Guidance for Efficiently Implementing Defect Causal
Analysis
M ar cos K alinowski “2, Guilherme H. Travassos®, David N. Card?

! COPPE/UFRJ - Federal University of Rio de Janeiro
Caixa Postal 68511 — CEP 21.945-970 — Rio de Jardirazil

2 Bennett — Methodist University of Rio de Janeiro
Rua Marqués de Abrantes, 55 - Flamengo - CEP 220880- Rio de Janeiro — Brazil

% Det Norske Veritas - 115 Windward Way - Indian btaur, FL 32937 - USA
{rkali, ght}@os.ufrj.br , card@onputer.org

Abstract. Defect causal analysis has shown itself to be a cheap and high
return means of product-focused software process improvement. However,
despite its advantages and wide industry adoption little academic research is
being done in this area. Thus, professionals face several questions when
implementing it in software organizations. Aiming to provide unbiased and
evidence-based answers to those questions, a systematic review has been
conducted. Based on the results of the systematic review, better guidance for
implementing defect causal analysis efficiently in software organizations can
be elaborated.

1. Introduction

Causal analysis and resolution is a means of iyamgi causes of defects and other
problems and taking action to prevent them fromuowmeg in the future. It is
considered in many software process improvementetsoand approaches, such as
MPS [SOFTEX, 2007a], CMMI [SEI, 2006], ISO/IEC 122Q01SO/IEC, 2004], Lean
[Poppendieck and Poppendieck, 2003], and Six Sidfokes, 2000]. Robitaille (2004)
highlights causal analysis as a way to identify aypymities for improving
organizational process assets based on experigticéhe projects’ defined processes.

Defect causal analysis (or defect preverionomprises applying causal analysis and
resolution to a specific type of problem: the défeiatroduced in software artifacts
throughout the software lifecycle. Given this iaitidefinition, defect causal analysis
can be seen as a systematic process to identifaaalgze causes associated with the
occurrence of specific defect types, allowing tldentification of improvement
opportunities for organizational process assets thedimplementation of actions to
prevent the occurrence of that same defect tydature projects. Thus defect causal
analysis provides an opportunity to enable prodoctised software process
improvement, based on data about the products’ctéefialinowski, 2007]. Other
problems, such as schedule flaws, are not considbrectly by defect causal analysis.

Accomplishing defect causal analysis activitieotiyhout the software development
lifecycle has shown to reduce defect rates by ofity percent in different

organizational contexts, such as IBM [Mays et dl990], Computer Science
Corporation [Dangerfield et al., 1992 apud Card@3]|9HP [Grady, 1996], and InfoSys

! More precisely, defect causal analysis can beiderel part of defect prevention. The latter also
addresses the implementation of actions and thereomcation of changes to the development team
explicitly.

139

VII Simpdsio Brasileiro de Qualidade de Software

[Jalote and Agrawal, 2005]. As a consequence, lgsh® diminish the rework effort
[Jalote and Agrawal, 2005] and increases the piibtyabf achieving other process
quality and performance goals [SEI, 2006]. Morepdefect causal analysis is a means
for communicating lessons learned among projedEs, [Z006].

However, as mentioned by Card (2005), despite @isebts and the wide industry
adoption of causal analysis, little research isigp&lone in this area, and little scientific
knowledge has been generated and published. Thog dwabts and questions remain
when implementing defect causal analysis in so#wanganizations. For instance: Is
my organization ready for defect causal analysisiépproachshould be followed?
How should defects be categorized? How should sabsecategorized? What are the
expected costs and results of implementing detactsal analysis?

Aiming to provide unbiased and evidence-based arsswe these questions, a
systematic review has been conducted. This sysiematiew identifies the defect
causal analysis state of the art and provides ga&lan how to efficiently implement it
in software organizations. The systematic review #re resulting guidance are the
focus of this paper. Further information and dstaih the systematic review can be
found in a technical report [Kalinowski and Travass2008] that supports this paper.

The remainder of this paper is organized as folldwsection 2 the systematic review
is described. In section 3 the guidance and suggesbbtained from analyzing the
results of the systematic review are presentedhen form of evidence-based and
unbiased answers to common questions. Sectioncluctes the paper.

2. A Systematic Review on Defect Causal Analysis

A systematic review is a means of identifying, eading and interpreting research
relevant to research questions in an unbiased amdwhy [Brereton et al., 2007].
Systematic reviews tend to be more reliable becauseakes use of a rigorous
methodology that is open to auditing and replicatio

A systematic review was conducted to identify thetes of the art regarding defect
causal analysis and to provide guidance on hovifextesely implement defect causal
analysis in software organizations. An unbiasederevprotocol, focusing on the
research questions was developed to guide theatliter review according to the
systematic review process. This process involvesethmain activities: planning,
execution and result analysis [Biolchini et al.02D

The next subsection presents an introduction teaietausal analysis, in order to
provide the basis for understanding of the remgisimbsections, in which a description
of the systematic review activity and results isganted.

2.1. Defect Causal Analysis

To have a clear understanding of what defect carsalsis represents in the scope of
this paper it is important to understand precisghat we mean by the term defect,
since its interpretation often depends on the oconte which it is being used. For
instance, when a defect is found through peer wevig is related to a fault in the
artifact being reviewed. When a defect is founatigh testing activities, on the other
hand, usually it is related to a failure in thetaare product being tested. These
definitions follow the IEEE standard terminologyr feoftware defects [IEEE 610.12,
1990]:

2 Hereafter we refer to “defect causal analysis aggn” as a strategy for an investigative process an
to “defect causal analysis techniques” as a smetifdl or method used in a defect causal analysis
process.

140

VII Simpdsio Brasileiro de Qualidade de Software

* Error: a mistake committed by a person while tryitog understand given
information, solve a problem, or using a methodtbot.

» Fault: the concrete manifestation of an error gofiware artifact. An error may
result in many faults.

» Failure: the operational behavior different frone ttne expected by the user. A
failure may be caused by many faults, one fault weyse many failures, and
some faults may never cause failures.

This paper uses the term defect to represent t&& I@efinition of fault. Thus, in the
case of failures it will be necessary to find tetated defects (faults) by analyzing the
artifacts (for instance, by debugging source chaddre starting defect causal analysis.

Analyzing causes of software defects has been skscusince the seventies [Endres,
1975] and is cited by Boehm (2006), in additiorstdtware inspections, as one of the
main contributions of that decade to software esgrimg. Since then, defect causal
analysis processes have been implemented in iydéstrlarge projects involving
hundreds of employees [Mays et al.,, 1990] [LesZakle 2002] as well as smaller
projects [Dangerfield et al., 1992] [Yu, 1998] |3 and Agrawal, 2005].

Card (2005) summarizes the defect causal analysisegs in six steps: (1) select a
sample of the defects, (2) classify selected defd®) identify systematic errors, (4)
determine principal cause, (5) develop action psajs) and (6) document meeting
results. In this context a systematic error is aorethat results in the same or similar
defects being repeated in different occasions [C2085]. Finding systematic errors
indicates the existence of significant improvemepportunities for the project or
organizational process assets. Besides listingthiessteps, Card (2005) highlights the
importance of managing the implementation of theioac proposals until their
conclusion and communicating the implemented chawtgéhe development team.

A representation of the traditional
software defect prevention process
Defects [Mays et al., 1990], consistent with
the defect causal analysis process
described above, is shown in Figure
2. Besides the causal analysis
meeting, the figure shows a specific
: activity for implementing the action
£ s and action proposals by an action team and the
proposals communication of the implemented
e changes before starting the
Figure 2. Defect prevention process. dev.e.IOpment aCtIVIty_. Moreover, the
Adapted from [Mays et al, 1990 apud position of the experience base shows
Rombach and Endres, 2003]. that defect causal analysis is a mean
for communicating lessons learned
among projects as well as a way to disseminate letuge in the organization, as
suggested by the SEI (2006).

Given this brief introduction to defect causal gsed, the remaining subsections
describe the defect causal analysis systematratitee review.

Development

Changes on
process assets

Stage kickoff (- Experience |c.......

Causal Analysis

Implemented
actions

2.2. Planning the Systematic Review

The goal of the systematic review was to conduatrdnased and fair review regarding
the state of the art of defect causal analysisempecifically aiming at:

* Summarizing the processes, approaches, and guidaatcbave been proposed for
defect causal analysis.

141

VII Simpdsio Brasileiro de Qualidade de Software

* Additionally, summarize and analyze the defect aadse classification schemes
used. Note that the goal here isn’t to analyzehallexisting classification schemes
for defects and causes, but to focus on those Bouances related to defect causal
analysis.

Two research questions, Q0 and Q1, where formultdedddress the goals listed

previously. The question QO relates to a broadepescanalyzing causes of defects. The
guestion Q1, on the other hand, is specificallyateel to defect causal analysis
(involving the prevention in future projects). Tlaigategy was adopted so that generic
knowledge regarding the analysis of causes of tetald also be identified, since this

knowledge can be used as a starting point towaefisct causal analysis (including

prevention). The description of the research qaesfiin the format suggested in

[Biolchini et al., 2005], follows:

* QO: Which processes, approaches and knowledge i@ proposed and/or used
for analyzing causes of software defects?

o (P) Population: scientific publications and expece reports from software
development projects, environments or organizations

o (I) Intervention: processes, approaches and knaeldédr analyzing causes
of software defects.

o0 (C) Comparison: does not exist.

0 (O) Output: identification of processes, approaclhesl knowledge for
analyzing causes of software defects.

* Q1: Which processes, approaches and knowledge leese proposed and/or used
for software defect causal analysis (or defect gméon)?
o (P) Population: scientific publications and expece reports from software
development projects, environments or organizations
o () Intervention: processes, approaches and knaelddr software defect
causal analysis (or defect prevention).
0 (C) Comparison: does not exist.
0 (O) Output: identification of processes, approaclhesl knowledge for
software defect causal analysis (or defect prewahti
Based on these research questions, search stongs e derived and adjusted so that
they could be executed on different digital libestiBelow we present the search string
SO0, derived for question QO by listing the keywordsntified for the (P) and (1) and
(C) and (O) structure.

» SO0: (P) Populatioand (1) Interventionand (O) Output

(“software development” or “software project” orofsware process” or “software engineering” or

“software organization” or “software environmentf t®experience factory” or “software factorygnd

((“causal analysis” or “cause analysis” or “defacialysis” or “error analysis” or “failure analysist

“fault analysis”) and (defect or error or failurefault) and (causal or causey)d (process or approach

or method or methodology or technique or knowledlgmol or paradigm or strategy).
The chosen digital libraries were: ACM Digital Lary, EI Compendex, IEEE, Inspec,
and Web of Science. The search strings were tegi@dst a set of seven control papers
dealing with defect causal analysis, read befoeesttstematic review. The strings were
able to retrieve five of them and, of course, mather defect causal analysis papers
from the digital libraries. The two control papéhnst were not retrieved both satisfied
the strings search criteria, however, in our opirtitey were not retrieved because one
of them was really not indexed in the chosen didibaaries and the other one was
probably indexed improperly. Thus, our strings seeto fit their purpose.

The criteria for including a retrieved paper in aeview was that it must comprise
processes, approaches or knowledge regarding amalgauses of defects or defect
causal analysis (defect prevention). For each ef gshlected papers the following

142

VII Simpdsio Brasileiro de Qualidade de Software

information was extracted: title, complete refeesnsource, defect classification
scheme, cause classification scheme, identificabtdnthe process or approach,
description of the process or approach, identificabf knowledge, description of the
knowledge, and type of study.

2.3. Execution of the Systematic Review

Once the review protocol was finished, the executibthe systematic review could be
started. It was planned to occur on a yearly b#siss avoiding becoming outdated over
the years. A summary of the executions in Augui62énd August 2007 follows.

August 2006 Execution. The search strings were executed on the selectathldi
libraries, and 203 papers were retrieved. Aftamiglating replications (the same paper
retrieved from more than one digital library) tleéal number of retrieved papers fell to
159. Those 159 papers were filtered further. Thiglrfiltering was based on the title
and abstract. Only those papers that were surelyeteted were excluded. As a result,
the number of papers to read and evaluate decréa&ad After reading the papers and
trying to extract the information from them, somermpapers were excluded, based on
the criteria defined previously. Finally, 41 papevere selected as part of the first
execution of our systematic review. The number a&jigrs retrieved from each digital
library during the filtering process is shown imgéie 3.

200

150

100

o e o ||

ACM IEEE Inspec El Compendex | Web Of Science Total
@ Filtering by Content 13 11 23 17 6 41
B Filtering by Title and Abstract 21 12 28 20 6 57
O Before Filtering 75 20 42 52 6 159

Figure 3. Number of papers retrieved in august 2006.

In addition to the 41 papers obtained by applying teview protocol to the digital
libraries, information was extracted from the twamtrol papers that were not retrieved
and from one other paper: [Endres, 1975]. This payes included because it was
referenced by some of the selected papers as aaepaper in the area. Again, we
believe that the paper was indexed improperly | HBEE digital library, since its
content satisfies the strings search criteria. @loee, as a result of applying the
systematic review in August 2006, information wasacted from 44 research papers.

August 2007 Execution. In 2007 the same filtering process was performesda Aesult

15 new papers were identified. After filtering bifet and abstract the number of new
papers decreased to 7. Finally, after filteringcbyptent the number decreased to 6. The
quantity of new papers from each digital libraryidg the filtering process is shown in

Figure 4.

ACM IEEE Inspec El Compendex | Web Of Science Total
O Filtering by Content 4 0 2 3 0 6
B Filtering by Title and Abstract 4 0 2 4 0 7
O Before Filtering 9 0 3 6 0 15

Figure 4. Number of additional papers retrieved in august 2007.

All the analyzed papers and the way they cite edbhr, considering the August 2006
and August 2007 executions, are shown in FigurEhts graph representation allowed

143

VII Simpdsio Brasileiro de Qualidade de Software

us to identify the most influential papers and aesk trends. The papers cited by more
than three of the remaining papers are shown int Igyey. The additional papers
retrieved in the August 2007 execution are showgray.

The information extracted from each of the papsrsengistered in [Kalinowski and
Travassos, 2008].

144

VIl Simpdsio Brasileiro de Qualidade de Software

1975 14985 1986 1990 1991 1993 1996 1997 1998 1999 2000 2002 2004 2005 2006 2007
Keene Leszak et al S .;\l—;hebab Eoen)
e . I R
RN | m /
Nakajo & L_"“‘-‘—.k_“___

f———"1 Loariele Osh ——
Endres Kume Eraficle shana

— | Ways // etal & Covle |——1\ Jantii etal

“\h_‘\%%:__{______ As

(s et al

Jones e

™

::

s

>< WWang et al

N

Jalote &
=\ Agrawal

Collafello
& Gosalla

Wigglesworth

‘ Grachy J

Lederer &
Pragad

Fairley

.,
Wahlin &
Ohlsson

\
(Cvan Mol etal.)

Hong &
Hie

0]

wantine etal

Figure 5. Citations between papers selected in the august 2006 and august 2007 reviews.

VII Simpdsio Brasileiro de Qualidade de Software

2.4. Reaults of the Systematic Review

The following information, regarding the goals afrsystematic review, was extracted
and grouped in tables, organized by publicatioe:dat

» processes and approaches used for defect causaiana

» defect classification schemes used by the papers;

» cause classification schemes used by the papets, an

» knowledge regarding defect causal analysis gertemateited by those papers.

In the following subsections a summary of the asedythat performed based on those
tables, aiming at obtaining the state of the ariefich of the systematic review goals, is
presented.

2.4.1. Processes and Approaches

The first approach found was the one described bgrds (1975), at IBM. This
approach deals with individual analysis of softwdeéects, in such a way that they can
be categorized and their causes identified, allgvaations to be taken to prevent their
occurrence in future projects or at least to assiued detection. The analysis of the
defects occurs occasionally, as well as the cawedctions. This approach is still
referenced in recent papers that involve retrospedefect analysis, such as [Li et al.,
2006].

The difference between this approach and the toadit defect prevention process, also
established at IBM [Jones, 1985] [Philips, 1986]ajd, 1990] [Mays et al., 1990],
about ten years later, is that the latter one tisgirated into the development process.
This integration occurs by establishing two addiébtasks: (1) a causal analysis
meeting after the rework activity is finished (wihimeans that the defects at this point
were already removed), and (2) a kickoff meetingere the actions implemented since
the last causal analysis meeting are communicatedhe¢ personnel involved in
performing the activity.

The approach presented by Endres (1975) and trextdpfevention process [Jones,
1985] analyzes defects exhaustively and involvasénanalysis, if possible, the people
responsible for introducing the defects. When appate, the meeting leader can skip
some of the defects during the meeting without themg discussed.

Card (1993), describes a more flexible process g the same concepts. The
apparent flexibility comes from the fact that ttaisal analysis meeting isn’t coupled to
a specific development activity, but occurs pewadly. Card (1993) also highlights,

based on the experience at Computer Science Caiporaferenced in the paper, that
it is not necessary to analyze all defects exhaelgtia sample will suffice, and that the
action proposals should treat classes of defectshaneach defect separately.

Most of the papers analyzed follow processes cargruo the traditional defect
prevention process [Jones, 1985] or the correspgndefect causal analysis process
[Card, 1993]. Among the papers that explicitly é@l or suggest this process are
[Jones, 1985], [Philips, 1986], [Mays, 1990], [Mastsal., 1990], [Pratt, 1991], [Card,
1993], [Collofello and Gosalla, 1993], [Damele ¢t 4996], [Grady, 1996], [Card,
1998], [Leszak et al., 2000], [Leszak et al., 20Q2&n Moll et al., 2002], [Jalote and
Agrawal, 2005], and [Card, 2005].

Grady (1996) describes defect causal analysis expas at Hewlett Packard. The
periodicity varied: one shot causal analysis (pentd randomly), post project causal
analysis (performed after the conclusion of thejqmth), and a continuous process
improvement cycle (performed after each developmbiase).

146

VII Simpdsio Brasileiro de Qualidade de Software

Besides the defect causal analysis approaches, spewfic techniques to support
causal analysis could be identified. Even thoughy thre not defect causal analysis
approaches, we considered them in our review. Thpyesent techniques to identify
cause-effect relations: [Nakajo, 1991], [Nakajo &uone, 1991], [Wohlin et al., 2000],
[Krause et al., 2002], and [Gras, 2004]; statistmantrol techniques: [Hong et al.,
1999], and [Wang et al., 2006]; and defect analiesibniques: [Bhandari et al., 1993],
[Bhandari and Roth, 1993], [Kelsey, 1997], [Nakaaet al., 2006], and [Damm and
Lundberg, 2007]. A summary of those techniqueseascdbed in [Kalinowski and
Travassos, 2008].

Based on the literature review, two techniques teeaém to show themselves
particularly useful to support defect causal analytivities are Pareto charts and
cause-effect (or Ishikawa) diagrams [Ishikawa, 197khey support, respectively,
identifying the most common defect types and figdthe causes for specific defect
classes. Although cause-effect diagrams were biyedlays et al., 1990] as used in the
manufacturing area, the first of the analyzed papeuse those diagrams in the context
of software defect causal analysis appeared in.19Bé cause-effect diagram is used
and/or suggested in many of the analyzed papestudimg [Chernak, 1996], [Damele
et al., 1996], [Grady, 1996], [Card, 1998], [vanIMgt al., 2002], [Jacobs et al., 2004],
[Card, 2005], [Jacobs et al., 2005] [Jalote andasgl, 2005], and [Wang et al., 2006].
Among the papers that cite pareto charts as a lusetnique are [Card, 1998], [Hong
et al., 1999], [van Moll et al., 2002], [Card, 2(Q(3alote and Agrawal, 2005], and
[Wang et al., 2006].

2.4.2. Defect Classification Schemes

Two types of information about classification wengracted from the papers: defect
information to be collected and defect types.

Defect information to be collected. We noted a certain consensus among the authors
on the relevant information to be collected abmitvgare defects in order to support
defect causal analysis. Among the data considestz/ant since the initial papers
[Endres, 1975] [Jones, 1985] [Mays, 1990] and cumtig to the more recent ones
[Agrawal and Jalote, 2005] [Jantti et al., 2006 h#&ag and Chu, 2007] [Damm e
Lundberg, 2007] are:

* The moment (or phase) in which the defect was dhiced.
* The moment (or phase) in which the defect was tedec
» Defect type.

This information matches the three dimensions &ssify defects suggested in [Card,
1998] and [Card, 2005]. None of the analyzed papegsed against the use of any of
these dimensions to classify defects.

However, other information is considered in someegps, according to the specific
goals of the defect causal analysis approachesmiessin them:

» Correction (effort and time) or severity (impad$,considered in many papers,
for example [Endres, 1975] [Collofello e GosallQ93] [Fairley, 1999] [Leszak
et al., 2000] [Leszak et al., 2002] [Jantti et @DO6] [Nakamura et al., 2006]
and [Chang and Chu, 2007]. Moreover, severity 3s abnsidered in the papers
that use ODC (Othogonal Defect Classification): 4Btlari et al., 1993]
[Chernak, 1996].

» Location (or module), is considered by many papsush as [Endres, 1975],
[Bhandari et al., 1993], [Bhandari e Roth, 1998lelsey, 1997], [Leszak et al.,
2000], [Leszak et al., 2002], [van Moll et al., 2Q00[Nakamura et al., 2006],
and [Chang and Chu, 2007].

147

VII Simpdsio Brasileiro de Qualidade de Software

Aditional information found in two papers that use ODC [Chillarege et al., 1992]
classification scheme [Bhandari et al., 1993] [@la&r 1996] includes:

» Trigger, which indicates how the defect was detkcte

» If the defect was introduced while developing newndtionality or while
maintaining existing functionality.

Defect types. Regarding the defect types, several differentnarades could be found.
The complete list of taxonomies in chronologicaleris reported in [Kalinowski and
Travassos, 2008]. An excerpt of that list, withedmost cited of the nine taxonomies
found in the papers, follows:

* ODC taxonomy [Chillarege et al., 1992], with thdldwing types: interface,
function, build/package/merge, assignment, docuatiem, checking,
algorithm, timing/serialization. Of the analyzedopes this taxonomy was used
by [Bhandari et al., 1993] and [Chernak, 1996] #&swalso mentioned in some
other papers, like [Card, 1998] [Card, 2005].

 Taxonomy for defects used at Hewlett-Packard [Grati¥96], containing
several types of defects organized by developméaseg For each type its
nature or mode (missing, unclear, wrong, changedbeatter way) are also
determined.

 Taxonomy for requirements defects used at NASA,taining 13 types of
requirements defects, used in [Hayes et al., 2006¢presents a tailoring of the
taxonomy described by Shull (1998) (which includdwe defect types:
ambiguity, omission, inconsistent information, imeat fact, and extraneous
information), reflecting the reality of NASA. In keak et al (2002) similar
types of defects are referred to as the naturdefdefect, and aggregated to
more refined defect types.

The great variety of taxonomies found reflects dhgument of Card (2005), that the
defect taxonomy should be created in such a watyittlsapports the specific analysis
interests of the organization that is implementiefect causal analysis. This argument
is reinforced by Jalote and Agrawal (2005), fotamse, who used the same argument
to justify the elaboration of a specific taxononay fnfoSys.

2.4.3. Cause Classification Schemes

Analyzing the different cause classification schenlested in [Kalinowski and
Travassos, 2008] it is possible to identify a cosss among the authors about the
categories that should be considered for defetesalMoreover, most of the categories
contained in the different classification schemas be easily mapped to the categories
initially proposed by Ishikawa (1976) for manufaatg. The Ishikawa categories are
suggested as a starting point for defect causdysisapproaches in [Card, 1998] and
[Card, 2005]. They are the following: tools, inpp&ople, and methods.

However, it is important to highlight that the ramag schemes, considering the
specific context of software, can bring contribatiglitional information by refining the
Ishikawa scheme. For instance, an additional cayegonsidered in many schemes
developed for analyzing software defects is “lack wnderstanding of the
requirements”. This category can be considerecaatagory of “peoplé’ but since in
several cases [Endres, 1975] [Nakajo and Kume,]1p9dyes, 2006] many causes
matched that category it could be helpful to comsitl separately. Further suggestions

%It could also be mapped to the “input” categompending on the nature of the misunderstanding.
148

VII Simpdsio Brasileiro de Qualidade de Software

on subcategories identified in other schemes canfooed in [Kalinowski and
Travassos, 2008].

An interesting classification scheme is that citefJalote and Agrawal, 2005], the five
“Ms” and one “E” scheme [Robitaille, 2004]. The diVMs” refer to the categories
“Material”, “Method”, “Manpower”, and “Measurementand “Machinery”. The “E”
refers to the “Environment”. According to Robitall2004) this scheme is commonly
used in manufacturing. However, Jalote and Agra@05) decided to adapt it to the
context of software, and suggest the following gates: process, people, and
technology. They mention that those are the faatotis the highest impact on quality
and productivity [Jalote, 2000] and [SEI, 1995].08& categories again can be mapped
to the Ishikawa categories, removing just the “iigategory.

Finally, the papers [Jacobs et al., 2004] and [3si@b al., 2005] present a category that
is not obviously included in the Ishikawa categeyithe “organization”. This category
is related to organizational causes and not spadifi to its processes. For instance,
inadequate or unavailable organizational polidiegroper geographical distribution of
departments (for instance, communication problersta different time zones),
improper organizational structure (for instance, employee responsible for
configuration management), among others. It is igm to mention that those papers
focus on projects with globally distributed teamasd that this category seems to be
especially useful in that context.

2.4.4. Knowledge Regarding Defect Causal Analysis

In order to facilitate the application of the knedte gathered from analyzing the
papers, it was structured to separate generic leunel about the entire process from
the knowledge limited to specific activities andsks The following tables were

generated:

» A table with generic knowledge regarding the entirecess.

» One table for each of the defect causal analysts/ittes of the defect
prevention process described in [Jones, 1985], fMa990], and [Mays et al.,
1990]. As described before, those four activities él) causal analysis meeting,
(2) implementation of the actions, (3) stage kitkahd (4) data collection and
monitoring. Inside the causal analysis meeting grotiknowledge subgroups
were created for each of the six steps mentiond@and, 2005]: (1) selecting
the sample, (2) categorizing the defects, (3) figdihe systematic error, (4)
finding the main causes, (5) elaborating actiorppsals, and (6) documenting
meeting results.

The complete tables of knowledge, organized byipatibn date, are available in the
report that supports this paper [Kalinowski andvassos, 2008]. It is important to
mention that the knowledge described in the taBlesuld be used considering the
context in which it was generated, as describethen appendix of the report. The
appendix lists the information extracted from eadhthe papers, together with a
description of the knowledge and the type of stiypaper presents.

3. Guidance to Efficiently Implement Defect Causal Analysis

Based on the knowledge acquired and the analysdermed as a result of the
systematic review some guidance to implement deteatsal analysis could be
elaborated. The guidance aims at providing readersaiswers to the questions listed in
the introduction. These are questions commonlyddne professionals when trying to
implement defect causal analysis in software omgiuns. Is my organization ready
for defect causal analysis? What approach shoul@ltmeved? How should defects be

149

VII Simpdsio Brasileiro de Qualidade de Software

categorized? How should causes be categorized? Vfieathe expected costs and
results of implementing defect causal analysis?

The guidance is composed of unbiased evidence-laasyekrs to those questions and is
complemented by the tables of knowledge regardhmegy grocess and each of its
activities, listed in [Kalinowski and Travassos02()

Is my organization ready for defect causal analysis?

The main requirement for applying defect causalyamais collecting data regarding
defects. However, as argued by Card (1993) andM@lhet al (2002), defect causal
analysis benefits from having a defined procesabéished for the projects.

Given the potential benefits and return of investiidays et al., 1990] [Card, 1993]
[Leszak et al., 2000] [Jalote and Agrawal, 2005, necommend the implementation of
defect causal analysis approaches even for lowaurityaorganizations, even though it
is only required at the highest maturity levelsnebdels such as MPS and CMMI.
Defect causal analysis can help to improve theoperdnce and capability of processes
before those high maturity levels are achieveddCa998] [Card, 2005].

What approach should be followed?

Based on the scenario described in the previousosewe believe that an efficient
defect causal analysis approach could follow thditional defect prevention approach
[Jones, 1985], which has been used in early andnteapproaches. As mentioned
before, this process has shown itself of low cast @fficient in reducing defect rates in
different organizational contexts. As suggestedQard (1993) the causal analysis
meeting should focus on classes of defects, santy@fmte the causal analysis meeting.
Among the specific techniques we suggest Paretoscha identify the main defect
classes to be analyzed and cause-effect diagramgmort identifying the main causes
for the systematic errors that lead to those deflesses.

Among the metrics to be collected to support detacisal analysis and understanding
its results, based on the systematic review, wgestghe number of defects found per
unit of size, the mean number of defects foundipsrector per hour (if available), and
the PIQ (Phase Input Quality) and POQ (Phase Oufuality) metrics defined by
Damm and Lundberg (2007). The number of defecteatels efficiency in preventing
defects, the PIQ and POQ metrics, on the other, ,haraide further insight into the
defect detection mechanisms efficiency. Those egetould be placed under statistical
control integrating defect causal analysis withtisti@al process control, providing a
more precise and quantitative way of determiningv ibe process performance and
capability are affected by defect causal analysis.

Defect causal analysis helps accomplish two go#lstatistical process control: (1)
controlling and stabilizing processes and (2) impr@ their performance and
capability. As mentioned in [Florac and CarletoA99] the first of these goals deals
with assignable (or special) causes. The existeh@ssignable causes can be detected
by applying process stability tests, such as thesalescribed by Wheeler et al., (1992)
to statistical process control charts. If the psscés not stable, then defect causal
analysis can help to find the assignable causesmaplgment actions that stabilize it.
The second goal addresses the common causes fomoitess’ current performance and
capability [Florac and Carleton, 1999]. This candmeomplished by applying defect
causal analysis even if it the process is stalde,irfstance, after each development
phase. Relating this to the capability maturity gledViPS and CMMI, controlling and
stabilizing processes is related to MPS maturitielld8 and CMMI maturity level 4.

150

VII Simpdsio Brasileiro de Qualidade de Software

Improving the performance and capability on thechsnrelated to MPS maturity level
A and CMMI maturity level 5.

Our systematic review indicates that the most gmpaite control charts for controlling
defect data and supporting defect causal analysstlze U charts [Hong et al.,
1999][Card, 2005]. U charts apply to data thatd&woisson distribution, with a varying
area of opportunity (for instance, the size of auhoent) for an event to occur (for
instance, detecting a defect) [Montgomery, 189td Hong et al., 1999]. Individuals
or XmR charts may be used, but are less sensitive.

How should defects be categorized?

Defect information to collect. Based on the information collected from the retc
approaches and papers, we believe that an efficefdct causal analysis approach
should consider at least the consensus informatitinch is: moment of introduction,
moment of detection, and type of defect. Additibnan our point of view, knowing
the severity of the defects (or their impact) ahdirt location could support defect
causal analysis by identifying clusters of defeéotsupport the selection of the samples
to be analyzed and monitoring the efficiency of deéect causal analysis process itself.
However, severity is largely an accident and thmesanistake made in different
contexts can have very different impacts. Finadlgiditional information, such as the
trigger and if the defect is related to new funcélity, can be used for specific
situations, such as trying to improve detection m@csms (when prevention is difficult
to achieve), as done by [Chernak, 1996].

Moreover, once the cause of the defect is deteniadink between the defect and its
cause should be established and the cause shouktobsd according to its own
classification scheme.

Defect types. The results of the systematic review suggest thaffcient defect causal

analysis approach should use a taxonomy that cenmssithe nature and the type of
defect. The nature can be expressed using theareeglescribed by Shull (1998),
which can be tailored to specific contexts, as kHayjes, 2006]. These categories
(omission, ambiguity, inconsistent information, on@ct fact, extraneous information,
and other) can be used in a generic way for th&eremt artifact types generated
throughout he software development lifecycle, aseoled by Travassos et al (2001).

For the defect type, a taxonomy should be createdidering the specific goals of the
organizations’ defect causal analysis approachsuagested by Card (2005). Not
having a defect type taxonomy in place at the dmgdion the types considered by
ODC [Chillarege et al., 1992], commonly used [C&@05], could serve as a starting
point for further tailoring.

How should causes be categorized?

Given the consensus scenario regarding defect czatsgories, we believe that the
Ishikawa categories represent a good starting gtshtkawa, 1976], as suggested by
Card [Card, 1998] [Card, 2005], adding for the sakecompleteness the category
“organization” [Jacobs et al.,, 2004] [Jacobs et &005]. The tailoring of the
classification scheme can be done afterwards, &aticlg specific subcategories, based
on the reality of the organization itself (takernr fastance from the results of prior
defect causal analyses).

What ar e the expected costs and results of implementing defect causal analysis?

The answer to this question helps to establish tgatime improvement goals for

implementations of defect causal analysis. Basedhengeneric knowledge gathered
regarding defect causal analysis approaches, sisvamies from 0.5 to 1.5 percent of
the projects budget (including the implementatiohshe proposed actions), according

151

VII Simpdsio Brasileiro de Qualidade de Software

to data taken from IBM and Computer Science CopmrgCard, 2005]. In our point
of view this is a very low cost, especially whemsidering the benefits, which have
been reducing defect rates by over 50 percent r{agansidering data from IBM and
Computer Science Corporation) [Card, 2005]. Asrsequence rework effort and costs
will be reduced while productivity is increased.

Even though they measured the benefits in diffevesys (for instance, reduction of
rework effort, reduction of specific defect typesnong others), all of the analyzed
papers showed positive results from implementinfpatecausal analysis. The papers
describe experiences from a great range of softwaganizations, including: AG
Communication Systems Corporation, Computer Scie@mporation, Hewlett-
Packard, IBM (several organizational units), InfeSytaltel SIT BUCT Linea UT,
Lucent Technology, Motorola, and Philips Softwaente.

4. Conclusions

Defect causal analysis has shown itself an inexpersd high return means of product
focused software process improvement [KalinowsB)7]. However, as mentioned by
Card [2005], despite its advantages and wide imgustoption little academic research
is being done in this area. Thus little knowledge heen generated and published. As a
consequence professionals face many questions tieg to implement defect causal
analysis in software organizations.

A systematic review was conducted in order to mteviinbiased and evidence-based
answers to some of those questions [Kalinowski @ravassos, 2008]. Based on the
results of the systematic review we were able émtify the defect causal analysis state
of the art in an unbiased way and to provide somieagmce on how to efficiently
implement it in software organizations.

Moreover, some opportunities for further investigatwere identified. For instance, we
found no approach allowing dynamic updates to these-effect relationships that
reflect the reality of the organizational contekfsed on the results of the causal
analysis itself. According to the results of thaeteynatic review and to our knowledge
this is first being addressed in the proposal desdrin [Kalinowski et al., 2008].

We believe that making the resulting guidance amaltedge available in the academic
and software practitioners’ community could faeil@ the implementation of defect
causal analysis, complementing other valuable ssuof information, such as [Card,
2005] and [SOFTEX, 2007b]. As the main contribusiaf this guidance we highlight
the unbiased compilation of answers to commonlyedaguestions and lists of
knowledge regarding the defect causal analysisgsoand its activities.

References

Al-Shehab, A. J., Hughes, R. T., Winstanley, Ggilating Oréganisational Learning through Causal
Mapping Techniques in IS/IT Project Risk ManagemeNCS, 3782 NAI, 145 - 154, 2005.

Bhandari, I., Halliday, M., Tarver, E., Brown, BChaar, J., Chillarege, R., A Case Study of Software
Process Improvement During Development, IEEE TransSoft. En_g., 19 (12), 1157 —'1170, 1993.

Bhandari, |., Roth, N., Post-process Feedback witd without Attribute Focusm%: a Comparative
Evaluation, in 'ICSE '93: Proceedmgs of the 15t Conf. on Soft. Eng.', IEEE Computer Society

~ Press, Los Alamitos, CA, USA, pp. 89-98, 1993.) o

Biolchini, J.; Mian, P.G.; Natali, A.C.; & TravassoG.H. (2005), “Systematic Review in Software
Engineering: Relevance and Utility”, Technical RepeS-679/05, PESC-COPPE/UFRJ. Available
at http://www.cos.ufrj.br .

Boehm, B., A view of 20th and 21st century softwangineering, in 'ICSE '06: Proceeding of the 28th
international conf. on Soft. Eng.', ACM Press, Néark, NY, USA, pp. 12-29, 2006.)

Brereton, P., Kitchenham, B. A., Budgen, D., Turnik, Khalil, M., Lessons from atpglymg the
systematic literature review process within thevgafe engineering domain. Journal of Systems and
Software. Volume 80, Issue 4. Pages 571-583, 2007. o .

Bush, M., Getting started on metrics - JPL prodiitstiand guallty, in 'ICSE '90: Proceedings of the
ﬁtzh irgg(r)natlonal conf. on soft. eng.', IEEE Cor8pc. Press, Los Alamitos, CA, USA, pp. 133-

152

VII Simpdsio Brasileiro de Qualidade de Software

Card, D., “Defect Analysis: Basic Techniques forndgement and Learning”, Advances in Computers,
vol. 65, chapter 7, pp. 259-295, 2005.

Carfég%, Learning from our mistakes with defectisa analysis, IEEE Software, 15(1), pp. 56-63,

Card, D., Defect Causal Analysis Drives Down ERates, IEEE Software 1/1993, Volume 10, Issue 4,
7/1993, p.98-99, 1993.

Chang, C., Chu, C., "Defect Prevention in SoftwBr@cesses: An Action-Based Approach”, The
Journal of Systems and Software, Vol. 80, issupdil 2007, pIE. 559-570, 2007.

Chernak, Y., A statistical Approach to the InspactiChecklist Formal Synthesis and Improvement,
IEEE Transactions on Software Engineering, 22(8@%-874, 1996.

Chillarege, R., Bhandari, I., Chaar, J., Hallid&).,, Moebus, D., Ray, B., Wong, M.Y., Ortogonal
Defect Classification — A Concept for In-Processaslrement, IEEE Transactions on Software
Engineering, vol. 18, Ep. 943-956, 1992.

Collofello, J., Gosalla, B., Application of CausAhalysis to the Software Modification Process,
Software Practice and Experience, 23(10),&%). 10935, 1993.

Dalal, S. R., Horgan, J. R., Kettenring, J. R.,i&t#& Software and Communication: Software Quality,
Reliability, and Safety, in 'ICSE '93: Proceedimfghe 15th International Conference on Software
Engineering’, IEEE Computer Society Press, Los AlasnCA, USA, pp. 425-435, 1993.

Damele, G., Bazzana, G., Andreis, F., Aquilio, Bgcess Improvement through Root Cause AnaI\7/sis,
Tgé%roceedings of Third International Conferenae Achieving Quality in Software’, pp. 35--47,

Damm, L., Lundberg, L., Company-wide Imﬁ)lementatioﬁ Metrics for Early Software Fault
Detection, Proc. of the 29th International Confeeenon Software Engineering (ICSE’07),
Minneapolis, 2007.

Dangerfield, O., Ambardekar, P., Paluzzi, P., C&d,Giblin, D., Defect Causal Analysis: A Report
from the Field, Proceedings of International Coafere of Software Quality, American Society for
Quality Control, 1992.

Eckes, G., The Six Sigma Revolution: How GeneralcElc and Others Turned Process Into Profits,
John Wiley and Sons, 2000.)))

Endres, A., “An Analysis of Errors and Their Caumssgstems Programs", IEEE Transactions on
Software Engineering, SE-1, 2, June 1975, pp. ##8)-1975.

Falrle%{, R. E., Managing by the Numbers: a tutowal quantitative measurement and control of
software projects, in 'Proceedings of the 21strivattonal Conference on Software Engineering,
ICSE 99', IEEE Computer Society Press, Los Alami@s, USA, pp. 677- 678, 1999.

Florac, A.W., Carleton A.D., Measuring the Softw@mcess: Statistical Process Control for Software
Process Improvement, Pearson Education, 1999. o

Grady, R. B., Software Failure Analysis for HightR® Process Improvement Decisions, Hewlett-
Packard Journal, 47 (4?, 15 - 24, 1996.

Gras, J.J., End-to-End Defect Modeling, IEEE Sofey21(5), 98-100, 2004.))

Hayes, J.H., Raphael, I., Holbrook, E.A., PruettMD A case history of International Space Station
requirement faults, Proceedings of thellth IEEEerhmtional Conference on Engineering of

Comé)lex .Cor'{]/lputer Systems, Stanford Umv_ersnmaha, 2006. i

Hong, G., Xie, M., Shanmugan, P., A Statistical for Controllmi; Software Defect Detection
Process, Computers and Industrial Engineering 3),(bp. 137-140, 1999.

IEEE, 1990, IEEE Standard Glossary of Software EE’%I;? Terminology, Standard 610, IEEE Press.
ISO/IEC, ISO/IEC 12207: Information technology - re life-cycle processes — Amendment 2,
Geneve: ISO, Int. Org. for Standardization andlttieElectrotechnical Commission, 2004.)

Jacobs, J.C., van Moll, J.H., Krause, P.J., Kus®r3.,, Trienekens, J.J.M., Brombacher, A., Explgpri
Defect Causes in Products Developed by Virtual Teadournal on Information and Software
Technology, 47(6), 399 — 410, 2005.

Jacobs, J.C., van Moll, J.H., Krause, P.J., Kust®&sl., Trienekens, J.J.M., Effects of Virtual
Development on Product Quality: Exploring Defectu€es, Proceedings of the 11th Annual
International Workshop on Software Technology andiBeering Practice (STEP’04), 2004.

Jalote, P., Agrawal, N., “Using Defect Analysis &ack for Improving (?uallty and Productivity in
Iterative Software Development”, (Invited paperd 3nternational Conference on Information and
Communication Technology, ICICT, 2005.), Bllo 70113, Cairo, 2005.

Jantti, M., Toroi, T., Eerola, A., Difficulties iastablishing a defect management process: A cadg, st
Lecture Notes in Computer Science (including subsdrecture Notes In Artificial Intelligence and
Lecture Notes in Bioinformatics) 4034 NCS, pp. 114D, 2006.

Jonlegéi__)C.L., A process-integrated approach to tdefevention, IBM Systems Journal, 24(2), 150-67,

Kalinowski, M., Travassos, G.H., Uma revisdo sisioa a respeito de analise causal de defeitos de
software, technical report available at http://wews.ufrj.br , COPPE/UFRJ, 2008.

Kalinowski, M., Travassos, G.H., Card, D.N., Toward Defect Prevention Based Process
Improvement Approach, §‘4EUROMIQRO Conference, IEEE Computer Society, 2008.

Kalinowski, M., Defect Causal Analysis: An Opporitynfor Product Focused Software Process
Improvement, Invited paper at the V CICIS (Congrégernacional de Computacion y Ingenieria
de Sistemas), Moquegua, Peru, 2007.))

Keene, J., Managing Software Reliability and Sup@asts, in ‘Proceedings of the Leesburg Workshop
gglRZeOI?blllg 1and Maintainability Computer-Aidedn@ineering in Concurrent Engineering', pp.

153

VII Simpdsio Brasileiro de Qualidade de Software

Kelsey, R.B., Integrating a Defect ngology with rG@nment Metrics, ACM SIGSOFT Software
Engineering Notes, 22(2), 64-67, 1997.

Kitchenham, B.A., Procedures for Performing S4ysm¥mﬁ€eviews, Joint Technical Report Keele
University and National ICT Australia Ltd., 2004.

Krause, P., Freimut, B., Suryn, W., New DirectiondMeasurement for Software Quality Control, in
'Proc. of the 10th Int. Workshop on Soft. Tech. Erm% Practice, STEP 2002',Ep|_:p. 129-143, 2002.
Lederer, A.L., Prasad, J., A Causal Model for SafevCost Estimating Error, IEEE Transactions on

Software Engineering, 24 (ZB pp. 137-148, 1998.

Leszak, M., Perry, D., Stoll, D., A Case Study imoR Cause Defect Analysis, in 'International
Conference on Software Engineering, ICSE 2000'4@B-437, 2000.

Leszak, M., Perry, D. E., Stoll, D., Classificatiand evaluation of defects in a project retrospecti
Journal of Systems and Software, 61(3%, 173 ; 2802.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zh&,, Have things changed now? An empirical study of
bug characteristics in modern open source softwareceedings of ASID'06: 1st Workshop on
Architectural and System Support for Improving $@ifte Dependability, pp. 25-33, 2006.

Linger, R. C., Cleanroom Software Engineering ferzDefect Software, in 'ICSE '93: Proceedings of
the 15th International Conference on Software Eewiimg', IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 2-13, 1993.

Mays, R.G., Applications of Defect Prevention inftéare Development, IEEE Journal on Selected
Areas in Communications, Vol.8, No.2, %p 164-1e8hruary 1990.

Mays, R.G., Jones, C.L., Holloway, G.J., StudingkiP., Experiences with Defect Prevention, IBM

Sklﬂstems Journal, 29(12, pp. 4-32, 1990.

van Moll, J., Jacobs, J., Freimut, B., TrienekehsThe Importance of Life Cycle Modeling to Defect
Detection and Prevention, in '10th International rkgbop on Software Technology and
Engineering Practice, 2002. STEP 2002, pp. 144-2662.

Nakajo, T. & Kume, H. (1991), A Case History Anayysf Software Error Cause-Effect Relationships,
IEEE Transactions on Software En%ineering, 17(89-838, 1991.

Nakajo, T., Foolproofing and Quality Feedback: Keyrocess-Based Management, Proceedings of
the Fifteenth Annual International Comfuter Sofevand Applications Conference, COMPSAC™91,
IEEE Cor[ll_puter Society Press, 390-391, 1991. . B)

Nakamura, T., Hochstein, L., Basili, V.R., Ideniify Domain-Specific Defect Classes Usin
Ins#ectlons and Change H|storg, Proceedings of20@6 International Symposium on Empirica
Software Engineering 8SESE), ept. 21-22, Rioateeito, Brazil. p. 346-355, 2006.

Oshana, R., Coyle, F.P., Implementing Cleanroontwswoé Engineering into a Mature CMM-Based
Software Or?\?nlzanon, Proceedings of the 19thrihatttonal Conference on Software Engineering,
ICSE'97, ACM Press, New York, NY, USA, pp. 572-51397. o) o

Paul, R. A, Bastani, F.; Yen, |., Challagulla, V., Defect-based Reliability Analysis for Mission-
Critical Software, Proceedings of the IEEE CompuBeciety's International Computer Software
and AF?qjlcatlons Conference, pp. 439 - 444, 2000. S)

PhI|I£S, .T., An approach to software causal asialmnd defect extinction, in ‘Proceedings of the
IEEE Globecom Conference, Qrp 412-416, 1986. .) .

Po;g)endlepk, M., Poppendieck, T., Lean Softwareelpment: An Agile Toolkit, Addison Wesley

rofessional, 2003. o o))

Pratt, W. M., Experiences in the Application of @umser-Based Metrics in Improvm% Software Service
Quality, Conf. Record of the International Confereron Communications, pp. 1459 - 1462, 1991.

Robitaille, D., Root Cause Analysis — Basic Toald d&echniques, Paton Press, 2004. .

Rombach, D., Endres, A., A Handbook of Software 8pstems Engineering — Empirical Observations,
Laws and Theories, Pearson Addison Wesley, 2003.

Rosen, C., PLUNGE DA: A Case Study, ACM SIGSOFTtSBhg. Notes, Zzgg/,l pp. 82-83, 1997.

SEl, CMMI for Development (CMMI-DEV), Version 1.Z[echnical report U/SEI-2006-TR-008.
Pittsburgh, PA: Software Engineering Institute, igmie Mellon University, 2006.)

Shull, F., Developing Techniques for Using SoftwBxacuments: A Series of Empirical Studies, Ph.D.
thesis, University of Maryland, College Park, 1998.

SOFTEX, MPS.BR — Melhoria de Processo do Softwarasiiro — Guia Geral, version 1.2, June
2007, available at httg:www.softex.br/mpsbr ,2007a)

SOFTEX (Rocha, A.R.C., Montoni, M.A., Souza, G.8alinowski, M., Scalet, D.), MPS.BR —
Melhoria de Processo do Software Brasileiro — Gléalmplementag&do do Nivel A, version 1.0,
June 2007, available at http:www.softex.br/mpstdQ7b.)

Travassos, G.H., Shull, F., Carver, J., “WorkinghwWUML: A Software Design Process Based on
gspectlz%%sl for the Unified Modeling Language”, idvances in Computers, vol. 54, Academic

ress, .

Troster, J., Henshaw, J., Buss, E., Filtering faal@y, in 'Proceedings of the 1993 Conf. of thenCe
for Advanced Studies on Collaborative Research, CB8 93, IBM Press, pp. 429-449, 1993.

Vantine, W., Benfield, K., Pritts, D., Ballard, KEvaluating and Incorporating New Age Software
Technology for Identifying Sg/stemlc Root Causes,‘froceedings of the Joint ESA-NASA Space
Flight Safety Conference, ESTEC’, ESA SP-486, Nuaajtd(NL), pp. 369 - 376, 2002. -

Walia, G., Carver, J., Philip, T., RequirementsoErAbstraction and Classification: An Empirical
gé%%y Proc. Int. Symposium on Empirical Soft. EA§ESE), Sept. 21-22, Rio de Janeiro, Brazil,

154

VII Simpdsio Brasileiro de Qualidade de Software

Wang, (% Jiang, N., Gou, L., Liu, X., Li, M., Wany'., BSR: A Statistic-based Approach for
Establishing and Refining Software Process Perfacaaaseline, in 'ICSE '06: Proceeding of the
28th Int. Conf. on Software Engineering’, ACM Prédsw York, NY, USA, pp. 585-594., 2006.

Whgeler, ?QJQ,ZChambers, D.S., Understanding 8tatisProcess Control, 2ed, Knoxville, Tenn., SPC

ress, .

Wigglesworth, J., Surveys as a Method for Improuimg Development Process, in 'CASCON '93: Proc.
conf. of the Centre for Advanced Studies on Coltabwee research’, IBM Press, pP. 337-355, 1993.

Wohlin, C., Host, M., Ohlsson, M., Understanding tBources of Software Defects: A Filtering
Approach, in '8th Int. Workshop on Program Compnasien, 2000, IWPC 2000, pp. 9-17, 2000.

155

	Anais SBQS 2008 (parte interna)
	139 10-SBQS2008_Kalinowski_Travassos_Card

