

141

Improving the Quality of Requirements with Refactoring

Ricardo Ramos
1
, Eduardo K. Piveta

2
, Jaelson Castro

1
, João Araújo

3
,

Ana Moreira
3
, Pedro Guerreiro

3
, Marcelo S. Pimenta

2
, and R. Tom Price

2

1
 Universidade Federal de Pernambuco (UFPE) - Brasil

{rar2, jbc}@cin.ufpe.br

2
 Instituto de Informática - Universidade Federal do Rio Grande do Sul (UFGRS)

{epiveta, mpimenta}@inf.ufrgs.br, tomprice@terra.com.br

3
 Universidade Nova de Lisboa (UNL) - Portugal

{ja, amm, pg}@di.fct.unl.pt

Abstract. Requirements specification can often exhibit some shortcomings,

regarding contents and organization of its partial specification elements.

Sometimes, modularization is deficient, with modules dealing with too much

information, or the same functionality being specified in different modules.

Left unchecked, these inadequacies will propagate themselves to the

subsequent phases of the software development and cause problems during

maintenance. We have been able to identify a collection of typical deficiencies

in the specification of structured documents and we propose a collection of

refactorings that minimize or remove them. Doing this early in the

development process increases requirements modularity and

understandability. A case study is conducted to illustrate the use of these

refactoring practices on two existing requirement documents.

VI Simpósio Brasileiro de Qualidade de Software

142

1. Introduction

Several approaches are used to express the requirements of a software system and are

extensively used in academia and industry. These approaches describe both the

interactions between the users and the system and the functionalities to be provided.

Requirements are structured and described using, for example, use cases, viewpoints,

structured textual descriptions, activity diagrams, sequence diagrams [Li 1999].

 Over the past few years, a set of typical issues seems to plague the requirements

specifications. For example, requirements that have been abandoned and are no longer

meaningful, descriptions that are unnecessarily long and convoluted, information that is

duplicated [Wiegers 2003] [Firesmith 2007]. Inspired by the code refactoring literature

[Opdyke 1992], we set off to identify a set of bad smells that could indicate potential

refactoring opportunities.

 The occurrence of these bad smells decreases the overall understandability

quality of software, not only during implementation, but throughout the development

process [Boehm and Sullivan 2000] and can be minimized by the identification of their

symptoms and the removal of their causes. These symptoms may indicate potential

problems with the software [Elssamadisy and Schalliol 2002] and can be removed using

appropriate refactoring transformations. Their removal in early stages of software

development process reduces the costs associated with software changes. These cost

reductions could be three to six times more in later stages than during requirements

activities [Pressman 2005].

 Opdyke (1992) initially coined the term refactoring as the process of improving

the design of existing software using systematic transformations, without changing its

observable behavior. The term is also used to refer to program restructuring operations

aiming to support the design and evolution of object-oriented software. Refactorings

express ideas of good style, which can have a significant impact on the maintainability

and evolvability of code bases.

 There are refactorings and tools for refactoring requirements documents [Xu et

al. 2004] [Yu et al. 2004] [Rui et al. 2003] but they focus on specific techniques, such as

use case models and do not directly address textual descriptions or other mechanisms

used to specify requirements. Moreover, these approaches do not provide any guidelines

on how to identify the potential problems. As such, they say nothing about which

refactoring can be used to address those issues.

 In this paper we describe a generic approach to identify refactoring opportunities

in requirements descriptions, together with a collection of associated refactorings. The

resulting approach can be instantiated to any requirements description technique (e.g.,

viewpoints [Finkelstein and Sommerville 1996], goals [Lamsweerde 2001]). In this

paper we will discuss our ideas using use cases. In summary, our main contributions are:

– To provide a collection of refactoring opportunities that can be found in

requirements, corresponding to bad smells in the specification: large

requirement, complex conditional structure, lazy requirement, naming problems

and duplicated activities. For each opportunity we describe (a) a method to

VI Simpósio Brasileiro de Qualidade de Software

143

identify occurrences of the problem and (b) the refactorings that can be used to

minimize the effects of the problem occurrences.

– A collection of refactorings to manipulate requirements: extract requirement,

rename requirement, move activity, inline requirement, and extract alternative

flows. Each refactoring contains the context that suggests the application of the

refactoring, the type of solution it provides, a motivation for the transformations,

its mechanics (a set of well defined steps) and an example of a refactored

description.

 To assess the refactoring opportunities and the refactorings described in this

paper, we conducted a case study with two selected requirements documents: the Health

Watcher system
1
 [Soares et al. 2002], a web-based health complaint system, and the

Order Processing System described by Schneider and Winters (1998).

 This paper is structured as follows: Section 2 introduces a collection of

refactoring opportunities in use case descriptions. Section 3 presents refactorings to

manipulate requirements descriptions. Section 4 describes a case study applied to try out

and assess the proposed techniques. Section 5 discusses some related work. Finally,

Section 6 draws some conclusions and points out directions for future work.

2. Refactoring Opportunities

Fowler (2000) introduces the expression “bad smells” as indications of deficiencies that

can appear in software artifacts. In this paper, we use the expression refactoring

opportunity to refer to the types of bad smells that can appear in requirements artifacts.

 However, refactoring opportunities should not be seen as exact rules allowing

automatic application of refactorings. The requirements engineer needs to decide about

the trade-offs in changing the system requirements and needs to choose which

refactoring is more adequate for each opportunity.

 In this section, we describe refactoring opportunities in requirements as well as

associated refactorings that might be used for each defined opportunity. We consider the

following refactoring opportunities: large requirement, complex conditional structure,

lazy requirement, naming problems and duplicated activities. A brief textual description

and some refactorings that could help in the solution of the identified problem are also

provided but the refactorings themselves are described in Section 3.

2.1. Large Requirement

Large requirements occur when (i) a requirement is trying to handle several concerns
2
 at

the same time or (ii) there are many alternative flows and steps [Firesmith 2007]

[Alexander and Stevens 2002].

 Use the Extract Requirement refactoring (Section 3.1) to extract information

related to a given concern and insert it into a new requirement. This operation could be

1
 Is available at http://aosd.di.fct.unl.pt/ea-icse2007/case_study.html

2
 A concern is a matter of interest in the software [Dijkstra 1982] e.g., security, performance, information retrieval.

VI Simpósio Brasileiro de Qualidade de Software

144

repeated for each major concern addressed by this large requirement. If the flows or

other components of a requirement could be moved to another requirement, it could be

used the Move Activity refactoring (Section 3.3).

 After extracting or relocating requirements, we sometimes need to rename them

to better express the intention of the newly created one or of the one that was modified.

In this case, the Rename Requirement refactoring (Section 3.2) could be used to provide

more appropriated names.

 This refactoring opportunity is particularly important when there is a limit for

the size of each requirement, set by the organization’s Software Quality Assurance

Team.

2.2. Complex Conditional Structure

Complex conditional structures occur when a requirement has large or complex

expressions or needs several other requirements to be complete. A requirement can

contain complex conditional structures due to its nature or simply because it is poorly

described. The second situation shows up when there are nested conditional structures

or long sequences thereof. [Jacobson et al. 1997].

 This refactoring opportunity can be handled with the Extract Requirement

refactoring (Section 3.1) to create a new requirement from a conditional structure or

with the Move Activity refactoring (3.3) to move a conditional structure to a new

requirement in the same context.

2.3. Lazy Requirement

Lazy requirements correspond to one of the following cases: (i) when a requirement

describes a small number of responsibilities or the impact of the requirements is unclear;

(ii) when the size of a requirement is too small, in terms of its components; (iii) when a

requirement does not capture all the activities related to a given concern, or is

incomplete [Firesmith 2007] [Sommerville 1997].

 These problems happen when only the steps of a flow are described and the

output is ill-defined or unclear, and also, when after some modifications are performed,

the requirement is no longer appropriate. Other situations are due to the incomplete

nature of the requirements descriptions, as well as requirements descriptions which were

delayed (perhaps due to low priority) and not described in sufficient detail [Alexander

and Stevens 2002].

 Such lazy requirements can be improved using the Move Activity refactoring

(Section 3.3) to rearrange the steps of the requirement into other requirements. Also, if a

requirement is isolated and is not being used by any other requirement or is not

associated with any user or system, we may simply delete it.

 If some requirement is not being directly used by any stakeholder or subsystem

and is only referenced by one or a few other requirements, a possibility is to use the

Inline Requirement refactoring (Section 3.4) to move the features of this requirement to

the ones that need it.

VI Simpósio Brasileiro de Qualidade de Software

145

 A lazy requirement can simply be an incomplete requirement. In this case, there

is no need for refactoring. The requirements engineer only needs to include the missing

information.

2.4. Naming Problems

Meaningless or inconsistent names are situations where the requirement’s name bears

no relation with the concept described or the same name is used for different concepts

[Wiegers 2003].

 Several approaches for describing structured requirements documents use some

kind of naming mechanisms to express the intent of the requirement [Sommerville

1997]. Some authors describe problems with meaningless names in requirements

[Alexander and Stevens 2002] and usually provide some guidelines, such as use verb +

noun phrase (active verb in imperative mode) when possible. Inconsistent names occur

when two requirements are represented by the same identifier but have different

meanings. Other problems include excessive use of synonyms, absence of clear

definitions, partially overlapping concepts described by different names with no clear

definitions and usage of names with different meanings.

 These naming mismatches make requirements harder to understand. The

existence and enforcement of a correct nomenclature in a system under developed is a

valuable asset. Other types of meaningless names are the use of abbreviations to express

a given name. When these kinds of situations occur in the name of a requirement, the

developer can use the Rename Requirement refactoring (Section 3.2), to give an

adequate name to the requirement, thus revealing its purpose [Clements and Northrop,

2001].

2.5. Duplicated Activities

Duplicated activities are a situation that occurs when (i) the same requirement is

duplicated in different places in a requirements document or (ii) the same activities or

the same pre-post conditions appear in several requirements [Firesmith 2007] [Jacobson

1997].

 An activity is present in more than one place offers an opportunity for

refactoring. In the simplest case, the steps in a main flow or in an alternative flow are

repeated in set of requirements. A possible solution is to use the Extract Requirement

refactoring (Section 3.1), to remove the duplication and to create a new requirement

expressing this specific set of activities. If we have to maintain a relationship between

the original requirement and the one that was extracted, we can provide pointers to the

latter, thus preserving the original information.

 Another common duplication problem occurs when an individual activity

appears in several requirements. This duplication could be removed using the Extract

Requirement refactoring as mentioned above. If the activities are similar, but not exactly

the same, we may need to separate the duplicated piece from the rest of the requirement.

 A different approach is to use aspects [Kiczales et al. 1997] to express these

duplicated activities. The use of aspect-oriented requirements engineering [Rashid et al.

2003] provides a good mechanism to modularize these activities that are scattered

among several places in a requirements document and compose them without losing the

original information. The use of aspectual requirements [Rashid et al. 2003] [Jacobson

2003] [Jacobson 2005] adds a dependency inversion that provides low coupling between

the requirements and the activities in the aspectual requirement.

VI Simpósio Brasileiro de Qualidade de Software

146

3. Refactoring Requirements

In this section we define and describe a collection of requirements refactorings. Some of

these refactorings were mentioned in Sections 2, providing solutions to the refactoring

opportunities that were presented. We now describe the following five refactorings:

Extract Requirement, Rename Requirement, Move Activity, Inline Requirement, Extract

Alternative Flows.

 We use the format recommended by Fowler (2000) for describing refactorings.

For each refactoring we provide a context, a solution, the motivation for the application

of the refactoring, a set of mechanics to apply the refactoring and an example illustrating

the application of the refactoring. Note that although the examples in each individual

refactoring are based on use cases, the refactorings could also be used with other

techniques for describing requirements. The examples for each refactoring were taken

from two requirements documents mentioned in the introduction.

3.1. Extract Requirement

 Context. A set of inter-related information is used in several places or could be

better modularized in a separate requirement. Or a requirement is too large or

contains information related to a feature that is scattered across several

requirements or is tangled with other concerns.

 Solution. Extract the information to a new requirement and name it according to

the context.

 Motivation. This refactoring should be applied when there are large requirements

that can be split into two or more new requirements. These large requirements

include a great deal of information that is difficult to understand. Furthermore it

is not easy to locate the needed information quickly [Alexander 2002]

[Sommerville 1997].

 Mechanics. The following activities should be performed:

 1. Create a new requirement and name it.

 2. Select the information you want to extract.

 3. Add the selected information to the new requirement.

 4. Remove the information from the original requirement.

 5. Make sure the original requirement is acceptable without the removed

information.

 6. Update the references in dependent requirements.

Example. In the Health Watcher system [Soares et al. 2002], consider the use case

named Complaint Specification (Figure 1) that deals with three different types of

complaints (animal, food or diverse).

Figure 1. Use case complaint specification

Main flow of events: This use case makes possible for a citizen to register complaints. Complaints
can be Animal Complaint, Food Complaint or Diverse Complaint:

1. The citizen informs the kind of complaint;
2. The system registers the kind, date and time of the attendance;
3. The system shows the specific screen for each type of complaint;
4. The citizen provides the data;
5. The system saves the complaint (with the OPENED state), return a code for the attendance, so that

the citizen can take note and query for the situation of his/her complaint.

VI Simpósio Brasileiro de Qualidade de Software

147

 As each type of complaint can have different pre-conditions, different data to be

manipulated and different interfaces, the requirements engineer might extract each type

as a separated use case. Three new use cases were created (Register Animal Complaint

(Figure 3), Register Food Complaint and Register Diverse Complaint). The original use

case is modified to reference the extracted use cases (Figure 2).

Figure 2. Use case complaint specification (after the refactoring).

Figure 3. Use case register animal complaint

3.2 Rename Requirement

 Context. The name of a requirement is not appropriate for the context, is

abbreviated or is used in several places with different semantics.

 Solution. Rename the requirement to clearly express its purpose.

 Motivation. Good names make communication and understanding system

abstractions easier and provide a common vocabulary to the development team

[Alexander and Stevens 2002].

 Mechanics. The following activities should be performed:

1. Select the requirement you want to rename.

2. Change the name of the requirement.

3. Update the references in dependent requirements.

 Example. The use case Complaint Specification (Figure 1) [Soares et al.2002]

could be renamed to Register Complaint, following the pattern common to all

use cases that describe data insertion in the Health Watcher requirements

document.

3.3 Move Activity

Context. A set of activities is better accommodated in another requirement description.

Solution. Move the activity to the desired requirement. If the requirement does not exist

yet, create a new requirement with the selected activities using the Extract

Requirement refactoring.

Motivation. This refactoring is done to improve modularity and to ameliorate the

balance of activities among the requirements. Activities are moved from one

Main flow of events:
1. The citizen chooses the kind of complaint;
2. Case the citizen chooses the animal complaint.

2.1. The main flow will follow the one described on [Register Animal Complaint].
3. If the citizen chooses the food complaint.

3.1. The main flow will follow the one described on [Register Food Complaint].
4. If the citizen chooses the diverse complaint.

4.1. The main flow will follow the one described on [Register Diverse Complaint].
5. The system saves the complaint.

Main flow of events:

1. The citizen selects the option register animal complaint;

2. The system registers the kind, date and time of the attendance;

3. The system shows the screen for the animal complaint;

4. The citizen provides the complaint description;

5. The system saves the animal complaint (with the OPENED state), return the code for the

attendance, so that the citizen can take note and query for the situation of his/her complaint.

VI Simpósio Brasileiro de Qualidade de Software

148

requirement to another also when a new requirement is created, either manually

or by an Extract Requirement refactoring. This improvement in modularity could

lead to a better understanding of the system in the long term [Sommerville

2004].

Mechanics. The following activities should be performed:

1. Select the activities you want to move.

2. Move them to the desired requirement.

3. Update references to these activities if needed.

Example. In the Order Processing System [Schneider and Winters 1998], consider a

Login use case (Figure 4) that is concerned with user authentication and also

with the functionalities selected by the user. The shaded lines show the activities

that could be moved to another use case, responsible for the functionality

selection flow.

Figure 4. Use case login

 Other refactorings dealing with moving elements from requirements

specifications can be defined. For example, the Move Actor refactoring is already

defined in [Rui et al.2003], to move actors in use case definitions.

3.4 Inline Requirement

Context. A requirement is referenced and used in only one place or in a few places in

such a way that its existence is not justified in terms of maintenance costs.

Solution. Insert the requirements description into the requirements that use it.

Motivation. This refactoring reduces the complexity of the requirements model by

merging requirements. Each software artifact demands time and resources to

understand and maintain it [Jacobson 2003]. If a requirement is not useful

enough to justify its existence, the developer can inline it, merging its

responsibilities with other requirements.

Mechanics. The following activities should be performed:

1. Copy the activities (including pre and post conditions if applicable) described

in the requirement to all requirements that uses this one.

2. Update the affected requirements to reflect the inlined activities and other

requirements information.

3. Remove references to the inlined requirement.

4. Remove the inlined requirement.

Example. In the Health Watcher system [Soares et al.2002], there is a use case named

Change Logged Employee that is clearly an alternative flow of the Login

Main flow of events:

1. The use case starts when the user starts the

application.

2. The system will display the Login Screen.

3. The user enters a username and password.

. . .

6. The system will display the Main Screen

7. The system will select a function

…

…

8. While the user does not select Exit loop

 9. If the user selects Place Order then

 Use Place Order.

 10. else if the user selects Cancel

 Order then

 Use Cancel Order.

 11. . . .

 end if.

 16. The use will select a function.

end loop.

17. The use case ends.

VI Simpósio Brasileiro de Qualidade de Software

149

requirement. In this use case, the only activitiy is to redirect the flow back to the

Login flow. This use case could be inlined into the Login use case as an

alternative flow, using the Inline Requirement refactoring. Figure 5 shows the

use case that will be merged with the Login use case. Note that this use case can

be considered as a lazy requirement and Inline Requirement is the appropriate

refactoring for this situation.

Figure 5. Use case change logged employee

3.5 Extract Alternative Flows

 Context. A set of activities is not commonly performed in the main information

flow and the set could be better modularized in an alternative flow.

 Solution. Extract the desired activities to an alternative flow.

 Motivation. This refactoring is usually used when the main information flow is

bloated by trying to deal with several scenarios at the same time. This kind of

situation can make difficult the understanding of the requirement responsibilities

and the information flow. The use of alternative scenarios is a way to organize

complex flows with several conditional structures or that are too complex

[Jacobson et al. 1997].

 Mechanics. The following activities should be performed:

1. Create a new alternative flow.

2. Select the activities that will be extracted to an alternative flow.

3. Copy these activities to the alternative flow.

4. Update the reference in the main flow to point to the alternative flow.

5. Delete the activities in the main flow.

 Example. Consider a use case named Fill and Ship Order (Figure 6) [Soares et al.

2002], that deals with more than one scenario in the main flow. An alternative

scenario could be extracted, containing the shaded activities and be named to

represent this alternative situation (Figure 7).

Inputs and pre-conditions:

 Logged Employee

Outputs and post-conditions:

 First employee signed out and new logged employee

Main flow of events:

1. The employee chooses the option:

 [Change Logged Employee].

2. The system shows the login screen, and then this main flow will follow the one described in:

 [Login].

Main flow of events:

1. The use case starts when the clerk starts the fill-and-ship-order application.

2. . . .

3. While the clerk selects an order

 a. The system display the order

 b. . . .

 c. If there are items not back-ordered and not shipped then

1) For each such item loop

 a. Use Update Product Quantities

 b. . . .

5) . . .

4. The use case ends.

VI Simpósio Brasileiro de Qualidade de Software

150

Figure 6. Use case fill and ship order

Figure 7. Use case fill and ship order alternative flow (after the refactoring)

4. Case Study

The main goal of this case study is to assess the understandability of two requirements

documents before and after the application of the refactorings. We use a set of use case

metrics [Duran et al.2002] [Ramos et al.2006] to obtain the global picture of the

requirements documents being assessed.

 The scope. This case study has two phases: the first one is to find refactoring

opportunities, analyze the situation and apply the appropriate refactoring; the second

one is to analyze the results using the metrics selected for the case study.

 Each document is from a different domain and was retrieved from different

sources. The first requirements document is from the Health Watcher [Soares et

al.2002], a web-based health complaint system, aiming to improve the quality of the

services provided by health care institutions. This real-system allows the users to

register several kinds of health complaints (e.g., complaints against restaurants and food

shops), so that an official can investigate the complaints and take the necessary actions.

The requirements document contains nine use cases, thirty five steps and two actors.

This requirements document is also being used as a benchmark at the Early Aspects

Workshop at ICSE (Workshop in Aspect-Oriented Requirements Engineering and

Architecture Design)
3
.

 The second requirements document is the Order Processing System described by

Schneider and Winters (1998). This system provides a collection of use cases to a mail

based ordering processing system and is composed by thirteen use cases, eighty six steps

and seven actors.

 The goal of the second phase is to assess the refactoring results. The metrics

used in this case study are the following: Number of use cases of the requirements

document (NOUC), Number of steps of the use case (NOS), Number of conditional

steps of the use case (NOCS), Number of times a use case is included or extends other

use cases (NIE) and Number of scenarios of the use case (NOSC). All metrics except

NOSC [Ramos et al.2006] are based on Duran et al. [Duran et al.2002].

 The size of a structure is proportional the effort needed to understand it [Fenton

and Pfleeger 1997]. So, in this case study, we assume that smaller use cases, with less

steps and/or conditional structures can be easier to understand. Also, a module usually

3
 http://aosd.di.fct.unl.pt/ea-icse2007.

Alternative Flow - Items not back-ordered and not shipped:

1. For each such item loop

a. Use Update Product Quantities

. . .

5. . . .

VI Simpósio Brasileiro de Qualidade de Software

151

needs to know about related modules to be fully understood [Sommerville 1997]. So,

the number of related modules affects the complexity and understandability of a given

module.

 At the requirements level, the understandability of a requirement is directly

associated with its modularity and the number of concerns in a requirement [Alexander

and Stevens 2002]. In this case study, we state that a high number of scenarios in a use

case could increase the complexity of this use case.

 Instrumentation. The study was performed using two requirements documents.

The Health Watcher document uses the template of Cockburn’s Use Case [Cockburn

1997] and the Order Process System document uses Schneider and Winters template

[Schneider and Winters 1998]. The refactoring opportunities we seek are the ones

described in this paper. The evaluation results will be compared with metric values. The

results are displayed graphically.

 The variables. The independent variables are all those that are manipulated and

controlled during the study [Wohlin et al.2000]. In this case study the independent

variables are the two requirements documents. The dependent variables are all those that

are under analysis [Wohlin et al.2000]. In this case study the dependent variables are the

number of: use cases, steps, conditional steps and scenarios.

 Project. The two requirements documents will be measured before and after the

refactoring process. Each document is inspected to identify potential refactoring

opportunities. For each detected opportunity there is the need to choose the appropriated

refactoring to apply in the requirements document. The refactorings used are the ones

described in Section 3.

4.1 The Case Study Realization

We discuss first the refactoring opportunities that were searched in the Health Watcher

requirements document and then the ones in the Order Processing system.

 Health Watcher. We found refactoring opportunities in three use cases of the

respective requirements document: Complaint Specification, Register Tables and

Choose Logged Employee.

 In the Complaint Specification use case (Figure 1) the naming problem and large

requirement bad smells were present. We improved this use case by using the Rename

Requirement and Extract Requirement refactorings. The use case was renamed to

Register Complaint (following the same name pattern to all use cases that describe data

insertion). Three new use cases were created (Register Animal Complaint (Figure 3),

Register Food Complaint and Register Diverse Complaint). The Choose Logged

Employee use case was inlined into the Login use case as an alternative flow.

 The refactoring opportunities found to the Register Tables use case were Large

Requirement and Duplicated Activities. We used the Extract Requirement refactoring to

create seven new use cases: (Register Health Unit, Register Specialty, Update Specialty,

Register Disease, Update Disease, Register Symptom and Update Symptom). The use

case Register Tables and the duplicated activities were removed.

VI Simpósio Brasileiro de Qualidade de Software

152

 Order Processing System. The use cases wherein refactoring opportunities

were found are: Login (Figure 4), Get Status on Order and Fill and Ship Order (Fig. 6).

 The Login use case has the following refactoring opportunities: Large

Requirement and Complex Conditional Structure. A new use case was created and

named Select Function and the activities that were not in the login context were moved

to this newly created use case, using the Move Activity refactoring. The pre-condition

logged user was added to the use cases that were part of login relationships.

 The Get Status on Order could be seen as a lazy requirement as its

responsibilities are unclear. This use case could be seen as an alternative scenario to the

Search for Order use case. The Fill and Ship Order use case was considered a large

requirement because it deals with two different concerns in the main flow. An

alternative scenario named Items not back-ordered and not shipped (Figure 7) was

extracted to encapsulate the activities regarding one of the identified concerns.

 The selected metrics were computed before and after the refactoring process and

the result values are analyzed in next section.

4.2 Data Analysis

For the Health Watcher, the number of use cases and steps increased, while the mean

and standard deviation of the other metric values decreased (number of steps, number of

scenarios, number of conditional steps and number of inclusions and extensions), as

shown in Figure8. The number of use cases went from 9 to 19 and from 37 steps to 70.

 In general, the number of use cases is higher, but the use cases are smaller in

terms of steps, number of scenarios, conditional structures and inclusions and

extensions. They are also more homogeneous regarding these constructions, as the

standard deviation decreases for all the selected metrics.

Figure 8. Metric mean and standard deviation values for the Health Watcher.

 For the Order Processing System, the number of use cases remains the same (13

use cases) and the number of steps decreased from 91 to 88. The mean and standard

deviation of the other metric values (number of steps, number of scenarios, number of

conditional steps, and number of inclusions and extensions) decreased, as shown in

Figure 9.

 In general, the number of use cases is the same, but the use cases are smaller in

terms of steps, number of scenarios, conditional structures and inclusions and

extensions. They are also more homogeneous regarding these constructions, as the

standard deviation decreases for all the selected metrics.

VI Simpósio Brasileiro de Qualidade de Software

153

Figure 9. Metric mean and standard deviation values for the Order Processing
System

 Using the insights gained during the data analysis and considering that: i) the

size of a structure can indicate the effort needed to understand it [Fenton and Pfleeger

1997], ii) the number of related modules affects the complexity and understandability of

a given module [Sommerville 1997] and iii) the understandability of a requirement is

directly associated with its modularity and the number of concerns in a requirement

[Alexander and Stevens 2002], we infer that the understandability Quality was improved

in both requirements documents after the applications of the refactorings.

5 Related Work

Rui et al. (2003) describe a meta-model for use case modeling and categorize a list of

use case refactorings. We extend their refactoring listing with a detailed collection of

refactoring opportunities and requirements refactorings definitions, including, for each

refactoring: the context for the application for a given refactoring, a possible solution,

the motivation to apply the transformations and an example of its practical use.

 Yu et al. (2004) explain how refactoring can be applied in order to improve the

organization of use case models. They focus on the decomposition of a use case and the

reorganization of relationships between use cases. They also describe ten refactorings

that could be used to improve the overall organization of use case models, such as

inclusion or extension mechanisms introduction, use case deletion or refactorings that

manipulate the inheritance tree. While Yu et al. focus on refactoring the use case

models, we focus on refactoring requirements descriptions. As a consequence, our

refactorings are finer grained than theirs. We also discuss in details the mechanics of

each refactoring and possible refactoring opportunities in the context of requirements

descriptions.

 Xu et al. (2004) present a tool that helps in refactoring of use case models and

use it to conduct a case study using an ATM application. While they focus on the

automation side of the use case refactoring process, we concentrate on providing

definitions for deficiencies in use cases scenarios and refactorings in this context.

Further research is needed to attain automatic identification of problems in use case

descriptions and to support the refactorings proposed in this paper.

 Overgaard and Palmkvist (2004) offer a pattern named large use case as a means

for describing activities for which a satisfactory separation in several use cases could not

be found. We extend their work discussing an opportunity to apply their pattern as a

VI Simpósio Brasileiro de Qualidade de Software

154

solution to the lazy requirement opportunity and discussing the cases where this large

requirement becomes a problem and can be specified as a set of smaller requirements.

6 Conclusions

This paper describes a collection of refactoring opportunities that might occur in

requirements and provides a collection of refactorings that can be used to improve the

quality of requirements where these opportunities appear. For each refactoring, we

describe a collection of examples for practical use for both refactorings and the

identification of refactoring opportunities.

 The refactoring opportunities that we have identified are not mandatory rules.

Their goal is make the requirements more understandable and to improve overall

organization of the project, but depending on the significance of quality attributes in

each case, the requirements engineer might take actions that slightly differ from the

guidelines. Also, the expected granularity of the requirements descriptions might

influence the choice of the refactoring opportunities. The requirements engineer should

take these issues into consideration. To future work we are planning to formalize the

refactoring opportunities and to develop a tool that supports it.

 The term refactoring is originally used on code level for structural changes that

preserve behavior or meaning but increase understandability. Refactorings of code are

done when there are test suites that can verify that the behavior of the system is

preserved after the refactoring. As requirements documents are not executable artifacts

and we do not have test cases available, we cannot fully evaluate if the behavior is

preserved after the refactoring process. Further research is needed to correctly address

this issue.

References
Alexander, I.F., Stevens, R.: (2002) “Writing Better Requirements”, Pearson Education

Limited.

Boehm, B., Sullivan, K.: (2000) “Software economics: a roadmap”, in: ICSE – Future of SE

Track. 319–343.

Clements, P., Northrop, L.: (2001) “Software Product Lines”, Addison Wesley Professional.

Cockburn, A.: (2000) “Writing Effective Use Cases”, Addison Wesley.

Dijkstra, E.W.: (1992) “On the role of scientific thought (EWD 447)”, in: Selected Writings on

Computing: A Personal Perspective. Springer-Verlag.

Duran, A., Cortes, A.R., Corchuelo, R., Toro, M.: (2002) “Supporting requirements verification

using xslt”, in: Requirements Engineering Conference, Essen, Germany.

Elssamadisy, A., Schalliol, G.: (2002) “Recognizing and responding to bad smells in extreme

programming”, in: Proceedings of the 24th International conference on Software

Engineering, May 19-25, 2002, Orlando, Florida, USA.

Fenton, N.E., Pfleeger, S.L.: (1997) “Software Metrics: A Rigorous and Practical Approach”,

PWS Publishing Company.

Finkelstein, A., and Sommerville, I.: (1996) “The Viewpoints FAQ”, in: BCS/IEE Software

Engineering Journal, Vol. 11(1).

Firesmith, D.: (2007) “Common Requirements Problems, Their Negative Consequences, and

Industry Best Practices to Help Solve Them”, in Journal of Object Technology, vol. 6, no. 1,

January-February 2007, pp. 17-33.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: (2000) “Refactoring: improving the

design of existing code”, in: Object Technology Series. Addison-Wesley.

VI Simpósio Brasileiro de Qualidade de Software

155

Jacobson, I., Griss, M., Jonsson, P.: (1997) “Software Reuse: Architecture, Process, and

Organization for Business Success”, in: Addison Wesley.

Jacobson, I.: (2003) “Use cases and aspects - Working seamlessly together”, In: Journal of

Object Technology 2(4).

Jacobson, I., Ng, P.W.: (2005) “Aspect-Oriented Software Development with Use Cases”,

Addison-Wesley.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:

(1997) “Aspect-oriented programming”, in: Aksit, M., Matsuoka, S., eds.: 11th Europeen

Conf. Object-Oriented Programming. Volume 1241 of LNCS., Springer Verlag 220–242.

Lamsweerde, A. Van.: (2001) “Goal-Oriented Requirements Engineering: A Guided Tour”, in:

5th International Symposium. on Requirements Engineering. August, Toronto – Canada.

Li, L.: (1999) “A semi-automatic approach to translating use cases to sequence diagrams”, in:

TOOLS ’99: Proceedings of the Technology of Object-Oriented Languages and Systems,

Washington, DC, USA, IEEE Computer Society 184.

Opdyke, W.F.: (1992) “Refactoring object-oriented frameworks”, PhD thesis, University of

Illinois at Urbana-Champaign.

Overgaard, G., Palmkvist, K.: (2004) “Use Cases Patterns and Blueprints”, Addison Wesley

Professional.

Pressman, R.: (2005) “Software Engineering: A Practitioner’s Approach”, McGraw-Hill.

Ramos, R.A., Araújo, J., Castro, J., Moreira, A., Alencar, F., Silva, C.: (2006) “Uma abordagem

de instanciação de métricas para medir documentos de requisitos orientados a aspectos”, in:

3º Brazilian Workshop on Aspect Oriented Software Development - WASP2006.

Florianopolis, Brazil.

Ramos, R. A.; Araújo, J. ; Moreira, A. ; Castro, J. ; Alencar, F. and Penteado, R.: (2007a) “Um

Padrão para Requisitos Duplicados”, in: 6th Latin American Conference on Pattern

Languages of Programming (SugarLoafPlop’2007), Porto de Galinhas, Recife, Pernambuco ,

Brazil. (to appear)

Ramos, R. A. ; Alencar, F. ; Araújo, J. ; Moreira, A. ; Castro, J. and Penteado, R.: (2007b) “i*

with Aspects: Evaluating Understandability”, in: Workshop on Requirements Engineering,

2007, Toronto, Canada. (to appear)

Rashid, A., Moreira, A., Araújo, J.: (2003) “Modularisation and composition of aspectual

requirements”, in: Aksit, M., ed.: Proc. 2nd Int’ Conf. on Aspect-Oriented Software

Development (AOSD-2003), ACM Press.

Rui, K., Ren, S., Butler, G.: (2003) “Refactoring use case models: A case study”, in:

International Conference on Enterprise Information Systems. April, Angers – France.

Schneider, G., Winters, J.P.: (1998) “Applying Use Cases: A Practical Guide”, in: Addison

Wesley - Object Technology Series.

Soares, S., Laureano, E., Borba, P.: (2002) “Implementing distribution and persistence aspects

with AspectJ”, in: Proceedings of the 17th ACM conference on Object oriented

programming, systems, languages, and applications, ACM Press 174–190.

Sommerville, I., P., S.: (1997) “Requirements Engineering: A good practice guide”, John Wiley

and Sons LTD.

Sommerville, I.: (2004) “Software Engineering”, 7th edition. Pearson Education.

Wohlin, C., Runeson, P., H¨ost, M., Regnell, B., Wessl´en, A.: (2000) “Experimentation in

Software Engineering: an Introduction”, Kluwer Academic Publishers.

Wiegers, K. E.: (2003) “Software Requirements”, Microsoft Press, Second Edition.

Xu, J., Yu, W., Rui, K., Butler, G.: (2004) “Use case refactoring: a tool and a case study”, in:

Software Engineering Conference, 2004. 11th Asia-Pacific. 484–491.

Yu, W., Li, J., Butler, G.: (2004) “Refactoring use case models on episodes”, in: Automated

Software Engineering, 2004. Proceedings 19th International Conference on 328–335.

