplicate bug reports avoided, BAST had mean value of 7.56 bug reports
avoided and SD of 3.5, while Bugzilla had mean value of 8.33 and SD of 3.2. Once again,
we need to plot boxes to understand the differences among these values, see Figure 3.
From Figure 3, we can conclude that Bugzilla helped to avoid more duplicates than BAST.
Although Bugzilla is a little better than BAST concerning this aspect, we can observe that
more subjects using BAST can find higher number of duplicates than Bugzilla.

The descriptive analysis showed that Bugzilla had better performance than BAST
in both cases: time spent on analysis and duplicates avoided. However, it is important
to mention that the highest number of duplicate bug reports avoided were achieved with
BAST and the minimum time spent on analysis too (see Table 2).

IX Simpósio Brasileiro de Qualidade de Software

465

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

Time spent on analysis Bug-reports avoided
BAST Bugzilla BAST Bugzilla

Mean 4.54 4.32 7.56 8.33
Maximum 6.84 9.56 13 12
Minimum 1.78 2.47 0 0
SD 1.49 1.91 3.5 3.2

Table 2. Descriptive statistics.

Time spent on analysis Duplicates avoided
t0 0.6292 -1.2466
Degrees of freedom 17 17
p-value 0.5376 0.2294
T distribution 2.11 2.11
Result (t0 ¿ T) H0: not rejected H0: not rejected

Table 3. t-tests. 95% of confidence.

T-test. The data collected during the experiment were submitted to the t-test with
95% of confidence. Table 3 summarizes the results of the test. In the analysis of the time
saved with both tools, the t-test did not reject the null hypothesis. Thus, we can conclude
that there was no gain using BAST instead of Bugzilla to save time during the analysis
of bug reports. In the analysis of duplicates avoided, the t-test also did not reject the null
hypothesis, concluding that there is no advantage in using BAST to avoid duplicates.

Analysis of dependency. Table 4 shows a matrix of correlations for the aspects
of subjects profile. The correlations can variate from −1 to +1, and 0 (zero) means no
correlation among the variables. As we can observe, there are no correlations among the
characteristics of subjects profile and the time spent to analyze bug reports and amount of
duplicates avoided.

BAST time Bugzilla time BAST duplicates avoided Bugzilla duplicates avoided
Years of expereince -0.132974628 -0.02296878 -0.19721612 0.183007854
Number of projects -0.113791496 0.3720158 -0.28693026 -0.020936575
Bug-trackers used -0.167706238 0.3511591 -0.26207382 0.052027136

Table 4. Matrix of correlation.

Qualitative analysis. The result of the qualitative analysis about the BAST us-
ability and functionality is summarized as follows.

BAST features. Seven (7) subjects used the filter features provided by the tool,
while eleven (11) did not use it. From those that used the filters, all of them told that it
was useful for the analysis of bug reports. Furthermore, three (3) subjects told that would
be interesting if the tool also provided other types of filters. Seven (7) subjects told that
the ordering features are useful, while eleven (11) participants did not use them.

BAST Usability. From the seven (7) participants that used the filters, only one
mentioned some difficult to use it, and only one subject from those that used the ordering
features had problem with it. Four (4) subjects experienced problems with the visualiza-
tion of bug reports details. These problems appeared due to issues from the infra-structure.

BAST usefulness. Fifteen (15) subjects believe the way bug report details are pre-
sented in BAST is more useful for the analysis than Bugzilla.

Analysis Conclusion. The descriptive statistics showed that Bugzilla had a little
better performance for both aspects studied: time spent on analysis and amount of du-
plicate bug reports avoided. However, the differences among the data analyzed for both
tools in the descriptive statistics were not significant, which turns hard to draw a concrete
conclusion saying what tool is better.

Furthermore, the t-test applied to test the hypotheses did not provide sufficient
data to reject the null hypothesis. However, the qualitative analysis showed that BAST
have many good aspects that should be taken into account before choosing one of the
tools. It was clear that subjects felt more comfortable while using BAST than Bugzilla

IX Simpósio Brasileiro de Qualidade de Software

466

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

due to its usability.

7. Research Contribution
This work brings some important contributions to the research and industry community,
as it is described next: a state-of-the-art of the area; a characterization study of the prob-
lem; a tool called BAST to help mitigating the problem; two evaluations of the tool: a case
study executed in an industry context and an experiment with students; and final commer-
cial product. In addition to the contribution mentioned, some papers were produced and
published:

• CAVALCANTI, Y. C.; ALMEIDA, E. S.; CUNHA, C. E. A.; LUCRÉDIO, D.; MEIRA,
S. R. L. An Initial Study on the Bug Report Duplication Problem. In: 14th European
Conference on Software Maintenance and Reengineering, Madrid, Spain. CSMR, 2010.
• CAVALCANTI, Y. C.; CUNHA, C. E. A.; ALMEIDA, E. S.; MEIRA, S. R. L. BAST - A

Tool for Bug Report Analysis and Search. In: XXIII Simpósio Brasileiro de Engenharia
de Software, Fortaleza, Brazil. XXIII SBES, 2009 (awarded tool).
• CAVALCANTI, Y. C.; MARTINS, A. C.; ALMEIDA, E. S.; MEIRA, S. R. L. Evitando

Relatos de CRs Duplicadas em Projetos Open Source de Software. In: 9o Fórum Interna-
cional de Software Livre, Porto Alegre, Brazil. FISL, 2008 (in portuguese).
• CAVALCANTI, Y. C.; ALMEIDA, E. S.; CUNHA, C. E. A.; LUCRÉDIO, D.; MEIRA, S.

R. The Bug Report Duplication Problem: A Characterization Study. Journal of Software
Maintenance and Evolution: Research and Practice (under review).

In addition, this dissertation was published in format of book, titled “A Bug Report
Analysis and Search Tool”, by the LAP LAMBERT Academic Publishing press.

8. Concluding Remarks and Future Work
This work proposed and evaluated a solution to the bug reports duplication problem. As
it was described, this problem is present in all the projects investigated, and the prob-
lem is characterized by the submission of two or more bug reports that describe the same
software change/issue. The main consequence of this problem is the overhead of rework
when managing these bug reports. In other words, people involved with bug report analy-
sis, inevitably, spend time with search and analysis of existing bug reports, to ensure that
duplicates will not be submitted.

In this sense, this work performed a characterization study of the problem, de-
scribed a brief survey about the research area on mining bug repositories, described a tool
developed to prevent duplicates submission, and performed also two evaluations of it:
one involving a private organization and other with students. Since in this work it was de-
veloped and evaluated an initial prototype, we are aware that enhancements and features
must be implemented, also as some defects must be fixed, and perform other evaluations.

Some important aspects for future work are described as follows: evolve from
prototype, where a new version of tool should be released with recommended features
and bug fixes; include information visualization techniques[11], in order to help users to
perform the analysis of bug reports; add alternative integration methods, so BAST can be
ease integrated with other tool not tested in this work; and, finally, improve search and
raking techniques, such as putting tags and query reformulation [5] or providing other
ranking techniques to improve search results precision.

IX Simpósio Brasileiro de Qualidade de Software

470

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

Concerning the evaluations performed, experiment replications should be con-
ducted. Although the qualitative analysis indicates that BAST is preferable to perform
analysis and searches of bug reports, the quantitative analysis must be more conclusive,
and this is possible by replicating our experiments.

Acknowledgement

This work was partially supported by the National Institute of Science and Technology
for Software Engineering3, funded by CNPq and FACEPE, grants 573964/2008-4, APQ-
1037-1.03/08 and RHAE-559839/2009-0.

References

[1] Antoniol, G., Penta, M. D., Gall, H., and Pinzger, M. (2005). Towards the integration
of versioning systems, bug reports and source code meta-models. Electronic Notes in
Theoretical Computer Science, 127(3), 87–99.

[2] Anvik, J. and Murphy, G. C. (2007). Determining implementation expertise from bug
reports. In Proc. of the 4th Inter. Work. on Mining Soft. Repositories (MSR’07). IEEE.

[3] Anvik, J., Hiew, L., and Murphy, G. C. (2005). Coping with an open bug repository.
In Proc. of the 2005 OOPSLA Work. on Eclipse Technology eXchange, pages 35–39.

[4] Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In Proc. of
the 28th Inter. Conf. on Soft. Eng. (ICSE’06), pages 361–370.

[5] Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (1999). Modern Information Retrieval.
Addison-Wesley.

[6] Basili, V., Selby, R., and Hutchens, D. (1986). Experimentation in software engineer-
ing. IEEE Trans. on Soft. Eng., 12(7), 733–743.

[7] Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and evolution: a
roadmap. In Proc. of the Conf. on The Future of Soft. Eng. (ICSE’00), pages 73–87.

[8] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T.
(2007). Quality of bug reports in eclipse. In Proc. of the 2007 OOPSLA Work. on
Eclipse Technology eXchange (Eclipse ’07), pages 21–25. ACM.

[9] Canfora, G. and Cerulo, L. (2005). Impact analysis by mining software and change
request repositories. In Proc. of the 11th IEEE Inter. Soft. Metrics Symposium (MET-
RICS’05), page 29.

[10] Canfora, G. and Cerulo, L. (2006). Supporting change request assignment in
open source development. In Proc. of the 2006 ACM Symposium on Applied Comp.
(SAC’06), pages 1767–1772. ACM.

[11] Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in Information
Visualization: Using Vision to Think. The Morgan Kaufmann Series in Interactive
Technologies. Morgan Kaufmann.

[12] Eastwood, A. (1993). Firm fires shots at legacy systems. Comp. Canada, 19(2), 17.
[13] Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional,

2(3), 17–23.
[14] Fischer, M., Pinzger, M., and Gall, H. (2003a). Analyzing and relating bug re-

port data for feature tracking. In Proc. of the 10th Working Conf. on Reverse Eng.
(WCRE’03), pages 90–99.

3INES - http://www.ines.org.br

IX Simpósio Brasileiro de Qualidade de Software

471

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

[15] Fischer, M., Pinzger, M., and Gall, H. (2003b). Populating a release history database
from version control and bug tracking systems. In Proc. of the 19th Inter. Conf. on Soft.
Maintenance (ICSM’03), pages 23–32. IEEE.

[16] Hiew, L. (2006). Assisted Detection of Duplicate Bug Reports. Master’s thesis, The
University of British Columbia.

[17] Huff, F. (1990). Information systems maintenance. The Business Quarterly, (55),
30–32.

[18] Kagdi, H., Maletic, J., and Sharif, B. (2007a). Mining software repositories for
traceability links. In In the Proc. of the 15 IEEE Inter. Conf. on Program Comprehen-
sion (ICPC’07), pages 145–154.

[19] Kagdi, H., Collard, M. L., and Maletic, J. I. (2007b). A survey and taxonomy
of approaches for mining software repositories in the context of software evolution:
Survey articles. Journal of Soft. Maint. and Evol., 19(2), 77–131.

[20] Ko, A. J., Myers, B. A., and Chau, D. H. (2006). A linguistic analysis of how people
describe software problems. In Proc. of the Visual Languages and Human-Centric
Computing (VLHCC’06), pages 127–134.

[21] Koponen, T. and Lintula, H. (2006). Are the changes induced by the defect reports
in the open source software maintenance? In H. R. Arabnia and H. Reza, editors, Proc.
of the 2006 Inter. Conf. on Soft. Eng. Research (SERP’06), pages 429–435. CSREA.

[22] Lancaster, F. W. (1986). Vocabulary Control for Information Retrieval. Information
Resources Press, 2 edition.

[23] Moad, J. (1990). Maintaining the competitive edge. Datamation, 4(36), 61–62.
[24] Panjer, L. D. (2007). Predicting eclipse bug lifetimes. In Proc. of the Fourth Inter.

Workshop on Mining Soft. Repositories (MSR’07), page 29.
[25] Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., and Wang, B.

(2003). Automated support for classifying software failure reports. In Proc. of the 25th
Inter. Conf. on Soft. Eng. (ICSE’03), pages 465–475.

[26] Runeson, P., Alexandersson, M., and Nyholm, O. (2007). Detection of duplicate
defect reports using natural language processing. In Proc. of the 29th Inter. Conf. on
Soft. Eng. (ICSE’07), pages 499–510. IEEE.

[27] Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Commun. ACM, 18(11), 613–620.

[28] Sandusky, R. J., Gasser, L., and Ripoche, G. (2004). Bug report networks: Varieties,
strategies, and impacts in a f/oss development community. In Proc. of the 1st Inter.
Work. on Mining Soft. Repositories (MSR’04).

[29] Sommerville, I. (2007). Software Engineering. Addison Wesley, 8 edition.
[30] Song, Q., Shepperd, M. J., Cartwright, M., and Mair, C. (2006). Software defect

association mining and defect correction effort prediction. IEEE Trans. on Soft. Eng.,
32(2), 69–82.

[31] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. (2008). An approach to detecting
duplicate bug reports using natural language and execution information. In Proc. of the
13th Inter. Conf. on Soft. Eng. (ICSE’08), pages 461–470. ACM.

[32] Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A. (2007). How long will it
take to fix this bug? In Proc. of the 4th Inter. Work. on Mining Soft. Repositories
(MSR’07), pages 20–26. IEEE.

[33] Wohlin, C., Runeson, P., Martin Höst, M. C. O., Regnell, B., and Wesslén, A. (2000).
Experimentation in Software Engineering: An Introduction. The Kluwer Inter. Series
in Soft. Eng. Kluwer Academic Publishers.

IX Simpósio Brasileiro de Qualidade de Software

472

Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Contest

	IX Concurso de Teses e Dissertações em Qualidade de Software / Theses and Dissertations Concourse
	Cavalcanti

