

139

Guidance for Efficiently Implementing Defect Causal
Analysis

Marcos Kalinowski 1, 2, Guilherme H. Travassos 1, David N. Card 3
1 COPPE/UFRJ – Federal University of Rio de Janeiro

Caixa Postal 68511 – CEP 21.945-970 – Rio de Janeiro – Brazil
2 Bennett – Methodist University of Rio de Janeiro

Rua Marquês de Abrantes, 55 - Flamengo - CEP 22.230-060 – Rio de Janeiro – Brazil
3 Det Norske Veritas - 115 Windward Way - Indian Harbour, FL 32937 - USA

{mkali, ght}@cos.ufrj.br , card@computer.org

Abstract. Defect causal analysis has shown itself to be a cheap and high
return means of product-focused software process improvement. However,
despite its advantages and wide industry adoption little academic research is
being done in this area. Thus, professionals face several questions when
implementing it in software organizations. Aiming to provide unbiased and
evidence-based answers to those questions, a systematic review has been
conducted. Based on the results of the systematic review, better guidance for
implementing defect causal analysis efficiently in software organizations can
be elaborated.

1. Introduction
Causal analysis and resolution is a means of identifying causes of defects and other
problems and taking action to prevent them from occurring in the future. It is
considered in many software process improvement models and approaches, such as
MPS [SOFTEX, 2007a], CMMI [SEI, 2006], ISO/IEC 12207 [ISO/IEC, 2004], Lean
[Poppendieck and Poppendieck, 2003], and Six Sigma [Eckes, 2000]. Robitaille (2004)
highlights causal analysis as a way to identify opportunities for improving
organizational process assets based on experience with the projects’ defined processes.
Defect causal analysis (or defect prevention1), comprises applying causal analysis and
resolution to a specific type of problem: the defects introduced in software artifacts
throughout the software lifecycle. Given this initial definition, defect causal analysis
can be seen as a systematic process to identify and analyze causes associated with the
occurrence of specific defect types, allowing the identification of improvement
opportunities for organizational process assets and the implementation of actions to
prevent the occurrence of that same defect type in future projects. Thus defect causal
analysis provides an opportunity to enable product-focused software process
improvement, based on data about the products’ defects [Kalinowski, 2007]. Other
problems, such as schedule flaws, are not considered directly by defect causal analysis.
Accomplishing defect causal analysis activities throughout the software development
lifecycle has shown to reduce defect rates by over fifty percent in different
organizational contexts, such as IBM [Mays et al., 1990], Computer Science
Corporation [Dangerfield et al., 1992 apud Card, 1993], HP [Grady, 1996], and InfoSys

1 More precisely, defect causal analysis can be considered part of defect prevention. The latter also
addresses the implementation of actions and the communication of changes to the development team
explicitly.

VII Simpósio Brasileiro de Qualidade de Software

140

[Jalote and Agrawal, 2005]. As a consequence, it helps to diminish the rework effort
[Jalote and Agrawal, 2005] and increases the probability of achieving other process
quality and performance goals [SEI, 2006]. Moreover, defect causal analysis is a means
for communicating lessons learned among projects [SEI, 2006].
However, as mentioned by Card (2005), despite its benefits and the wide industry
adoption of causal analysis, little research is being done in this area, and little scientific
knowledge has been generated and published. Thus many doubts and questions remain
when implementing defect causal analysis in software organizations. For instance: Is
my organization ready for defect causal analysis? What approach2 should be followed?
How should defects be categorized? How should causes be categorized? What are the
expected costs and results of implementing defect causal analysis?
Aiming to provide unbiased and evidence-based answers to these questions, a
systematic review has been conducted. This systematic review identifies the defect
causal analysis state of the art and provides guidance on how to efficiently implement it
in software organizations. The systematic review and the resulting guidance are the
focus of this paper. Further information and details on the systematic review can be
found in a technical report [Kalinowski and Travassos, 2008] that supports this paper.
The remainder of this paper is organized as follows. In section 2 the systematic review
is described. In section 3 the guidance and suggestions obtained from analyzing the
results of the systematic review are presented in the form of evidence-based and
unbiased answers to common questions. Section 4 concludes the paper.

2. A Systematic Review on Defect Causal Analysis
A systematic review is a means of identifying, evaluating and interpreting research
relevant to research questions in an unbiased and fair way [Brereton et al., 2007].
Systematic reviews tend to be more reliable because it makes use of a rigorous
methodology that is open to auditing and replication.
A systematic review was conducted to identify the state of the art regarding defect
causal analysis and to provide guidance on how to effectively implement defect causal
analysis in software organizations. An unbiased review protocol, focusing on the
research questions was developed to guide the literature review according to the
systematic review process. This process involves three main activities: planning,
execution and result analysis [Biolchini et al., 2005].
The next subsection presents an introduction to defect causal analysis, in order to
provide the basis for understanding of the remaining subsections, in which a description
of the systematic review activity and results is presented.

2.1. Defect Causal Analysis
To have a clear understanding of what defect causal analysis represents in the scope of
this paper it is important to understand precisely what we mean by the term defect,
since its interpretation often depends on the context in which it is being used. For
instance, when a defect is found through peer reviews it is related to a fault in the
artifact being reviewed. When a defect is found through testing activities, on the other
hand, usually it is related to a failure in the software product being tested. These
definitions follow the IEEE standard terminology for software defects [IEEE 610.12,
1990]:

2 Hereafter we refer to “defect causal analysis approach” as a strategy for an investigative process and
to “defect causal analysis techniques” as a specific tool or method used in a defect causal analysis
process.

VII Simpósio Brasileiro de Qualidade de Software

141

• Error: a mistake committed by a person while trying to understand given
information, solve a problem, or using a method or tool.

• Fault: the concrete manifestation of an error in a software artifact. An error may
result in many faults.

• Failure: the operational behavior different from the one expected by the user. A
failure may be caused by many faults, one fault may cause many failures, and
some faults may never cause failures.

This paper uses the term defect to represent the IEEE definition of fault. Thus, in the
case of failures it will be necessary to find the related defects (faults) by analyzing the
artifacts (for instance, by debugging source code) before starting defect causal analysis.
Analyzing causes of software defects has been discussed since the seventies [Endres,
1975] and is cited by Boehm (2006), in addition to software inspections, as one of the
main contributions of that decade to software engineering. Since then, defect causal
analysis processes have been implemented in industry for large projects involving
hundreds of employees [Mays et al., 1990] [Leszak et al., 2002] as well as smaller
projects [Dangerfield et al., 1992] [Yu, 1998] [Jalote and Agrawal, 2005].
Card (2005) summarizes the defect causal analysis process in six steps: (1) select a
sample of the defects, (2) classify selected defects, (3) identify systematic errors, (4)
determine principal cause, (5) develop action proposals, and (6) document meeting
results. In this context a systematic error is an error that results in the same or similar
defects being repeated in different occasions [Card, 2005]. Finding systematic errors
indicates the existence of significant improvement opportunities for the project or
organizational process assets. Besides listing these six steps, Card (2005) highlights the
importance of managing the implementation of the action proposals until their
conclusion and communicating the implemented changes to the development team.

A representation of the traditional
software defect prevention process
[Mays et al., 1990], consistent with
the defect causal analysis process
described above, is shown in Figure
2. Besides the causal analysis
meeting, the figure shows a specific
activity for implementing the action
proposals by an action team and the
communication of the implemented
changes before starting the
development activity. Moreover, the
position of the experience base shows
that defect causal analysis is a mean
for communicating lessons learned

among projects as well as a way to disseminate knowledge in the organization, as
suggested by the SEI (2006).
Given this brief introduction to defect causal analysis, the remaining subsections
describe the defect causal analysis systematic literature review.

2.2. Planning the Systematic Review
The goal of the systematic review was to conduct an unbiased and fair review regarding
the state of the art of defect causal analysis, more specifically aiming at:
• Summarizing the processes, approaches, and guidance that have been proposed for

defect causal analysis.

Figure 2. Defect prevention process.
Adapted from [Mays et al, 1990 apud

Rombach and Endres, 2003].

VII Simpósio Brasileiro de Qualidade de Software

142

• Additionally, summarize and analyze the defect and cause classification schemes
used. Note that the goal here isn’t to analyze all the existing classification schemes
for defects and causes, but to focus on those from sources related to defect causal
analysis.

Two research questions, Q0 and Q1, where formulated to address the goals listed
previously. The question Q0 relates to a broader scope, analyzing causes of defects. The
question Q1, on the other hand, is specifically related to defect causal analysis
(involving the prevention in future projects). This strategy was adopted so that generic
knowledge regarding the analysis of causes of defects could also be identified, since this
knowledge can be used as a starting point towards defect causal analysis (including
prevention). The description of the research questions, in the format suggested in
[Biolchini et al., 2005], follows:
• Q0: Which processes, approaches and knowledge have been proposed and/or used

for analyzing causes of software defects?
o (P) Population: scientific publications and experience reports from software

development projects, environments or organizations.
o (I) Intervention: processes, approaches and knowledge for analyzing causes

of software defects.
o (C) Comparison: does not exist.
o (O) Output: identification of processes, approaches and knowledge for

analyzing causes of software defects.
• Q1: Which processes, approaches and knowledge have been proposed and/or used

for software defect causal analysis (or defect prevention)?
o (P) Population: scientific publications and experience reports from software

development projects, environments or organizations.
o (I) Intervention: processes, approaches and knowledge for software defect

causal analysis (or defect prevention).
o (C) Comparison: does not exist.
o (O) Output: identification of processes, approaches and knowledge for

software defect causal analysis (or defect prevention).
Based on these research questions, search strings could be derived and adjusted so that
they could be executed on different digital libraries. Below we present the search string
S0, derived for question Q0 by listing the keywords identified for the (P) and (I) and
(C) and (O) structure.
• S0: (P) Population and (I) Intervention and (O) Output

(“software development” or “software project” or “software process” or “software engineering” or
“software organization” or “software environment” or “experience factory” or “software factory”) and
((“causal analysis” or “cause analysis” or “defect analysis” or “error analysis” or “failure analysis” or
“fault analysis”) and (defect or error or failure or fault) and (causal or cause)) and (process or approach
or method or methodology or technique or knowledge or tool or paradigm or strategy).

The chosen digital libraries were: ACM Digital Library, EI Compendex, IEEE, Inspec,
and Web of Science. The search strings were tested against a set of seven control papers
dealing with defect causal analysis, read before the systematic review. The strings were
able to retrieve five of them and, of course, many other defect causal analysis papers
from the digital libraries. The two control papers that were not retrieved both satisfied
the strings search criteria, however, in our opinion they were not retrieved because one
of them was really not indexed in the chosen digital libraries and the other one was
probably indexed improperly. Thus, our strings seemed to fit their purpose.
The criteria for including a retrieved paper in our review was that it must comprise
processes, approaches or knowledge regarding analyzing causes of defects or defect
causal analysis (defect prevention). For each of the selected papers the following

VII Simpósio Brasileiro de Qualidade de Software

143

information was extracted: title, complete reference, source, defect classification
scheme, cause classification scheme, identification of the process or approach,
description of the process or approach, identification of knowledge, description of the
knowledge, and type of study.

2.3. Execution of the Systematic Review
Once the review protocol was finished, the execution of the systematic review could be
started. It was planned to occur on a yearly basis, thus avoiding becoming outdated over
the years. A summary of the executions in August 2006 and August 2007 follows.
August 2006 Execution. The search strings were executed on the selected digital
libraries, and 203 papers were retrieved. After eliminating replications (the same paper
retrieved from more than one digital library) the total number of retrieved papers fell to
159. Those 159 papers were filtered further. The initial filtering was based on the title
and abstract. Only those papers that were surely not related were excluded. As a result,
the number of papers to read and evaluate decreased to 57. After reading the papers and
trying to extract the information from them, some more papers were excluded, based on
the criteria defined previously. Finally, 41 papers were selected as part of the first
execution of our systematic review. The number of papers retrieved from each digital
library during the filtering process is shown in Figure 3.

0

50

100

150

200

Filtering by Content 13 11 23 17 6 41

Filtering by Title and Abstract 21 12 28 20 6 57

Before Filtering 75 20 42 52 6 159

ACM IEEE Inspec EI Compendex Web Of Science Total

Figure 3. Number of papers retrieved in august 2006.

In addition to the 41 papers obtained by applying the review protocol to the digital
libraries, information was extracted from the two control papers that were not retrieved
and from one other paper: [Endres, 1975]. This paper was included because it was
referenced by some of the selected papers as a seminal paper in the area. Again, we
believe that the paper was indexed improperly in the IEEE digital library, since its
content satisfies the strings search criteria. Therefore, as a result of applying the
systematic review in August 2006, information was extracted from 44 research papers.
August 2007 Execution. In 2007 the same filtering process was performed. As a result
15 new papers were identified. After filtering by title and abstract the number of new
papers decreased to 7. Finally, after filtering by content the number decreased to 6. The
quantity of new papers from each digital library during the filtering process is shown in
Figure 4.

0

2

4

6

8

10

12

14

16

Filtering by Content 4 0 2 3 0 6

Filtering by Title and Abstract 4 0 2 4 0 7

Before Filtering 9 0 3 6 0 15

ACM IEEE Inspec EI Compendex Web Of Science Total

Figure 4. Number of additional papers retrieved in august 2007.

All the analyzed papers and the way they cite each other, considering the August 2006
and August 2007 executions, are shown in Figure 5. This graph representation allowed

VII Simpósio Brasileiro de Qualidade de Software

144

us to identify the most influential papers and research trends. The papers cited by more
than three of the remaining papers are shown in light grey. The additional papers
retrieved in the August 2007 execution are shown in grey.
The information extracted from each of the papers is registered in [Kalinowski and
Travassos, 2008].

V
II

 S
im

pó
si

o
 B

ra
si

le
iro

 d
e

Q
ua

lid
ad

e
de

 S
o

ftw
ar

e

14
5

Figure 5. Citations between papers selected in the august 2006 and august 2007 reviews.

VII Simpósio Brasileiro de Qualidade de Software

146

2.4. Results of the Systematic Review
The following information, regarding the goals of our systematic review, was extracted
and grouped in tables, organized by publication date:

• processes and approaches used for defect causal analysis;
• defect classification schemes used by the papers;
• cause classification schemes used by the papers, and;
• knowledge regarding defect causal analysis generated or cited by those papers.

In the following subsections a summary of the analyses that performed based on those
tables, aiming at obtaining the state of the art for each of the systematic review goals, is
presented.

2.4.1. Processes and Approaches
The first approach found was the one described by Endres (1975), at IBM. This
approach deals with individual analysis of software defects, in such a way that they can
be categorized and their causes identified, allowing actions to be taken to prevent their
occurrence in future projects or at least to assure their detection. The analysis of the
defects occurs occasionally, as well as the corrective actions. This approach is still
referenced in recent papers that involve retrospective defect analysis, such as [Li et al.,
2006].
The difference between this approach and the traditional defect prevention process, also
established at IBM [Jones, 1985] [Philips, 1986] [Mays, 1990] [Mays et al., 1990],
about ten years later, is that the latter one is integrated into the development process.
This integration occurs by establishing two additional tasks: (1) a causal analysis
meeting after the rework activity is finished (which means that the defects at this point
were already removed), and (2) a kickoff meeting, where the actions implemented since
the last causal analysis meeting are communicated to the personnel involved in
performing the activity.
The approach presented by Endres (1975) and the defect prevention process [Jones,
1985] analyzes defects exhaustively and involves in the analysis, if possible, the people
responsible for introducing the defects. When appropriate, the meeting leader can skip
some of the defects during the meeting without them being discussed.
Card (1993), describes a more flexible process involving the same concepts. The
apparent flexibility comes from the fact that the causal analysis meeting isn’t coupled to
a specific development activity, but occurs periodically. Card (1993) also highlights,
based on the experience at Computer Science Corporation referenced in the paper, that
it is not necessary to analyze all defects exhaustively, a sample will suffice, and that the
action proposals should treat classes of defects and not each defect separately.
Most of the papers analyzed follow processes congruent to the traditional defect
prevention process [Jones, 1985] or the corresponding defect causal analysis process
[Card, 1993]. Among the papers that explicitly follow or suggest this process are
[Jones, 1985], [Philips, 1986], [Mays, 1990], [Mays et al., 1990], [Pratt, 1991], [Card,
1993], [Collofello and Gosalla, 1993], [Damele et al., 1996], [Grady, 1996], [Card,
1998], [Leszak et al., 2000], [Leszak et al., 2002], [van Moll et al., 2002], [Jalote and
Agrawal, 2005], and [Card, 2005].
Grady (1996) describes defect causal analysis experiences at Hewlett Packard. The
periodicity varied: one shot causal analysis (performed randomly), post project causal
analysis (performed after the conclusion of the project), and a continuous process
improvement cycle (performed after each development phase).

VII Simpósio Brasileiro de Qualidade de Software

147

Besides the defect causal analysis approaches, some specific techniques to support
causal analysis could be identified. Even though they are not defect causal analysis
approaches, we considered them in our review. They represent techniques to identify
cause-effect relations: [Nakajo, 1991], [Nakajo and Kume, 1991], [Wohlin et al., 2000],
[Krause et al., 2002], and [Gras, 2004]; statistical control techniques: [Hong et al.,
1999], and [Wang et al., 2006]; and defect analysis techniques: [Bhandari et al., 1993],
[Bhandari and Roth, 1993], [Kelsey, 1997], [Nakamura et al., 2006], and [Damm and
Lundberg, 2007]. A summary of those techniques is described in [Kalinowski and
Travassos, 2008].
Based on the literature review, two techniques that seem to show themselves
particularly useful to support defect causal analysis activities are Pareto charts and
cause-effect (or Ishikawa) diagrams [Ishikawa, 1976]. They support, respectively,
identifying the most common defect types and finding the causes for specific defect
classes. Although cause-effect diagrams were cited by [Mays et al., 1990] as used in the
manufacturing area, the first of the analyzed papers to use those diagrams in the context
of software defect causal analysis appeared in 1996. The cause-effect diagram is used
and/or suggested in many of the analyzed papers, including [Chernak, 1996], [Damele
et al., 1996], [Grady, 1996], [Card, 1998], [van Moll et al., 2002], [Jacobs et al., 2004],
[Card, 2005], [Jacobs et al., 2005] [Jalote and Agrawal, 2005], and [Wang et al., 2006].
Among the papers that cite pareto charts as a useful technique are [Card, 1998], [Hong
et al., 1999], [van Moll et al., 2002], [Card, 2005] [Jalote and Agrawal, 2005], and
[Wang et al., 2006].

2.4.2. Defect Classification Schemes
Two types of information about classification were extracted from the papers: defect
information to be collected and defect types.
Defect information to be collected. We noted a certain consensus among the authors
on the relevant information to be collected about software defects in order to support
defect causal analysis. Among the data considered relevant since the initial papers
[Endres, 1975] [Jones, 1985] [Mays, 1990] and continuing to the more recent ones
[Agrawal and Jalote, 2005] [Jantti et al., 2006] [Chang and Chu, 2007] [Damm e
Lundberg, 2007] are:

• The moment (or phase) in which the defect was introduced.
• The moment (or phase) in which the defect was detected.
• Defect type.

This information matches the three dimensions to classify defects suggested in [Card,
1998] and [Card, 2005]. None of the analyzed papers argued against the use of any of
these dimensions to classify defects.
However, other information is considered in some papers, according to the specific
goals of the defect causal analysis approaches presented in them:

• Correction (effort and time) or severity (impact), is considered in many papers,
for example [Endres, 1975] [Collofello e Gosalla, 1993] [Fairley, 1999] [Leszak
et al., 2000] [Leszak et al., 2002] [Jantti et al., 2006] [Nakamura et al., 2006]
and [Chang and Chu, 2007]. Moreover, severity is also considered in the papers
that use ODC (Othogonal Defect Classification): [Bhandari et al., 1993]
[Chernak, 1996].

• Location (or module), is considered by many papers, such as [Endres, 1975],
[Bhandari et al., 1993], [Bhandari e Roth, 1993], [Kelsey, 1997], [Leszak et al.,
2000], [Leszak et al., 2002], [van Moll et al., 2002], [Nakamura et al., 2006],
and [Chang and Chu, 2007].

VII Simpósio Brasileiro de Qualidade de Software

148

Aditional information found in two papers that use the ODC [Chillarege et al., 1992]
classification scheme [Bhandari et al., 1993] [Chernak, 1996] includes:

• Trigger, which indicates how the defect was detected.
• If the defect was introduced while developing new functionality or while

maintaining existing functionality.
Defect types. Regarding the defect types, several different taxonomies could be found.
The complete list of taxonomies in chronological order is reported in [Kalinowski and
Travassos, 2008]. An excerpt of that list, with three most cited of the nine taxonomies
found in the papers, follows:

• ODC taxonomy [Chillarege et al., 1992], with the following types: interface,
function, build/package/merge, assignment, documentation, checking,
algorithm, timing/serialization. Of the analyzed papers this taxonomy was used
by [Bhandari et al., 1993] and [Chernak, 1996] it was also mentioned in some
other papers, like [Card, 1998] [Card, 2005].

• Taxonomy for defects used at Hewlett-Packard [Grady, 1996], containing
several types of defects organized by development phase. For each type its
nature or mode (missing, unclear, wrong, changed, or better way) are also
determined.

• Taxonomy for requirements defects used at NASA, containing 13 types of
requirements defects, used in [Hayes et al., 2006]. It represents a tailoring of the
taxonomy described by Shull (1998) (which includes the defect types:
ambiguity, omission, inconsistent information, incorrect fact, and extraneous
information), reflecting the reality of NASA. In Leszak et al (2002) similar
types of defects are referred to as the nature of the defect, and aggregated to
more refined defect types.

The great variety of taxonomies found reflects the argument of Card (2005), that the
defect taxonomy should be created in such a way that it supports the specific analysis
interests of the organization that is implementing defect causal analysis. This argument
is reinforced by Jalote and Agrawal (2005), for instance, who used the same argument
to justify the elaboration of a specific taxonomy for InfoSys.

2.4.3. Cause Classification Schemes
Analyzing the different cause classification schemes listed in [Kalinowski and
Travassos, 2008] it is possible to identify a consensus among the authors about the
categories that should be considered for defect causes. Moreover, most of the categories
contained in the different classification schemes can be easily mapped to the categories
initially proposed by Ishikawa (1976) for manufacturing. The Ishikawa categories are
suggested as a starting point for defect causal analysis approaches in [Card, 1998] and
[Card, 2005]. They are the following: tools, input, people, and methods.
However, it is important to highlight that the remaining schemes, considering the
specific context of software, can bring contribute additional information by refining the
Ishikawa scheme. For instance, an additional category considered in many schemes
developed for analyzing software defects is “lack of understanding of the
requirements”. This category can be considered a subcategory of “people”3, but since in
several cases [Endres, 1975] [Nakajo and Kume, 1991] [Hayes, 2006] many causes
matched that category it could be helpful to consider it separately. Further suggestions

3 It could also be mapped to the “input” category, depending on the nature of the misunderstanding.

VII Simpósio Brasileiro de Qualidade de Software

149

on subcategories identified in other schemes can be found in [Kalinowski and
Travassos, 2008].
An interesting classification scheme is that cited in [Jalote and Agrawal, 2005], the five
“Ms” and one “E” scheme [Robitaille, 2004]. The five “Ms” refer to the categories
“Material”, “Method”, “Manpower”, and “Measurement”, and “Machinery”. The “E”
refers to the “Environment”. According to Robitalle (2004) this scheme is commonly
used in manufacturing. However, Jalote and Agrawal (2005) decided to adapt it to the
context of software, and suggest the following categories: process, people, and
technology. They mention that those are the factors with the highest impact on quality
and productivity [Jalote, 2000] and [SEI, 1995]. Those categories again can be mapped
to the Ishikawa categories, removing just the “input” category.
Finally, the papers [Jacobs et al., 2004] and [Jacobs et al., 2005] present a category that
is not obviously included in the Ishikawa categories, the “organization”. This category
is related to organizational causes and not specifically to its processes. For instance,
inadequate or unavailable organizational policies, improper geographical distribution of
departments (for instance, communication problems do to different time zones),
improper organizational structure (for instance, no employee responsible for
configuration management), among others. It is important to mention that those papers
focus on projects with globally distributed teams, and that this category seems to be
especially useful in that context.

2.4.4. Knowledge Regarding Defect Causal Analysis
In order to facilitate the application of the knowledge gathered from analyzing the
papers, it was structured to separate generic knowledge about the entire process from
the knowledge limited to specific activities and tasks. The following tables were
generated:

• A table with generic knowledge regarding the entire process.
• One table for each of the defect causal analysis activities of the defect

prevention process described in [Jones, 1985], [Mays, 1990], and [Mays et al.,
1990]. As described before, those four activities are: (1) causal analysis meeting,
(2) implementation of the actions, (3) stage kickoff, and (4) data collection and
monitoring. Inside the causal analysis meeting group of knowledge subgroups
were created for each of the six steps mentioned in [Card, 2005]: (1) selecting
the sample, (2) categorizing the defects, (3) finding the systematic error, (4)
finding the main causes, (5) elaborating action proposals, and (6) documenting
meeting results.

The complete tables of knowledge, organized by publication date, are available in the
report that supports this paper [Kalinowski and Travassos, 2008]. It is important to
mention that the knowledge described in the tables should be used considering the
context in which it was generated, as described in the appendix of the report. The
appendix lists the information extracted from each of the papers, together with a
description of the knowledge and the type of study the paper presents.

3. Guidance to Efficiently Implement Defect Causal Analysis
Based on the knowledge acquired and the analyses performed as a result of the
systematic review some guidance to implement defect causal analysis could be
elaborated. The guidance aims at providing reasonable answers to the questions listed in
the introduction. These are questions commonly faced by professionals when trying to
implement defect causal analysis in software organizations. Is my organization ready
for defect causal analysis? What approach should be followed? How should defects be

VII Simpósio Brasileiro de Qualidade de Software

150

categorized? How should causes be categorized? What are the expected costs and
results of implementing defect causal analysis?

The guidance is composed of unbiased evidence-based answers to those questions and is
complemented by the tables of knowledge regarding the process and each of its
activities, listed in [Kalinowski and Travassos, 2008].
Is my organization ready for defect causal analysis?
The main requirement for applying defect causal analysis is collecting data regarding
defects. However, as argued by Card (1993) and van Moll et al (2002), defect causal
analysis benefits from having a defined process established for the projects.
Given the potential benefits and return of investment [Mays et al., 1990] [Card, 1993]
[Leszak et al., 2000] [Jalote and Agrawal, 2005], we recommend the implementation of
defect causal analysis approaches even for lower maturity organizations, even though it
is only required at the highest maturity levels of models such as MPS and CMMI.
Defect causal analysis can help to improve the performance and capability of processes
before those high maturity levels are achieved [Card, 1998] [Card, 2005].
What approach should be followed?
Based on the scenario described in the previous section we believe that an efficient
defect causal analysis approach could follow the traditional defect prevention approach
[Jones, 1985], which has been used in early and recent approaches. As mentioned
before, this process has shown itself of low cost and efficient in reducing defect rates in
different organizational contexts. As suggested by Card (1993) the causal analysis
meeting should focus on classes of defects, sampled before the causal analysis meeting.
Among the specific techniques we suggest Pareto charts to identify the main defect
classes to be analyzed and cause-effect diagrams to support identifying the main causes
for the systematic errors that lead to those defect classes.
Among the metrics to be collected to support defect causal analysis and understanding
its results, based on the systematic review, we suggest the number of defects found per
unit of size, the mean number of defects found per inspector per hour (if available), and
the PIQ (Phase Input Quality) and POQ (Phase Output Quality) metrics defined by
Damm and Lundberg (2007). The number of defects indicates efficiency in preventing
defects, the PIQ and POQ metrics, on the other hand, provide further insight into the
defect detection mechanisms efficiency. Those metrics could be placed under statistical
control integrating defect causal analysis with statistical process control, providing a
more precise and quantitative way of determining how the process performance and
capability are affected by defect causal analysis.
Defect causal analysis helps accomplish two goals of statistical process control: (1)
controlling and stabilizing processes and (2) improving their performance and
capability. As mentioned in [Florac and Carleton, 1999] the first of these goals deals
with assignable (or special) causes. The existence of assignable causes can be detected
by applying process stability tests, such as the ones described by Wheeler et al., (1992)
to statistical process control charts. If the process is not stable, then defect causal
analysis can help to find the assignable causes and implement actions that stabilize it.
The second goal addresses the common causes for the process’ current performance and
capability [Florac and Carleton, 1999]. This can be accomplished by applying defect
causal analysis even if it the process is stable, for instance, after each development
phase. Relating this to the capability maturity models MPS and CMMI, controlling and
stabilizing processes is related to MPS maturity level B and CMMI maturity level 4.

VII Simpósio Brasileiro de Qualidade de Software

151

Improving the performance and capability on the hand is related to MPS maturity level
A and CMMI maturity level 5.
Our systematic review indicates that the most appropriate control charts for controlling
defect data and supporting defect causal analysis are the U charts [Hong et al.,
1999][Card, 2005]. U charts apply to data that has a Poisson distribution, with a varying
area of opportunity (for instance, the size of a document) for an event to occur (for
instance, detecting a defect) [Montgomery, 1991 apud Hong et al., 1999]. Individuals
or XmR charts may be used, but are less sensitive.
How should defects be categorized?
Defect information to collect. Based on the information collected from the retrieved
approaches and papers, we believe that an efficient defect causal analysis approach
should consider at least the consensus information, which is: moment of introduction,
moment of detection, and type of defect. Additionally, in our point of view, knowing
the severity of the defects (or their impact) and their location could support defect
causal analysis by identifying clusters of defects to support the selection of the samples
to be analyzed and monitoring the efficiency of the defect causal analysis process itself.
However, severity is largely an accident and the same mistake made in different
contexts can have very different impacts. Finally, additional information, such as the
trigger and if the defect is related to new functionality, can be used for specific
situations, such as trying to improve detection mechanisms (when prevention is difficult
to achieve), as done by [Chernak, 1996].
Moreover, once the cause of the defect is determined, a link between the defect and its
cause should be established and the cause should be stored according to its own
classification scheme.
Defect types. The results of the systematic review suggest that an efficient defect causal
analysis approach should use a taxonomy that considers the nature and the type of
defect. The nature can be expressed using the categories described by Shull (1998),
which can be tailored to specific contexts, as in [Hayes, 2006]. These categories
(omission, ambiguity, inconsistent information, incorrect fact, extraneous information,
and other) can be used in a generic way for the different artifact types generated
throughout he software development lifecycle, as observed by Travassos et al (2001).
For the defect type, a taxonomy should be created considering the specific goals of the
organizations’ defect causal analysis approach, as suggested by Card (2005). Not
having a defect type taxonomy in place at the organization the types considered by
ODC [Chillarege et al., 1992], commonly used [Card, 2005], could serve as a starting
point for further tailoring.
How should causes be categorized?
Given the consensus scenario regarding defect cause categories, we believe that the
Ishikawa categories represent a good starting point [Ishikawa, 1976], as suggested by
Card [Card, 1998] [Card, 2005], adding for the sake of completeness the category
“organization” [Jacobs et al., 2004] [Jacobs et al., 2005]. The tailoring of the
classification scheme can be done afterwards, by creating specific subcategories, based
on the reality of the organization itself (taken for instance from the results of prior
defect causal analyses).
What are the expected costs and results of implementing defect causal analysis?
The answer to this question helps to establish quantitative improvement goals for
implementations of defect causal analysis. Based on the generic knowledge gathered
regarding defect causal analysis approaches, its cost varies from 0.5 to 1.5 percent of
the projects budget (including the implementations of the proposed actions), according

VII Simpósio Brasileiro de Qualidade de Software

152

to data taken from IBM and Computer Science Corporation [Card, 2005]. In our point
of view this is a very low cost, especially when considering the benefits, which have
been reducing defect rates by over 50 percent (again considering data from IBM and
Computer Science Corporation) [Card, 2005]. As a consequence rework effort and costs
will be reduced while productivity is increased.
Even though they measured the benefits in different ways (for instance, reduction of
rework effort, reduction of specific defect types, among others), all of the analyzed
papers showed positive results from implementing defect causal analysis. The papers
describe experiences from a great range of software organizations, including: AG
Communication Systems Corporation, Computer Science Corporation, Hewlett-
Packard, IBM (several organizational units), InfoSys, Italtel SIT BUCT Línea UT,
Lucent Technology, Motorola, and Philips Software Centre.

4. Conclusions
Defect causal analysis has shown itself an inexpensive and high return means of product
focused software process improvement [Kalinowski, 2007]. However, as mentioned by
Card [2005], despite its advantages and wide industry adoption little academic research
is being done in this area. Thus little knowledge has been generated and published. As a
consequence professionals face many questions when trying to implement defect causal
analysis in software organizations.
A systematic review was conducted in order to provide unbiased and evidence-based
answers to some of those questions [Kalinowski and Travassos, 2008]. Based on the
results of the systematic review we were able to identify the defect causal analysis state
of the art in an unbiased way and to provide some guidance on how to efficiently
implement it in software organizations.
Moreover, some opportunities for further investigation were identified. For instance, we
found no approach allowing dynamic updates to the cause-effect relationships that
reflect the reality of the organizational context, based on the results of the causal
analysis itself. According to the results of the systematic review and to our knowledge
this is first being addressed in the proposal described in [Kalinowski et al., 2008].
We believe that making the resulting guidance and knowledge available in the academic
and software practitioners’ community could facilitate the implementation of defect
causal analysis, complementing other valuable sources of information, such as [Card,
2005] and [SOFTEX, 2007b]. As the main contributions of this guidance we highlight
the unbiased compilation of answers to commonly faced questions and lists of
knowledge regarding the defect causal analysis process and its activities.

References
Al-Shehab, A. J., Hughes, R. T., Winstanley, G., Facilitating Organisational Learning through Causal

Mapping Techniques in IS/IT Project Risk Management, LNCS, 3782 NAI, 145 - 154, 2005.
Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., Chillarege, R., A Case Study of Software

Process Improvement During Development, IEEE Trans. on Soft. Eng., 19 (12), 1157 – 1170, 1993.
Bhandari, I., Roth, N., Post-process Feedback with and without Attribute Focusing: a Comparative

Evaluation, in 'ICSE '93: Proceedings of the 15th Intl’ Conf. on Soft. Eng.', IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 89-98, 1993.

Biolchini, J.; Mian, P.G.; Natali, A.C.; & Travassos, G.H. (2005), “Systematic Review in Software
Engineering: Relevance and Utility”, Technical Report ES-679/05, PESC-COPPE/UFRJ. Available
at http://www.cos.ufrj.br .

Boehm, B., A view of 20th and 21st century software engineering, in 'ICSE '06: Proceeding of the 28th
international conf. on Soft. Eng.', ACM Press, New York, NY, USA, pp. 12-29, 2006.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., Khalil, M., Lessons from applying the
systematic literature review process within the software engineering domain. Journal of Systems and
Software. Volume 80, Issue 4. Pages 571-583, 2007.

Bush, M., Getting started on metrics - JPL productivity and quality, in 'ICSE '90: Proceedings of the
12th international conf. on soft. eng.', IEEE Comp. Soc. Press, Los Alamitos, CA, USA, pp. 133-
142, 1990.

VII Simpósio Brasileiro de Qualidade de Software

153

Card, D., “Defect Analysis: Basic Techniques for Management and Learning”, Advances in Computers,
vol. 65, chapter 7, pp. 259-295, 2005.

Card, D., Learning from our mistakes with defect causal analysis, IEEE Software, 15(1), pp. 56-63,
1998.

Card, D., Defect Causal Analysis Drives Down Error Rates, IEEE Software 1/1993, Volume 10, Issue 4,
7/1993, p.98-99, 1993.

Chang, C., Chu, C., "Defect Prevention in Software Processes: An Action-Based Approach", The
Journal of Systems and Software, Vol. 80, issue 4, April 2007, pp. 559-570, 2007.

Chernak, Y., A statistical Approach to the Inspection Checklist Formal Synthesis and Improvement,
IEEE Transactions on Software Engineering, 22(12), 866-874, 1996.

Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong, M.Y., Ortogonal
Defect Classification – A Concept for In-Process Measurement, IEEE Transactions on Software
Engineering, vol. 18, pp. 943-956, 1992.

Collofello, J., Gosalla, B., Application of Causal Analysis to the Software Modification Process,
Software Practice and Experience, 23(10), pp. 1095–1105, 1993.

Dalal, S. R., Horgan, J. R., Kettenring, J. R., Reliable Software and Communication: Software Quality,
Reliability, and Safety, in 'ICSE '93: Proceedings of the 15th International Conference on Software
Engineering', IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 425-435, 1993.

Damele, G., Bazzana, G., Andreis, F., Aquilio, S., Process Improvement through Root Cause Analysis,
in ‘Proceedings of Third International Conference on Achieving Quality in Software’, pp. 35--47,
1996.

Damm, L., Lundberg, L., Company-wide Implementation of Metrics for Early Software Fault
Detection, Proc. of the 29th International Conference on Software Engineering (ICSE’07),
Minneapolis, 2007.

Dangerfield, O., Ambardekar, P., Paluzzi, P., Card, D., Giblin, D., Defect Causal Analysis: A Report
from the Field, Proceedings of International Conference of Software Quality, American Society for
Quality Control, 1992.

Eckes, G., The Six Sigma Revolution: How General Electric and Others Turned Process Into Profits,
John Wiley and Sons, 2000.

Endres, A., “An Analysis of Errors and Their Causes in Systems Programs", IEEE Transactions on
Software Engineering, SE-1, 2, June 1975, pp. 140-149, 1975.

Fairley, R. E., Managing by the Numbers: a tutorial on quantitative measurement and control of
software projects, in 'Proceedings of the 21st International Conference on Software Engineering,
ICSE 99', IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 677- 678, 1999.

Florac, A.W., Carleton A.D., Measuring the Software Process: Statistical Process Control for Software
Process Improvement, Pearson Education, 1999.

Grady, R. B., Software Failure Analysis for High-Return Process Improvement Decisions, Hewlett-
Packard Journal, 47 (4), 15 - 24, 1996.

Gras, J.J., End-to-End Defect Modeling, IEEE Software, 21(5), 98-100, 2004.
Hayes, J.H., Raphael, I., Holbrook, E.A., Pruett, D.M., A case history of International Space Station

requirement faults, Proceedings of the11th IEEE International Conference on Engineering of
Complex Computer Systems, Stanford University, California, 2006.

Hong, G., Xie, M., Shanmugan, P., A Statistical Method for Controlling Software Defect Detection
Process, Computers and Industrial Engineering 37 (1-2), pp. 137-140, 1999.

IEEE, 1990, IEEE Standard Glossary of Software Engineering Terminology, Standard 610, IEEE Press.
ISO/IEC, ISO/IEC 12207: Information technology - Software life-cycle processes – Amendment 2,

Geneve: ISO, Int. Org. for Standardization and the Int. Electrotechnical Commission, 2004.
Jacobs, J.C., van Moll, J.H., Krause, P.J., Kusters, R.J., Trienekens, J.J.M., Brombacher, A., Exploring

Defect Causes in Products Developed by Virtual Teams, Journal on Information and Software
Technology, 47(6), 399 – 410, 2005.

Jacobs, J.C., van Moll, J.H., Krause, P.J., Kusters, R.J., Trienekens, J.J.M., Effects of Virtual
Development on Product Quality: Exploring Defect Causes, Proceedings of the 11th Annual
International Workshop on Software Technology and Engineering Practice (STEP’04), 2004.

Jalote, P., Agrawal, N., “Using Defect Analysis Feedback for Improving Quality and Productivity in
Iterative Software Development”, (Invited paper, 3rd International Conference on Information and
Communication Technology, ICICT, 2005.), pp. 701 – 713, Cairo, 2005.

Jantti, M., Toroi, T., Eerola, A., Difficulties in establishing a defect management process: A case study,
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 4034 NCS, pp. 142-150, 2006.

Jones, C.L., A process-integrated approach to defect prevention, IBM Systems Journal, 24(2), 150-67,
1985.

Kalinowski, M., Travassos, G.H., Uma revisão sistemática a respeito de análise causal de defeitos de
software, technical report available at http://www.cos.ufrj.br , COPPE/UFRJ, 2008.

Kalinowski, M., Travassos, G.H., Card, D.N., Towards a Defect Prevention Based Process
Improvement Approach, 34th EUROMICRO Conference, IEEE Computer Society, 2008.

Kalinowski, M., Defect Causal Analysis: An Opportunity for Product Focused Software Process
Improvement, Invited paper at the V CICIS (Congreso Internacional de Computación y Ingenieria
de Sistemas), Moquegua, Peru, 2007.

Keene, J., Managing Software Reliability and Support Costs, in 'Proceedings of the Leesburg Workshop
on Reliability and Maintainability Computer-Aided Engineering in Concurrent Engineering', pp.
201-205, 1991.

VII Simpósio Brasileiro de Qualidade de Software

154

Kelsey, R.B., Integrating a Defect Typology with Containment Metrics, ACM SIGSOFT Software
Engineering Notes, 22(2), 64-67, 1997.

Kitchenham, B.A., Procedures for Performing Systematic Reviews, Joint Technical Report Keele
University and National ICT Australia Ltd., 2004.

Krause, P., Freimut, B., Suryn, W., New Directions in Measurement for Software Quality Control, in
'Proc. of the 10th Int. Workshop on Soft. Tech. and Eng. Practice, STEP 2002', pp. 129-143, 2002.

Lederer, A.L., Prasad, J., A Causal Model for Software Cost Estimating Error, IEEE Transactions on
Software Engineering, 24 (2), pp. 137-148, 1998.

Leszak, M., Perry, D., Stoll, D., A Case Study in Root Cause Defect Analysis, in 'International
Conference on Software Engineering, ICSE 2000', pp. 428-437, 2000.

Leszak, M., Perry, D. E., Stoll, D., Classification and evaluation of defects in a project retrospective,
Journal of Systems and Software, 61(3), 173 - 187, 2002.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C., Have things changed now? An empirical study of
bug characteristics in modern open source software, Proceedings of ASID'06: 1st Workshop on
Architectural and System Support for Improving Software Dependability, pp. 25-33, 2006.

Linger, R. C., Cleanroom Software Engineering for Zero-Defect Software, in 'ICSE '93: Proceedings of
the 15th International Conference on Software Engineering', IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 2-13, 1993.

Mays, R.G., Applications of Defect Prevention in Software Development, IEEE Journal on Selected
Areas in Communications, Vol.8, No.2, pp. 164-168, February 1990.

Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P., Experiences with Defect Prevention, IBM
Systems Journal, 29(1), pp. 4-32, 1990.

van Moll, J., Jacobs, J., Freimut, B., Trienekens, J., The Importance of Life Cycle Modeling to Defect
Detection and Prevention, in '10th International Workshop on Software Technology and
Engineering Practice, 2002. STEP 2002', pp. 144-155, 2002.

Nakajo, T. & Kume, H. (1991), A Case History Analysis of Software Error Cause-Effect Relationships,
IEEE Transactions on Software Engineering, 17(8), 830-838, 1991.

Nakajo, T., Foolproofing and Quality Feedback: Keys of Process-Based Management, Proceedings of
the Fifteenth Annual International Computer Software and Applications Conference, COMPSAC'91,
IEEE Computer Society Press, 390-391, 1991.

Nakamura, T., Hochstein, L., Basili, V.R., Identifying Domain-Specific Defect Classes Using
Inspections and Change History, Proceedings of the 2006 International Symposium on Empirical
Software Engineering (ISESE), Sept. 21-22, Rio de Janeiro, Brazil. p. 346-355, 2006.

Oshana, R., Coyle, F.P., Implementing Cleanroom Software Engineering into a Mature CMM-Based
Software Organization, Proceedings of the 19th International Conference on Software Engineering,
ICSE’97, ACM Press, New York, NY, USA, pp. 572-573, 1997.

Paul, R. A., Bastani, F.; Yen, I., Challagulla, V. U., Defect-based Reliability Analysis for Mission-
Critical Software, Proceedings of the IEEE Computer Society's International Computer Software
and Applications Conference, pp. 439 - 444, 2000.

Philips, R.T., An approach to software causal analysis and defect extinction, in ‘Proceedings of the
IEEE Globecom Conference, pp. 412-416, 1986.

Poppendieck, M., Poppendieck, T., Lean Software Development: An Agile Toolkit, Addison Wesley
Professional, 2003.

Pratt, W. M., Experiences in the Application of Customer-Based Metrics in Improving Software Service
Quality, Conf. Record of the International Conference on Communications, pp. 1459 - 1462, 1991.

Robitaille, D., Root Cause Analysis – Basic Tools and Techniques, Paton Press, 2004.
Rombach, D., Endres, A., A Handbook of Software and Systems Engineering – Empirical Observations,

Laws and Theories, Pearson Addison Wesley, 2003.
Rosen, C., PLUNGE DA: A Case Study, ACM SIGSOFT Soft. Eng. Notes, 22(2), pp. 82-83, 1997.
SEI, CMMI for Development (CMMI-DEV), Version 1.2, Technical report CMU/SEI-2006-TR-008.

Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2006.
Shull, F., Developing Techniques for Using Software Documents: A Series of Empirical Studies, Ph.D.

thesis, University of Maryland, College Park, 1998.
SOFTEX, MPS.BR – Melhoria de Processo do Software Brasileiro – Guia Geral, version 1.2, June

2007, available at http:www.softex.br/mpsbr , 2007a.
SOFTEX (Rocha, A.R.C., Montoni, M.A., Souza, G.S., Kalinowski, M., Scalet, D.), MPS.BR –

Melhoria de Processo do Software Brasileiro – Guia de Implementação do Nível A, version 1.0,
June 2007, available at http:www.softex.br/mpsbr , 2007b.

Travassos, G.H., Shull, F., Carver, J., “Working with UML: A Software Design Process Based on
Inspections for the Unified Modeling Language”, in: Advances in Computers, vol. 54, Academic
Press, 2001.

Troster, J., Henshaw, J., Buss, E., Filtering for Quality, in 'Proceedings of the 1993 Conf. of the Centre
for Advanced Studies on Collaborative Research, CASCON 93', IBM Press, pp. 429-449, 1993.

Vantine, W., Benfield, K., Pritts, D., Ballard, K., Evaluating and Incorporating New Age Software
Technology for Identifying Systemic Root Causes, in: ‘Proceedings of the Joint ESA-NASA Space
Flight Safety Conference, ESTEC’, ESA SP-486, Noordwijk (NL), pp. 369 - 376, 2002.

Walia, G., Carver, J., Philip, T., Requirements Error Abstraction and Classification: An Empirical
Study, Proc. Int. Symposium on Empirical Soft. Eng. (ISESE), Sept. 21-22, Rio de Janeiro, Brazil,
2006.

VII Simpósio Brasileiro de Qualidade de Software

155

Wang, Q., Jiang, N., Gou, L., Liu, X., Li, M., Wang, Y., BSR: A Statistic-based Approach for
Establishing and Refining Software Process Performance Baseline, in 'ICSE '06: Proceeding of the
28th Int. Conf. on Software Engineering', ACM Press, New York, NY, USA, pp. 585-594., 2006.

Wheeler, D.J., Chambers, D.S., Understanding Statistical Process Control, 2ed, Knoxville, Tenn., SPC
Press, 1992.

Wigglesworth, J., Surveys as a Method for Improving the Development Process, in 'CASCON '93: Proc.
conf. of the Centre for Advanced Studies on Collaborative research', IBM Press, pp. 337-355, 1993.

Wohlin, C., Host, M., Ohlsson, M., Understanding the Sources of Software Defects: A Filtering
Approach, in '8th Int. Workshop on Program Comprehension, 2000, IWPC 2000', pp. 9-17, 2000.

	Anais SBQS 2008 (parte interna)
	139 10-SBQS2008_Kalinowski_Travassos_Card

